
RESEARCH ARTICLE

Effect of air temperature on serum 25-

hydroxyvitamin D concentrations: A single

institutional large-scale study in Korea

Kyung Hee Han1, Yujin Jeong2, Young Ju Suh3, Dong Hoon Suh4,5, Kidong KimID
4,5, Yong

Beom Kim4,5, Jae Hong NoID
4,5*

1 Department of Obstetrics and Gynecology, CHA University Ilsan Medical Center, Gyeonggi-do, Republic of

Korea, 2 Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea,

3 Department of Biomedical Science, College of Medicine, Inha University, Incheon, Republic of Korea,

4 Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam,

Republic of Korea, 5 Department of Obstetrics and Gynecology, Seoul National University College of

Medicine, Seoul, Republic of Korea

* jhno@snu.ac.kr

Abstract

Vitamin D deficiency is a worldwide health issue especially in women. Serum vitamin D con-

centrations vary depending on the weather. However, the ideal vitamin D supplementation

strategy related to weather remains uncertain. We aimed to investigate the relationship

between climate factors and serum 25-hydroxy vitamin D [25(OH)D] concentrations. This

study included 11,272 women aged 20–79 who visited a health promotion center for annual

checkups between January 2013 and December 2015. We reviewed medical records and

collected daily meteorological data. We analyzed the association between serum 25(OH)D

concentration and climate factors using simple and multiple regression models and then

predicted serum 25(OH)D concentration using multiple fractional polynomial models. The

median age of the participants was 51 years (20–79 years), and the mean serum 25(OH)D

level was 17.4 ± 8.6 ng/mL. The serum 25(OH)D concentration was lower in young women

than in older women. The proportions of women with adequate 25(OH)D levels were 14.9%

and 47.0% in the age groups 20–29 and 70–79, respectively. The maximum level of pre-

dicted log 25(OH)D was found in September, and the minimum was found in January. In

multiple regression analysis, age and monthly mean temperature were associated with 25

(OH)D concentrations. Serum 25(OH)D level was predicted using the following formula: log

(25(OH)D) = 2.144 + 0.009 × age + 0.018 × ((temperature + 12.4)/10)2 (P < 0.001, adjusted

R2 = 0.091). Serum 25(OH)D concentrations changed according to air temperature. An ade-

quate strategy for vitamin D supplementation, based on air temperature, is necessary to

maintain healthy serum 25(OH)D levels.

Introduction

Vitamin D deficiency is a widely recognized global health problem. It is estimated that one bil-

lion people worldwide have vitamin D insufficiency. Vitamin D plays a crucial role to maintain
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the serum concentration of calcium and phosphate; and is critical for bone mineral metabo-

lism [1]. Vitamin D deficiency is associated with autoimmune diseases, infections, cardiovas-

cular diseases, neurological disorders, and certain types of cancers [2].

In previous studies, the vitamin D concentration was lower in women than in men, and the

proportion of women with vitamin D insufficiency was 64.5% compared with 47.3% in men

[3, 4]. According to the National Health and Nutrition Examination Survey, a decrease in vita-

min D levels was more prevalent in young women [5]. Vitamin D insufficiency in young

women is associated with poor skeletal and reproductive health [6].

The major source of vitamin D is skin epidermal synthesis via ultraviolet B (UVB) radia-

tion, which accounts for 90% of the vitamin D replenishment [7]. Sunlight changes according

to the weather throughout the year; thus, vitamin D levels generally depend on climate factors

[8]. Among the climate factors, the level of vitamin D is associated with UVB radiation, cloud

cover, rain, snow, or air temperature [9, 10]. Increased sunlight exposure, sunny days, or daily

air temperature positively correlates with serum vitamin D levels [11]. Vitamin D concentra-

tion fluctuates with the season, often showing lower levels during the winter months [12]. In

cold winters, reduced sunlight, decreased outdoor activity, and covered clothing can hinder

the synthesis of vitamin D in human skin [13]. To maintain optimal vitamin D levels, oral vita-

min D supplementation is recommended. However, there are no definitive guidelines for vita-

min D supplementation at weather-reflecting doses [14].

Serum vitamin D concentrations vary according to latitude, skin color, and genetic varia-

tions [15, 16]. Korea is located in East Asia in the Northern Hemisphere (33–38˚N) and has

distinct monthly weather. Koreans have similar genetic inheritance patterns and skin colors

[3]. Therefore, we investigated the vitamin D concentration of Korean women and developed

a predictive model for serum vitamin D levels to establish a supplementation plan based on cli-

mate factors.

Materials and methods

Ethics statement

The Institutional Review Board of the Seoul National University Bundang Hospital approved

this study (IRB No. B-1610-366-101). This was a hospital-based observational retrospective

study. Informed consent requirements for the included individuals were waived because of the

minimal or negligible risk of this research and the practical challenges of loss of follow-up in

the recruited population.

Patients and inclusion criteria

The anonymous medical data of 21,620 women aged 20–79 years who visited the Health Pro-

motion Center at Seoul National University Bundang Hospital for regular checkups between

January 2013 and December 2015 were reviewed retrospectively after the approval (data access

period: from September 2016 to September 2017). None of the participants were pregnant or

breastfeeding. Of these, 581 women with thyroid, hypothyroid, or adrenal diseases and 9,767

women with osteoporosis who were taking medication were excluded. A total of 11,272

women were included in this study. The age of the women and the day on which the blood

sample was taken were recorded.

Collection of vitamin D and meteorological data

All included individuals underwent blood tests including vitamin D levels, as part of their

health checkups during visits to health centers. Data on vitamin D levels were collected
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through a retrospective review. The concentration of serum 25-hydroxy vitamin D [25(OH)

D], a measurable form of vitamin D was detected using a 125I RIA kit (DiaSorin, Stillwater,

MN, USA) within 24 h of blood sample collection shading the light. All women were classified

into four groups based on serum 25(OH)D levels according to the National Institutes of Health

criteria: deficiency, < 12 ng/mL; inadequate, between 12 and 20 ng/mL; adequate, > 20 ng/ml

and< 50 ng/mL; and high, > 50 ng/mL. One nanogram per milliliter 25(OH)D corresponds

to 2.5 nmol/L 25(OH)D [17].

Suwon was the nearest city to most of the patients included in our study. Thus, we collected

data on the weather conditions in Suwon. Daily meteorological data, such as sunshine hours,

percentage of sunshine, global solar radiation, temperature, and UVB rays were obtained from

the Korea Meteorological Administration website [18].

Statistical analysis

The clinical characteristics of the patients were analyzed using the chi-square test, Fisher’s

exact test, or Spearman’s rank correlation test for categorical or ordinal data, and the t-test or

analysis of variance test for continuous data. To investigate the association between 25(OH)D

levels and seasonal factors, simple and multiple regression analyses were conducted using the

SPSS Statistics software (version 21.0; IBM Corporation, Armonk, NY, USA). The predicted

25(OH)D levels were evaluated using a multiple-fractional polynomial model [19]. An internal

validation was performed to evaluate the accuracy of the predictive models. We employed a

five-fold cross-validation (CV) approach to obtain an unbiased internal assessment of the pre-

dictive performance of the model. During the validation process, Pearson’s correlation analysis

between the observed and predicted values obtained from the prediction model in each test set

was used to evaluate model performance. The closer the estimated correlation coefficient is to

1, the more accurately the model represents the data. R statistical package was used for the pre-

diction model generation and model validation process (version 4.0.5, ‘mfp’ package in http://

cran.r-project.org). Statistical significance was defined as a two-sided P-value< 0.05.

Results

Baseline characteristics

The median age of the participants was 51 years (20–79 years). The mean serum 25(OH)D

concentration was 17.41 ± 8.60 ng/mL, corresponding to inadequate vitamin D level. All

women were divided into four groups according to their 25(OH)D concentration (Table 1):

deficiency, inadequate, adequate, and high. Age, 25(OH)D measurement time, mean tempera-

ture, accumulated ultraviolet A (UVA), and maximum UVB exposure were associated with

serum 25(OH)D concentrations (all P< 0.001). Among the four groups, the mean age of the

deficiency group was lower than those of the other groups (P< 0.001). The proportion of

women with adequate 25(OH)D levels gradually increased with age. There were no significant

relationships between 25(OH)D and precipitation, sunshine duration, or solar radiation

quantity.

Association between serum level of 25(OH)D, age, and months

Fig 1(A) shows the serum 25(OH)D levels by 10-year age groups during the study period.

Most study participants had low 25(OH)D concentrations (< 20 ng/mL) during the study

period. Older age groups tended to have higher 25(OH)D concentrations than younger ones.

The lowest 25(OH)D concentration was observed in women aged 20–29 years, whereas the

highest was observed in women aged 70–79 years. As shown in Fig 1(B), women aged< 50
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years (n = 5,038, 44.7%) had lower 25(OH)D levels than those aged� 50 years (n = 6,234,

55.3%). The peak 25(OH)D concentration in women aged� 50 years occurred later than in

women aged< 50 years. The 25(OH)D levels showed a unique monthly pattern in all age

groups.

Fig 2 shows the predicted log 25(OH)D concentration monthly after adjusting for age. The

predictive value of vitamin D was obtained using the following model: log(25(OH)D) = 2.092

+ 0.009 × age + 0.316 × (month/10)3–1.396 × (month/10)3 × log(month/10) (P<0.001 for all

terms in the fitted model, adjusted R2 = 0.112). Based on a five-fold CV analysis, the average

estimated correlation coefficient between the observed and predicted values in the test sets was

0.322. The maximum level of predicted log 25(OH)D was found in September, and the mini-

mum was found in January.

Table 1. Baseline characteristics according to vitamin D status.

25(OH)D level Deficiency (<12 ng/ml) Inadequate (12–20 ng/ml) Adequate (20–50 ng/ml) High (�50 ng/ml) P

(n = 3,465, 30.7%) (n = 4,240, 37.6%) (n = 3,532, 31.3%) (n = 35, 0.3%)

25(OH)D (mean±SD, ng/ml) 9.1±1.9 15.5±2.2 27.5±6.1 56.6±7.8 <0.001

Age (mean±SD, year) 47.7±12.6 49.8±12.4 54.8±12.1 60.7±10.9 <0.001

Age group (n, %) <0.001

20–29 years 249 (42.3) 251 (42.6) 88 (14.9) 1 (0.2)

30–39 years 647 (39.0) 655 (39.5) 353 (21.3) 2 (0.1)

40–49 years 1,113 (39.9) 1,073 (38.4) 605 (21.7) 1 (0.0)

50–59 years 845 (25.0) 1,328 (39.2) 1,200 (35.4) 13 (0.4)

60–69 years 407 (20.6) 680 (34.5) 874 (44.3) 10 (0.5)

70–79 years 204 (23.3) 253 (28.8) 412 (47.0) 8 (0.9)

Measured time (mean±SD, month) 6.3±3.8 7.3±3.4 7.4±3.2 8.6±2.7 <0.001

Temperature (mean±SD,˚C) 10.2±9.8 13.8±10.2 14.9±10.1 15.3±9.1 <0.001

Accumulated UVA (mean±SD, MJ/m2) 0.65±0.36 0.69±0.36 0.71±0.36 0.69±0.36 <0.001

Maximum of UVB (mean±SD, W/m2) 0.10±0.06 0.11±0.06 0.12±0.06 0.12±0.06 <0.001

Precipitation (mean±SD, mm/day) 6.55±12.96 7.93±15.61 7.83±15.85 7.85±13.77 0.078

Duration of sunshine (mean±SD, hour/day) 6.54±3.84 6.39±3.92 6.44±3.96 6.46±3.80 0.452

Radiation quantity (mean±SD, MJ/m2) 11.85±6.17 11.73±6.11 11.84±6.01 11.32±5.89 0.766

aAbbreviations: SD, standard deviation; UVA, ultraviolet A; UVB, ultraviolet B

https://doi.org/10.1371/journal.pone.0297495.t001

Fig 1. Plots of 25(OH)D according to age groups during the study period. (A, by 10-year age groups; B, based on

age 50).

https://doi.org/10.1371/journal.pone.0297495.g001
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Association between serum 25(OH)D level and climate factors

Table 2 shows the association between climate factors and serum 25(OH)D levels as continu-

ous variables using simple and multiple regression analyses. For statistical analyses of normal

distribution, 25(OH)D levels were analyzed after logarithmic transformation. In the simple

regression analyses, age, monthly mean temperature, accumulated UVA, maximum UVB, and

precipitation were correlated with 25(OH)D concentration (all P< 0.001). Factors at the 5%

significance level in the simple regression model were included in the multiple models. After

adjusting for confounding factors (other variables except for oneself) in the multiple regression

model, log-transformed 25(OH)D levels increased by 0.009 as age increased by one year and

Fig 2. Monthly mean predicted log 25(OH)D value after adjusting for age, measured between January 2013 and

December 2015. Black solid line indicates monthly mean predicted log serum vitamin D (25(OH)D, ng/mL) value;

blue dotted line indicates 95% confidence interval of predictive value.

https://doi.org/10.1371/journal.pone.0297495.g002

Table 2. Regression analyses of 25(OH)D with log transformation on the variables.

Characteristics Simple Regression Multiple Regression

B SE P B SE P
Age (year) 0.009 <0.001 <0.001 0.009 0.001 <0.001

Temperature (˚C) 0.009 <0.001 <0.001 0.010 0.001 <0.001

Accumulated UVA(MJ/m2) 0.095 0.013 <0.001 0.048 0.048 0.309

Maximum of UVB (W/m2) 0.839 0.074 <0.001 -0.344 0.283 0.224

Precipitation (mm/day) 0.001 0.001 0.049 <0.001 0.001 0.397

Duration of sunshine (hour/day) -0.001 0.001 0.256

Radiation quantity (MJ/m2) <0.001 <0.001 0.701

aAbbreviations: B, beta-coefficient; SE, standard error; UVA, ultraviolet A; UVB, ultraviolet B

https://doi.org/10.1371/journal.pone.0297495.t002
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increased by 0.01 as temperature increased by 1˚C (P< 0.001). In multiple analyses, age and

temperature were significantly associated with serum 25(OH)D concentrations (all P< 0.001).

Accumulated UVA, maximum UVB, and precipitation were not associated with 25(OH)D lev-

els (P > 0.05).

Fig 3 shows the predictive level of 25(OH)D with log transformation according to the

monthly mean temperature adjusted for age, which was expressed using the following mathe-

matical model: log (25(OH)D) = 2.144 + 0.009 × age + 0.018 × ((temperature + 12.4)/10)2

(P< 0.001 for all terms in the fitted model; adjusted R2 = 0.091). From the five-fold CV analy-

sis, the average estimated correlation coefficient between the observed and predicted value in

the test set was 0.299. Serum 25(OH)D level showed an increased tendency between −10 and

30˚C according to air temperature.

Discussion

In this study, serum 25(OH)D levels were significantly associated with age, month, and mean

temperature. The serum 25(OH)D concentration was lower in young women than in older

women. The proportion of women with adequate 25(OH)D levels was only 14.9% in the age

group 20–29 years and 47.0% in the age group 70–79 years. Serum 25(OH)D levels changed

monthly. Among the climate factors, monthly mean temperature was associated with serum

25(OH)D concentration. The predictive value of serum 25(OH)D concentration was estimated

using a mathematical model based on monthly mean temperature.

In our study, the proportion of adequate 25(OH)D concentration in women was higher in

the older age group than the younger age group (based on age 50 years). In addition, highly

toxic levels of 25(OH)D have been reported in women aged> 50 years. A previous Korean

observational study reported that young women have lower vitamin D levels than older

women [3]. When women experience menopause at approximately 50 years of age, they often

take nutritional supplements to prevent osteoporosis or fractures [9]. For postmenopausal

women, the Korean Society of Bone and Mineral Research recommends the supplementation

Fig 3. (A) Mean value of the predictive temperature by month. (B) Predictive serum log 25(OH)D concentration

according to monthly mean temperature. Black solid line indicates monthly mean value of predicted temperature; blue

dotted line indicates 95% confidence interval for predictive value.

https://doi.org/10.1371/journal.pone.0297495.g003
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of calcium and vitamin D [20]. A previous study indicated that younger women engage in

fewer outdoor activities than older women [21]. Sunscreen use is more prevalent among the

younger generations [22], and has been associated with low vitamin D concentrations [23].

Indoor activity or frequent sunscreen use in young women affects the generation gap in serum

25(OH)D concentration [24]. Increased coffee consumption among young women has been

associated with low vitamin D levels in South Korea [25]. Caffeine inhibits calcium metabolism

and renal reabsorption, enhancing calcium loss from the kidney or intestine [25]. In an in

vitro study, caffeine inhibited osteoblast proliferation and remodeled vitamin D receptor pro-

tein expression in osteoblasts [26].

Serum 25(OH)D levels changed according to the month. A predictive model for 25(OH)D

with log transformation according to the month was developed using a mathematical formula.

However, our results on monthly changes in serum 25(OH)D concentrations are limited to

Korean weather conditions. The air temperature can be applied and extended to other condi-

tions. Furthermore, the temperature was the only significant climate factor associated with

serum 25(OH)D concentrations in our study. Therefore, we investigated the relationship

between serum 25(OH)D concentrations and monthly air temperature using a mathematical

formula after adjusting for age. Previous studies have suggested that seasonal variations in

serum 25(OH)D levels are associated with the outdoor air temperature [27, 28]. Temperature

is directly involved in converting pre-vitamin D3 in the skin [29]. Pre-vitamin D3 undergoes

isomerization, converting it into vitamin D3 based on the skin temperature [30]. Human skin

temperature is influenced by the outside air temperature [31]. The average monthly air tem-

perature is associated with serum vitamin D concentration [9]. Temperature indirectly affects

25(OH)D by changing the human lifestyle [32]. On a clear and hot day, people prefer outdoor

activities with short clothes exposing arms and legs to allow more sunlight for synthesizing

vitamin D [8, 33].

The highest temperatures were recorded in July and August. The highest serum 25(OH)D

concentration was observed in September. Although vitamin D is synthesized instantly in the

skin after exposure to sunlight, the half-life of circulating vitamin D in the body is approxi-

mately 2 months [34]. In a previous study, it was observed that the seasonal variation in vita-

min D concentration lagged behind that of air temperature by 8 weeks [35]. In our study, the

peak points of 25(OH)D concentrations differed between age groups, with the highest concen-

tration in the older age group occurring later than that in the younger age group. Aged human

skin is less able to produce pre-vitamin D3 than young epidermis [36]. The production rate of

vitamin D3 decreased by 13% per decade of life [37].

This study had some limitations. First, our data did not include the body weight or height

of the participants. Fat or body mass index was inversely associated with serum 25(OH)D con-

centration [4]. Subcutaneous fat tissue deposits 25(OH)D, decreasing the bioavailability of

vitamin D to control circulating 25(OH)D [38]. Future studies are needed to analyze the asso-

ciation between obesity and seasonal vitamin D variation. Second, we could not accurately

estimate the amount of vitamin D supplementation in enrolled women. Although we excluded

women who had a disease or took prescribed medicines that affected serum vitamin D concen-

tration, our study did not analyze individual lifestyle factors, such as dietary habits and nutri-

tional supplements. Third, the power of our mathematical formula for predicting the serum 25

(OH)D concentration was relatively low. However, our study is the first large-scale study in

women to investigate the relationship among serum vitamin D levels, month, and air tempera-

ture. Vitamin D deficiency is associated with various medical conditions, with notable implica-

tions for osteoporosis-related fractures. Oral supplementation with vitamin D is essential for

maintaining adequate vitamin D levels, especially during winter and in young women [39]. In

contrast, high vitamin D levels may be associated with other diseases, including an increased
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risk of bone fractures [40]. Excessive levels of vitamin D are not recommended for healthy

bone metabolism [41]. An adequate strategy for vitamin D supplementation based on the tem-

perature is possible using our formula.

Conclusion

In women, the 25(OH)D concentration was observed to be lower in the younger generation

during winter and at lower air temperatures. A proper monthly strategy to represent the tem-

perature for adequate 25(OH)D levels is necessary to maintain health. Young women should

increase their vitamin D supplementation, especially during the cold months. Older women

should avoid excessive vitamin D supplementation, especially during hot months. Achieving

adequate vitamin D concentrations may require lifestyle changes and oral vitamin D

supplementation.
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