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Abstract

The focus of this work is on the absolute controllability of Hilfer impulsive non-instantaneous
neutral derivative (HINND) with integral boundary condition of any order. Total controllability
refers to the system’s ability to be controlled during the impulse time. Kuratowski measure
and semigroup theory in Banach space yield the results. Furthermore, we talked about opti-
mal controllability in conjunction with appropriate limitations. Our established outcomes are
described using an example.

1 Introduction

The concept of differential equations with non-instantaneous impulses(NII) involves many
physical processes due to its tremendous applications. Impulse is an action, that starts at an
arbitrary fixed point and remains active on a finite time interval is called as NI impulse that
occurs in many physical processes like harvesting, vaccination, natural disasters, and shocks
subjected to unexpected change in their state. The above situations have to be modeled by
impulses [1, 2] if necessary that can not be solved using ordinary differential equations. For
some processes, instantaneous impulsive dynamic systems do not support a perfect descrip-
tion, for example, endorsement of insulin of hyperglycemia patients. The change in the above
system caused by this medication will remain until the total absorption for a finite time, thanks
to the evolutionary process can be modeled with NII. This theory is originated by Hernandez
[3]. Recently, Vipin Kumar et al. [4-7] derived the controllability results of fractional systems
with and without NII for various models. To seek more about NI impulse, track and surf the
articles [8-16] and cited references.

On the other hand, the existence and controllability theory extended for both DEs of inte-
ger and non-integer order with NII. Fractional calculus is the most appropriate way to evalu-
ate the exact solutions to the given model. The results on Caputo and R-L fractional
derivatives were discussed in [17-19]. Theory on HFD was introduced by Hilfer [20] and the
results are discussed in [21-24]. One can refer to the monographs [25-29] to know more
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about fractional derivatives. In general, controllability enables directing the system from a
random initial state to the desired ultimate state. The articles [30-35] discuss the controlla-
bility results of Caputo and Hilfer fractional differential system in the nondense domain.
Furthermore, the existence and controllability of the Hilfer fractional system with infinite
delay were examined in [36, 37]. The exact controllability for Hilfer fractional differential
inclusions including nonlocal initial conditions was examined by Du et al. [38]. The approxi-
mate controllability results for the Hilfer fractional system were derived by [39, 40]. Recently,
a prospective field in control systems is optimal control studied in [41-43]. Ultimately, is
more appropriate to evaluate them using an optimization procedure involving fractional dif-
ferential equations.

The outcome of the existence of HINND of arbitrary order was discussed in [44]. More-
over, results on total controllability fractional neutral non-instantaneous system discussed by
[45]. In addition, optimization of the non-instantaneous neutral fractional system is investi-
gated by in [46]. No article was found in the existing literature about the investigation of total
controllability using semigroup theory.

We contribute this article to analyze the total controllability & optimal control results for
HINND of arbitrary order as:

D [5(0) = Kt 5(0)] = A4[3(0) = K(630)] +Bu() + F(50), e et
0= | (0 05()o, te Q(tk, 6 (LD

T
1773(0) = k/ 3(w)dw +c¢, ceR.
0

Here, Y be a Banach space and A : D(A) C ) — Yis closed together with D(A) € Y. D'
represents Hilfer derivative of fractional order with 0 < p; < 1,0 < p, < 1. Also,n=p; + p, —
piprt€Z =10,T],T>0.Here K: I xY —>DA) CY,F:ITxY—->DA) CI S, :
[t ¢x] x YV — Y are relevant functions. ¢, ¢, fulfills

0=t =¢, <t <e <t,<....<ey<ty, =T. Moreover,j3(t,) Zgijgl+3(fk —h).B:

U — )Y is abounded linear operator and u(-) € L*[Z, U]. The integral boundary condition A =
+ 1 or —1. We briefly orchestrated our objective of this work:

() By incorporating HFD with semigroup operator theory and LT, we have introduced the
integral solution of (1.1).

(#i) Kuratowski’s measure with x-set-contraction theory has been supported very much to the
total controllability of HINND with C, semigroup operator for the first time in the
literature.

(#ii) The results on optimal controllability of HINND had been discussed via Lipschitz
continuity.

(iv) We have gone through with an illustration that enables our analytical outcomes existence.

2 Key notes
The space of continuous functions is defined by C(Z, )) be a provided ||3|| = sup||3(t)||-
teZ

Cy(T,Y) ={3: Y — Y provided £75(t) € C(Z, M)} [l3ll, , :Oi‘ffT|f1"’5(t)l.
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Let PC,_, ((t ], )) defines the space of piecewise functions as

(t— tk)liwﬁ(t) €C_,((t t ], R)

PC, (T =
) lim(t - )" "3(t), k=1,2,...,N,
—

provided

lll = max{ sup [ ~'5(€)] |, supJ¢~'5(6)]}.
te

teZ

L(}), characterize the space of all bounded linear operators on ). A, generates the semigroup
{S,, 5, (t)} where t > 0 with sup|[S, , (t)[|,,, = . Define a convex, bounded and closed set

E = {3 E Pcl—q(I’y)’ ||3(t)|| < t? t G I? T > 0} inPC]—n(I7y)'
Definition 2.1 [20]. For n —1 < p; < n,n € N and p, € (0, 1], HFD is defined by:

n—p: d — n— n—p: n—
Dﬁi‘h)’(t) :j.gir( PZ)EUJ((;r P1)( PQ)y(t) :fgir( PZ)D83+P1 1721’1)/“)7

where D" PP and g7 " ) gre R-L derivative and integral respectively.
Definition 2.2 [8, 44, 47]. The Kuratowski noncompact measure £(-) characterized as:
L(h)=1inf{p > 0: h = |J withdiam(h;) < p}, where h is a bounded set on ).
i=1

Lemma 2.3. (see [8, 44, 47]) For h,, h, C Y, the Kuratowski noncompact measure meets:

1. 4(h) = £(Rh) = {(convh);

2. &(h) = 0 iff h is compact;

3. for given ) € R, £(AR) < |A|e(R);

4. hy C hy implies €(h;) < €(hy);

5. (R Uh,) = max{e(h,), &(hy)};

6. &(hy + hy) < €(hy) + €(hy), where by + hy = {313 =3, + 355 31 € Ay, 3, € Ry}

7. The Lipschitz function R : D(R) C Y — Y and the subset W C D(R), &(R(W)) < k &(W) is
bounded.

LetDC C, ,(Z,Y)andt € Z,D(t) = {3(t) |3 € D} and {(D(t)) < (C,_, (D).
Lemma 2.4. (see [8, 44, 47]) Let D C C,_,([c,, ¢,],)) be bounded and equicontinuous such
that

1-y

¢C, (D) = max £(D(t)),
tefer.co]
and £(D(t)) is continuous on [c;, ¢,].
Lemma 2.5. (see [8, 44, 47]) Assume that ) C Y is bounded and for some D, C D, the
countable set meets {(D) < 24(D,).
Lemma 2.6. (see [8, 44, 47]) Let D = {3,} C PC,_,([c,,¢,],)) where —00 < ¢; < ¢; < 0.
Hence £(D(t)) on [cy, c,] such that:

g({ / ;,n(t)dt}) < 2/ (DW)dt, neN.
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Lemma 2.7. (see [21, 22, 44]) The system (1.1) becomes:

0 = |1 0o+ e K0.50)] +Ks(0)
1 ‘ p1-1
g | (0 [45(0) — K(o.5(0)] + Buo) + 5o, 5(0)|do. e (0.4)
50 =g [ (0P Soso. e el
(0 =50 [ (=0 205000 = Kis, s(00) + K(L5(0)
1

s [ = or [afio) - Ko.s(o)

+Bu(o) + F(o, 3((0))} do, te (et ).

Definition 2.8. (see [21, 22, 44]) A function j € PC,_, (Z,Y) is a solution of (1.1), if

D3(0) = o Jy, (= )" F(@,5(6)do, te (o), k=1,2,. N

L(p1)

(@)L "3(0) = A [ 3(w)do + ¢,

together with

50 =8, 0[1 [ s(@)do+ e~ K0.50)] + Kle5(0)

t (2.1)
+ /0 K, (t — 0) [Bu(o) + §(0.3(0)|do, te (0.4
() =S, () Hﬂ / " (e — @) (0,3(6) o — K(ek,z,(ek))} +K(t3(0)
e (2.2)

+/ K, (t— ) [Bu(®) + §(0,3(0))|do, te (6, 4] k=12, N.

Tpl(f)=P1/0 W, Ry, K, () =T, (1), S, ,(t) = FEK, (1)

w,(v) = %i(—l)mflv””y’lwan(rnng), v € (0,00),
wy(v) = iv(_l_%)wy<v’%)>0

Lemma 2.9. (see [8, 44, 47]) If a family {S, (t), t > 0} C B(Y) satisfies
(i) forall € D(A), S, ()3 =3+ I} S, (YAy, t > 0;

0t “p

(ii)S,, (t) is strongly continuous on R, S, (0) = I;
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(iii)AS, (t); = S, A(3) for each, 5 € D(A), t > 0,D C ).

Then, it is said to be p,—times resolvent generator by A.

Definition 2.10. A system is defined as totally controllable on I, if for k=1, 2, .. ., N, it is
controllable on (0, t,], (¢, t,.,] such that 3(0) = 3, and 3(t,,,) =3,

For further discussions, we consider the subsequent assumptions as:

N
HYK:JyxY—=Y, ], = kL:JO(ek, t,,,] is continuous and for EP, t, > Oas

1K 5,) = K(63)I < LMl — a1l 32, 5 €Y, te),

also [[KC(t,3]] < pyy 3 €V, tE);

(H2) for any bounded set D, C ), exist L,. > 0, such that

((K(t,D,)) < L,.4(D,);

(H3) Function § : ], X J — Y is continuous with £, > 0, satisfies

18(431) = S48l < Lills = 5lls 50,5 € Vs tel,

)
18091 < ¥Wo(lsl) and limint™D =y < o

where g : [0, 00)—[0, 00), a non decreasing continuous function, ¥ : Z — [0, c0), a Lebes-
gue integrable function and v > 0 such that forall 3 € ), t € 7 and meets || 5||CH <l

(H4) Fork=0,1,...N, L,,

UF(t3) < L, UD), te], with L= max L,

where the subset D of ) is a countable;
(H5) ForJ, = [t,¢], k=1,2,...N, #, : ], x Y — Y are continuous functions, for
K, >0, k=1,2,...N, provided for every 3, 3, € ),

17:(651) = Ze(t )l < Ky llsy = 5,ll; for each t € (t,¢], Ki= max K.

k=01,..N

Moreover, .4 , together with ||.Z,(t,3)|| < A ;
(H6) W : L*(Z,U) — Y defined by:

Wu = /0 K, (a — o)Bu(w)do,

is invertible. Also, for &, #, > 0,and |[W'|| < A, ||B|| < A,

(H7) Given L, > 0, for £(u(3, 1)) < L.t "0 (3, 0)0(3(p)), a.e. u € Z and
sup ﬁo(t, wdw = " < .
teZ
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Conveniently, we assign some notations as follows:

MMM K, b Kyt

C, = ” ik =max{ /T + L, ///<F(pl+1)+£" +L, F(pl—i—l)}’
_ M M , MMM
N, = J/{<F(pl+1) |t t 7})1 @(Z)HWH[U,QH]’ ¢ = T’

M
M = 509K, Ol N = A (l1+ bl 1y ) 1, + =2 o]
1

3 Main sequels

Lemma3.1. Let S C Yand R : S — Y be called as x-set-contractive for any bounded set X in
S such that and for k € [0, 1), as

UR)) < K ER).

Lemma 3.2. Let R be a convex, bounded and closed subset of Y. If R : R — R is k-set-contrac-
tive. Then R has at least one fixed point in K.
Lemma 3.3. If the assumptions (H1)-(H7) true, hence

u(t) =ws, - Sm(tl)[K/o 3(@)do + ¢ = K(0,3(0)) | = K(t,3(t))
t (3.1)
_ /U K, (t, — o)§(o, 3(w))dw] L te (0,4,
u(t> = w |?%+1 o SP1~P2 (tkﬂ - ek)
() [ﬁ / " (e — 0I5 do — Koy 3(e) | — K(teri(t) (3.2)

_/ Kpl (tkﬂ - w)%(a),g(w))dw] , te (ekvtkﬂ]’

drives to 3(t) of (1.1) from 3(t,) = 3, and 3(t,.,) = 3., also |[u(t)|| = A, ||u(t)|| = 4,
with

M= M3 || +N), M= A (l3,, || +N), k=1,2,...,N.
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Proof. For t = t,,

() =S, [ [ sl0)do -+ e = K(0.50)] + K500
+ / ) K, (t, — )3(0, 3(e))doo
+/0 | KPl (tl - T)W71 |?t, - SphpQ (tl) |:>"/0 3((,0)d(1) +c— K(Oaé(o))

K(t,,3(t)) - / K (4 — )3 (0, 3(0))do| dr

ol / ()dor + ¢ = K(0,3(0)] + K(&,,5(4))
[ K = 0)(.s@)do 43, =8, 00 [ s)do -+ e~ K0.50)

K(t,,3(t)) - / K (4, — )3 (@, 3(0))do
=3¢

with

Ol < [[W[s, = 5,601 [ st0)do+ e~ K0.50)] - K1t 504)

_ /0 K (4 - )5, s(@)do) |
< %i<|zm|| ] | S + e~ KO.5(0)|| + I1(t. 5]

+.M,

t
/ wl-"w<w>p<||a||cl,,>de>
M

1

< ///i<||3t1| +//f(7\T||5(w)|| + el +up) +H, +

< M (|l 1l + V)
=M,

p<z>|‘1’|w)

Also, for t € (e, t,. ] and t = ¢,

3(6s) =Sy (b — 1) [ﬁ [ 6 or st o - K(ema(ek»}

b))+ [ K (b~ 0)3(0,5(0)do

g1
+/ KPl (tkﬂ o T)WA [5‘k+l o SP]vPZ (tk“ o ek)
3

(%) [F(‘lﬂ o ous))do - K(ek,z<ek>>]
Knsal) - [ K (e w)&(%a(w))dw] &

= 5£k+17
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with

. /A tPl /A tPl
ol <2 (1, 1+ (25 ) o+ 5 )

1
< A (|l3,, |1 +NY)
— A"

Theorem 3.4. The system (1.1) is totally controllable on I, if it meets the assumptions (H1)-
(H7) together with the conditions

(M + 2L, + M (M A1)+ AL MMM, A+ AM L] < 1. (3.3)
Proof. Construct G : PC, ,(Z,Y) — PC,_,(Z,)) as

S0 (O [1 ] 3(@)des + ¢ = K(0,3(0))] + KLt 3(0)

+ 1K, (= 0)[Bu(o) + §(@,50)do,  te(0,4)
(G3)(8) = § 1y Jy, (= )" Iy (o,5(t))doo, tE (s

St = &) [ S (e = ) I (0,3(6))doo — Koy, 3(e)|

FE(,3(0) + [ K, (t = 0)[Bu(0) + F(@,3(0)ldo, te (et,],

where u(t) is described in (3.1) and (3.2) for (0, t,] and (e,, t,,,], respectively. Moreover, by
Lemma3.1,5(t,) =3, and 3(t,.,) =3, ,, k=1,2,...,N. Let
R, ={3 € PC,_,(Z,Y) : |3llpc,, <7} € PC,,(T,D), 7> 0,and

M T
y> max{N+ Culll I+ ), max (N, +Cyllls | + A}, ﬁ}.

Step1: G: R — N.
Forte (0,t],let; € N,

IO < 8,0 [ stordor+ ¢~ k0,500 + ]|t

/Oth(t - w)&(w,g(w))dco” n H /Othl(t - a))Bu(a))de

+
M MMM (3.4)
< A (WT[3]] + el + )+, + p“ p(l)ll‘PllL[U_t,ﬁ%
1 1
MMM
<N+ BB s ]+ W]
P,
<

V.

PLOS ONE | https://doi.org/10.1371/journal.pone.0297478  February 28, 2024 8/18


https://doi.org/10.1371/journal.pone.0297478

PLOS ONE Optimal and total controllability approach of non-instantaneous Hilfer fractional derivative

Also, for t € (e, t. ],

1O = [J5,06 =05 [ (6= 0o~ Kt

+ et s + | /:Kpl(t— ©)3(0,3(@))do|| + || [Km(t— ) Bu(w)do |

M ) M MM AMT (3.5)
%<F(pl ¥+ 1) + + :up + pl p( )H ||I_[O.£k+1] + P1

MMM TN
SN R (1 1+ )

1
<

Also, for t € (t,,¢,],and 3 € X,

M A
/k+1 <

H@ﬁ@H_nﬂ+D y-

Hence, from (3.4)-(3.6), for some t € Z, gives H(g;,)(t)HPCH <7.ThenG: N — R
Construct G,, G, as:

SO J 3()der + ¢~ K(0,30)] + K(63(0), e (0,1,

mﬁk (t - w)plilfk(wﬂz’(tki))dwa te (tkv ek]7 k= 17 2, e ,N,

St = €[ S (e = )™ S, 3(4))des — Koy, 3(e,)
+K(t73(t))7 te (ek7 k+1] k= 1,2,...,N,

and

Iy Bu(w) + (@, 3(0))ldo,  t€ (0, 4],
(gzy)(t) =40, te (tk’ ek]v
fek P1 (w) + g(wvﬁ(w»]dwv te (ekﬂ tk+1]'

Clearly,G =G, + G,.
Step 2: G, is contraction.
Let; € R, forany t € (0,t,],

11600 - el =[}8,O(x [ sit0)io 1 [ suo)io)|
(3, (0) — K3, (0)]
< AT |3, (0) — 32((“)||pc1,,7 + £p||3l(w) - 32(w)||Pc1,”
< (AT + Ep)”?n - 32||Pc1,,,

(3.7)

<klls — 32HPCI,,,'
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Also, for 3 € Ny te (ek7 tk+l]’

130 — GO < (25 2 ) )i 3l
o s = C(p, +1) 77 ) @77 o 220 (3.8)
<kl — 52HPCH'

Also, for t € (t,,¢,],and 3 € R,

P1

16,3 (1) — (G13:) (V]| < ﬂll = dollpe,, < Kill31 = 3|l (3.9)
131 132 _F@1+1) 31 7 32 PC_, =™ 31 7 32 PC .

Forany t € 7, (|(G13,)(t) — (Gi3,) (V|| < ki[5, — 32||Pc1,,1' Since k; <1, G, is contracting
operator.

Step 3: By step 1, it is clear that G, is bounded. To prove continuity, consider a sequence
{3"},-, in X, such that 3 — 3 in NR,. For t € (0,¢,],

1[(Gp3")(t) - (G3)(B)]|
< [ /U (t— 0" 30,5 (0)) — §(o,3()]do|

o [ 0 B o)~ B o)ldol|

s%@[Ww—mwm

+///1///b///1/ 18,0, / "(w)do — x/T ()do)

HIKL 30 = K31+ [ (0 50 (0)do — §o.0) o] d

tP 1
<A N =l + [+ 5 sl
1

+

(3.10)

Therefore, |[(G,3")(t) — (G.3)(t)|| — 0asn — oo. Also, for t € (¢, t,.,], k=1,2,...,N,

1G)(0) — (@) 0]
<[jer [ (- or .5 ) - 5. s()dol|
+{[E /‘ (t — )" [Bu, (o) —Bua(w)]de

t
s%@/m%wwmm

+‘%1‘%b%$/ ( Spi2 (i — &) [%/jk (¢, — w>p]71 (3.11)
X[2,(@,3(6)) = F(0,3(5)Jdo> + K(e,5"(2,) — Klews3(e)] |

HIK(3"(1) — Kt 3(0)]] + / h (t — @) (0,5 (0))do — S((Dd(ﬂ)))ll*ﬂ) dt

P1

<AL =,

P1

K,
O | M| T L, | L, ML ficn 3 —3
2( (F(P1+1) p || HPCI 0’
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Hence, ||(G,3")(t) — (G,3)(t)|| approaches to 0 as n approaches to co. Hence from (3.10) and
(3.11) and for each t € Z, |[(G,3")(t) — (G,3)()|| — 0 as n — oo.

Step 4: G, is equicontinuous.

Take 7; < 7, on R,, and for 7,, 7, € (0, ¢,],

||(923) 2) — (G,3) (1)
/ "3 (0, 3(0)) + Bu()]do

oy / (51— )" [§(,3(0) + Bulw)]do|

0

< «%ycf(/g [‘[g 1(1'2 — w)P1*1 T,l, 1(,51 _ w)plil]da)—l—/ ‘Cg 1(1_2 _ w)pl—ldw) (3.12)

ol (|13, + N / ey — o — e — o) de
0

T2
+/ oz, — w)P‘fldw).
!

Similarly, For 7,, 7, € (e, t;,,],

||<925> ) — G @)l
/ §(0,3(0)) + Bu(w)]do

- / (51~ )" [§(0,3(®)) + Bu(o)Jdo|

3
g 3.13
< ([ or - o o+ [ o o)
e T

il M A N ([ = 0 o - 0o
o

2
+/ oz, — w)P'_ldw)‘
T

By (H3), [|(G23)(5) — (G43)(1,)]| — 0as 7, — 7,. Then G, is equicontinuous.
The countable subset D) = {3,}._, C D, and by Lemma 2.4, we have

UGy (D))pe,_, < 24(G,(Dy))sc,_,» (3.14)

where D is a bounded subset of R,. Since G,(D,) C G,(R,) is bounded and equicontinuous, by
Lemma 2.6,

E(QQ(DO))PCH7 < Z(gz(Do))Pcl,ﬂ(t)- (3.15)

max
te(epotip], k=0,1,2,...N
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Moreover, for t € (e, t,.,], (H4), (H7) and G,, with Lemma 2.5, we have

(a.onw <o, [ [Bu(o. {5,012 + 50, 5,001 |do)

¢k

< LMl +24,L) [ 103,00} o (319
< 2LL0" MMl + 2 LYD) e, (e — 2.
Then, by (3.14)(3.16) and (H2),
UGONO)x,, SPEMAl +2MLUD), (bim)
< WLL0" M\ Ml + AM YD) v,
Now, for any t € (¢, t,,,,onD e R,,
UG,(D)) < [ ML+ 2L, + M (A + 1)(D). (3.18)
Also,
H6(D) < 16,(D) + £G.(D)
(3.19)

< (MO A2L; M (ML) + AL MMM+ A LJD),,

Combining Lemma 3.1, and (3.3) and (3.19) it is clear that the mapping G from R, to X, is x-
set-contractive. Hence, the system G has a fixed point by Lemma 3.2. This completes the proof.

4 Optimal control

(H8) (i) The Lagrange function £ : Z x Y x U — R U {00} is Borel measurable;
(ii) For t € Z, and for every 3,,3, € Y, £(1, 3, -) is convex on U;
(iii) For almost all t € Z, £(t, -, -) is sequentially lower semi continuous on ) x U;
(iv) For¢, > 0,¢, > 0,h € L(Z,R),

£(t3,1) 2 0() + ¢, |l3llc, , + ol [ull”

This part deals with the verification of existence of optimal pair for the system (1.1) by
sequencing technique as discussed in [46, 48]. Let the cost function(£) as:

T
) = [ a0l we,
0
Define the admissible control function ¢/, as:
U, ={uel’(Z,H);ut) € pt),aetel}, P>1,

where u(t) takes its values in S C U. A multivalued map p : 7 — PC,_,, is measurable as
p(-) C S.Ttis clear that U, is bounded, convex & closed with I/, = 0. Define the solution set

T ={3"eN, 3" uecld,}

Also, thesetofall A, = {(3*,u); u € U 3" € T(w)}.
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Theorem 4.1. The system (1.1) is optimal controllable together with the assumptions (HI)-
(H8) provided

T
3G ) = / 26,5 (0,10 (0)dt < TG u), ¥ (54 u) € A,
0

Proof. Define J(u) = inf J(3*,u). Initially we prove J(3*,u) = J(u), 3* € T(uw).IfJ(u) =

MET(w)
+00 or 7 (u) has finite elements, the proof is trivial. Using (H8)(iv), J(u) > —oc. Let

J(u) < co. By infimum properties, a sequence {3*} € 7 (u) satisfies J(3*,u) — J(u) asn
— 00. Using reflexive property, {u’} € 7 (u) provided u’ € U,

Forn>1,
S0 (O] ] s3(0)de> + ¢ = K(0,500)] + K(t,35(8)
g ) TR OBu@) +F s, e O]
dn =
%mﬁ—qﬂﬁﬁﬁm—wﬂ”ﬂ@w()ww K(e34(e)
‘HC t 5 +f ( )+S(w dn ( ))]da)’ te (ekatkﬂ]v
where

@) (1) = (Gi3,) (1) + (9:3,) (1) = (G5,)(1)-

To prove (B3%)(t) : {G,(t); 3 € Ny} is relatively compact in PC,_, for each t € 7.
It is clear that B(0) : {G,(0); 3" € Ny} is relatively compact. For any
ueU, teZ, 3hen,

(G:3,)(1) :/0 K, (t — 0)[Bu(®) + F(, 5,(w))]do.

By (H3), and the property of admissible of control functions the set W, = {K, (t — )
[Bu(w) + F(®,3'(®))];0 < ¢, < t, — €} is relatively compact. Therefore, WW_, the convex hull

of W._ is compact due to Lemma 2.3(ii). Using Lemma 2.5, we can conclude (G53")(t) € W.
forall t € 7. Therefore B,(t) : {(G53%)(t); 3" € Ny} is relatively compact in PC,_,. For
€ (0, t],

16,590 — (G20
< || [ Kt 555000 + Bl ~ [ (o520 + Buloldo

< [ K (= 0)i5(0.50) + Bulw)do

t
S%Q/HMMWwwmﬁmm,
t—e
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Similarly, for t € (e, t,,,],
19230 () — (Ga3,) (B

< ‘ /E‘Kpl (t— 0)[F(,3:(w)) + Bu(w)]do — /e‘f[g(w,;,j;(w)) + Bu(w)]de

< / K, (t —0)[F(w,3:(w)) + Bu(w)]do
<ty [ 520 do -+ ottt

implies that lim e — 0[|(G,3")(t) — (G53")(t)|| = 0. Hence B, (t), is a family of relatively com-
pact sets. Moreover, G, 3% is bounded and equicontinuous in X,. By (3.16) and (3.18) we have

0Gy) < [N +2L, + M (M + 1) + AL M MM, + AM L)),

leads to £({3"},”,) = 0 by using (3.3). Hence, {3}, is relatively compact in PC;_,. Assume
3", a subsequence in PC,_, of {3*} - such that 3* — 3" aslim n — co. Moreover, by Lebesgue
theorem and (H1), (H3), (H5)

Spupn (O 1 J) 54 (@)do> 4 ¢ = K(0,5(0))| + K(8,54(1)
1K, (= 0)Bu() + §(,5 (@)do,  te (Ot
Sy (6= &) [ 75 1 (6 = )" (0,5 (6)do> — Ko, 3*(¢)

+E(4,34(0) + [, K, (t = 0)[Bu(0) +F(0,3(@))]ldo, e (¢ b].

Then, 3* € T (u) is continuously embedded in L'(Z, U), by Balder’s theorem [49] and (H8),

T

Ju)=1lm [ £(t3(t),u(t))dt > /TS(’L, 30, u(t)dt =3(3",u) > I(u),

n—oo fo

which shows J(3*,u) — J(u). Therefore, J(u) reaches its least value at 3* € 7 (u) for every
uely,
Also, consider u” € U, such that J(u) = inf J(u). By the infimum property, {u,}~ C U,

u€l g

provided limJ(u,) = irZ}f J(u). Since {u, },~, in £,(Z, U) is bounded for P > 1,u’ € L,(Z,U)
n—o0 uel g

and by relative compactness of 3 there is a subsequence 3’ € PC,_, as 151010 34 — 3" Using

Balder’s theorem [49] and the property that PC, , — L(Z, U) is continuous, we conclude

T

inf J(w) = lim [ £(t,3%(t),u,(t))dt > / TS(t,;}“O(t),uO(t))dt:3(;}“0,u°)

u€lyy n—oo [

=J(u’) > inf J(u).

u€lyy

Therefore, J(u) = inf J(u), leads that 7 attains its minimum at u’ € {,,. Subsequently, we
uelyy

have

ZGY,u%) = inf J(w) = inf TG4 u).

Ul g (3 1) €4

Hence, (3*',u) € A,,. This completes the proof.
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5 Application

Consider a nonlinear equation of the form given below to validate the outcome,

D [3@7 t) — exp<3 <%>)] = g—; [5(& t) — exP(5 (%))}

+/01[](g, Ou(c, )dt+sm[exp( 0+ <2;t>} s € (0,3)\ (1,2,

3(c, 0) =3(c, 1) =0, ¢ € [1,2], (4.1)

Lo a0
F(i)/ (¢c— {)% (QOexp(t) 4 1>dt7 ¢, te|l,2],

B 3
1550, 1) = / 3o, 0dt+ 5, te (0,7,
0

3(9 t) =

with Bu(c)(t) = [, b( t)dt, &p, =1, p, =2, n =2 Assume N' = L*[0, n] and A :
D(A )CN Nb}’AZ W(z)

D(A)={s € N, 30 3u EN, 3(¢,0) = 3(c,m) = 0}.
It is clear that A is a strongly continuous semigroup and (S(¢)3) in NV,

(S(2)3)(1) = { o (s, = wp@)do, <>0,
3(b), c—0,

with

2
Mg, t) = \/%exp(—C;—C)), ¢c>0, 0<t<m,

with 3(¢)(t) = 3(c, t). This leads to the conclusion ||S(¢)|| < . LetU,, =
{w e UllJull 24, o) < 1} Hence

b T et n
u) = / / l3(c. t)"dtds + / / |u(c, t)*dtdc
te 0 te 0

related to the system (4.1) which correlates the system (1.1) with

A= [ (WO + NI )ds

Therefore, (H1)-(H8) satisfied. This completes the proof.

6 Conclusion

We examine the total controllability of non-instantaneous Hilfer fractional neutral system
under integral boundary condition. By incorporating HFD with semigroup operator theory
and Laplace transform technique, the integral solution is derived. Controllability outcomes
were attained using Kuratowski’s measure with contraction theory. Furthermore, the sequenc-
ing technique has been used to discuss the existence of the optimal pair for the system. To con-
firm the derived consequences, an example is given. The concept can be extended to Hilfer
stochastic differential equations.
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