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Abstract

Introduction

Increased plasma trimethylamine oxide (TMAOQ) is observed in cardiovascular and meta-
bolic diseases, originating from the gut microbiota product, trimethylamine (TMA), via flavin-
containing monooxygenases (FMOs)-dependent oxidation. Numerous studies have investi-
gated the association between plasma TMAO and various pathologies, yet limited knowl-
edge exists regarding tissue concentrations of TMAO, TMAO precursors, and interspecies
variability.

Methods

Chromatography coupled with mass spectrometry was employed to evaluate tissue concen-
trations of TMAO and its precursors in adult male mice, rats, and guinea pigs. FMO mRNA
and protein levels were assessed through PCR and Western blot, respectively.

Results

Plasma TMAO levels were similar among the studied species. However, significant differ-
ences in tissue concentrations of TMAO were observed between mice, rats, and guinea
pigs. The rat renal medulla exhibited the highest TMAO concentration, while the lowest was
found in the mouse liver. Mice demonstrated significantly higher plasma TMA concentra-
tions compared to rats and guinea pigs, with the highest TMA concentration found in the
mouse renal medulla and the lowest in the rat lungs. FMOS5 exhibited the highest expression
in mouse liver, while FMO3 was highly expressed in rats. Guinea pigs displayed low expres-
sion of FMOs in this tissue.

Conclusion

Despite similar plasma TMAO levels, mice, rats, and guinea pigs exhibited significant differ-
ences in tissue concentrations of TMA, TMAQO, and FMO expression. These interspecies
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variations should be considered in the design and interpretation of experimental studies.
Furthermore, these findings may suggest a diverse importance of the TMAQO pathway in the
physiology of the evaluated species.

1 Introduction

Trimethylamine (TMA) is a gut microbiota metabolite. A plethora of studies show that tri-
methylamine oxide (TMAOQO), a product of the liver oxidation of TMA, is a biomarker in car-
diovascular [1-3], metabolic [4-6] and renal diseases [7]. TMA is produced by gut microbiota
from dietary choline and carnitine [8-13] Another direct source of TMA and TMAO for
humans is seafood [14, 15]. TMA crosses the gut-blood barrier and, in the liver, is rapidly oxi-
dized to TMAO by flavin-containing monooxygenase (FMOs). Extensive research has been
conducted to elucidate FMOs biochemical properties, substrate specificities, and functional
roles. Among them, FMO5 stands out as it exhibits no activity towards trimethylamine [16-
23].

In humans, FMO3 in the liver plays a key role in the oxidation of TMA [24]. However,
other isoforms of FMO can be found in various organs, such as the kidneys, lungs, heart, and
small intestine, in both humans and animals [25-28]. Deficiency in FMO3 activity within the
human liver leads to a condition commonly known as "fish odor syndrome" or trimethylami-
nuria, characterized by symptoms such as fishy body odor [29-32].

The variations in FMO3 activity between mice and rats have been previously reported. Rats
exhibit expression of both FMO1 and FMO3 in the liver [27]. In this species, FMO3 is respon-
sible for the oxidation of TMA to TMAO, similar to humans. Conversely, the FMO3 gene
expression is suppressed in the liver of male mice, resulting in elevated levels of TMA in their
blood and urine [28, 33]. In both male and female mice, FMO1 is postulated to oxidize approx-
imately 10% of TMA [34].

Studies indicate that TMAO could potentially have detrimental effects on various physio-
logical processes and play a direct role in the progression of cardiovascular, renal, and meta-
bolic diseases [2, 5, 35-38]. However, conflicting data from other studies challenge the
assertion regarding the negative impact of TMAO [39-41], with some evidence suggesting a
positive effect [42-44].

These discrepancies may arise from variations in the doses of TMA/TMAO tested or
differences in the physiological levels or metabolism of TMA/TMAO among different
species [35-39, 42-50], These factors can lead to differences in TMA/TMAOQ exposure,
potentially influencing the observed effects on health outcomes. Finally, some suggest that
TMA but not TMAO exerts a negative effect on the organism [47, 51-55]. Therefore, the
expression and activity of FMO3 which oxidizes TMA to TMAQO may play a vital role in
the biological effects of exogenous TMA and/or TMAO in interventional experimental
settings.

Proper selection of animal models is crucial for ensuring translatability of findings to
humans, as species-related factors significantly influence data interpretation [56-58].

The interspecies differences in tissue concentrations of TMAO and its precursors in labora-
tory animals, particularly in rats, mice, and guinea pigs, have not been well-established. This
study aimed to determine the tissue concentration of TMAO and its precursors in these com-
monly used experimental species. Furthermore, the expression of flavin-containing monooxy-
genases (FMOs) in different tissues was examined to gain insights into TMA/TMAO
metabolism in these animals.
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2 Materials and methods
2.1 Animals

The study was performed on 15-17-week-old male Sprague-Dawley rats, 10-12-week-old male
BALB/c mice, and 7-8-month American guinea pigs. The age of the animals in our study was
selected to reflect their varied lifespans and developmental rates. Rats and mice were obtained
from the Central Laboratory for Experimental Animals, Medical University of Warsaw,
Poland. Guinea pigs were obtained from Laboratory Animal Breeding of Ilkowice, Poland.
The animal study was conducted in the Laboratory of the Centre for Preclinical Research Lab-
oratory, Medical University of Warsaw. The study was performed according to Directive
2010/63 EU on the protection of animals used for scientific purposes and 1st Local Ethics
Committee permission no 555/2018 and 464/2017.

The animals were quarantined for 2 weeks after they were brought to the laboratory. The
animals were housed in groups of 2-4 in propylene cages, 12 hrs light / 12 hrs dark cycle, tem-
perature 22-23°C, and humidity 45-55%. During this period, the animals were fed a standard
laboratory diet for mice, rats (Labofed B standard, Kcynia, Poland) and guinea pigs (Versele-
Laga Cavia Complete).

After this period, the animals were anesthetized with urethane (1.5 g/kg BW) during light
cycle of the day. Fresh urine samples produced during spontaneous voids before anesthetized
were collected. Blood was collected from the heart, and the animals were euthanized by cervi-
cal vertebrae dislocation in the case of rats and mice or decapitation in the case of guinea pigs.
Feces from the colon were collected and prepared as previously described [59]. The tissue sam-
ples: liver, heart, lung, renal cortex, and renal medulla were collected and frozen at -80 degrees
Celsius.

2.2 Plasma, urine, stools, and tissue TMA and TMAO measurements

The TMA, TMAO, choline and carnitine concentrations in plasma, urine and stools and tissue
homogenates were examined using the liquid chromatography-mass spectrometry technique.
All urine samples were diluted 10 times using water. Mouse urine samples were further diluted
1000 times or 10 000 times to quantify TMA concentration. Liver, lungs, heart, and kidney
(separately the cortex and the medulla) samples were weighed and placed in 10% ethanol

(90 pL per 10 mg tissue). Homogenized using the Precellys Cryolys Evolution tissue homoge-
nizer (Bertin Instruments) and stored at -80°C until analysis.

Analyte concentrations were evaluated using Waters Acquity Ultra Performance Liquid
Chromatography (Waters, Milford, Massachusetts, USA) coupled with Waters TQ-S triple-
quadrupole mass spectrometer (Waters, Manchester, UK). Tissue preparation and the exact
determination of metabolites in tissue homogenates have been previously described [52]. The
metabolite concentrations in tissues were measured in dry tissue mass.

2.3 Real-time PCR

Total RNA was extracted from the lungs, liver, heart, renal cortex and renal medulla using Tri-
zol™ reagent (Thermo Fisher Scientific, Waltham, USA). The RNA concentration and purity
(Ratios 260/280 and 260/230) were determined by photometric measurement (NanoPhot-
ometer@® N60, Implen, Munich, Germany). The cDNA was produced with an iscript® (Bio-
Rad, Hercules, USA) kit according to the manufacturer’s protocol. A Bio-Rad real-time system
with iTaq® Universal SYBR Green Supermix (Bio-rad, Hercules, CA, USA) was used to per-
form real-time PCR using gene-specific primer pairs shown in S1 Table. Primers were
designed using the in-silico tool, BLAST. Before the PCR reaction, all primers were analyzed
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using Gradient PCR to determine the optimum annealing temperature. PCR products were
analyzed with a melting curve and agarose gel electrophoresis. The results were calculated by
the Delta-Delta Ct method. mRNA Expression levels were normalized relative to the Gapdh-
reference gene, selected from four different housekeeping genes using NormFinder software
(version 0.953, MOMA, Aarhus, Denmark).

2.4 Western blotting

Protein concentration was determined using the Bradford protein assay (Bio-Rad, Hercules,
USA). Western blotting was performed in liver, lungs, renal cortex, and renal medulla samples.
Protein concentration was determined using the Bradford protein assay (Bio-Rad, Hercules,
USA). All samples were resolved using SDS-PAGE gel by electrophoresis. Next proteins were
transferred into the PVDF membrane (Bio-Rad, Hercules, USA). The membranes were incu-
bated with skimmed milk for one hour at room temperature, then with different primary anti-
bodies overnight at 4°C, followed by a 1-hour incubation with secondary antibodies labeled
with AP. The dilutions of the primary and secondary antibodies are shown in S2 Table. Finally,
Quantitative analysis of proteins was performed by ChemiDoc MP Imaging System and Quan-
tity One software (Bio-rad, Hercules, USA).

2.5 Statistics

The Shapiro-Wilk test was used to test the normality of the distribution. Differences in the
concentrations of choline, carnitine, TMA, and TMAOQ in the plasma and urine within one
species were evaluated by Mann-Whitney U Test. Differences in the concentrations of choline,
carnitine, TMA, and TMAO in the tissue homogenates and FMOs expression in the tissues
within one species were evaluated by Kruskal-Wallis test, followed by post-hoc Dunn’s test.
Differences in the concentrations of choline, carnitine, TMA and TMAO in the plasma, urine
and tissue homogenates between the three species were evaluated by Kruskal-Wallis test, fol-
lowed by post-hoc Dunn’s test. Statistical analysis was conducted using STATISTICA 13.3
(Stat Soft, Krakow, Poland). Outliers were defined (results above Q3 + 1.5 x IQR and below
Q1-1.5x IQR) and removed from the statistical analysis. A value of two-sided p<0.05 was con-
sidered significant.

3 Results
3.1 Part 1—comparison within one species

Plasma and urine concentrations of TMAO and its precursors are presented in Table 1.

3.1.1 Mice. The median of TMA and TMAO urine concentrations was 9500-fold and
500-fold higher, respectively, than the plasma concentrations of these substances. The renal
cortex and medulla exhibited the highest concentrations of choline and TMA in mouse tissue,
respectively. Conversely, the heart and lungs had the lowest concentrations of choline and
TMA, respectively. In contrast, the heart had the highest carnitine concentration, while the
renal cortex had the lowest concentration. TMAO concentrations in all examined tissues of
mice were generally low, with a median below 30 nM/g. The liver had the lowest TMAO con-
centration, with a median below 3 nM/g (Table 2).

Among the examined tissues, mouse liver displayed the highest expression of the FMO5
gene. Additionally, mice exhibited FMO3 gene expression in all the examined tissues, albeit at
lower levels compared to FMO5 gene expression (Fig 1).

3.1.2 Rats. The choline concentration in urine was found to be 20-fold higher than in
plasma, while the TMAO concentration in urine was 67-fold higher than in plasma. Plasma
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Table 1. Species-specific comparison of TMAO, TMA and other metabolites concentrations in plasma and urine.

Parameter [uM/L] Plasma Urine

Mice

Choline 42.68 (36.54; 48.78) 372.18 (185.54; 464.65)
Carnitine 22.76 (20.65; 26.43) 47.79 (43.38; 146.93)
TMA 1.90 (0.60; 2.35) 17922.01 (345.30; 36429.84)
TMAO 3.68 (3.36; 4.26) 1788.76 (993.74; 3315.89)
Rats

Choline 27.01 (23.39; 40.23) 550.92 (301.78; 778.48)
Carnitine 40.60 (38.37; 43.33) 36.64 (32.26;49.21)
TMA <LOQ 3.40 (1.94; 6.19)

TMAO 9.10 (7.41;9.82) 614.51 (471.73; 798.42)
Guinea pigs

Choline 51.22 (32.06; 67.60) 69.11 (54.19; 97.32)
Carnitine 22.55 (20.03; 32.49) 1.98 (1.29; 2.31)

TMA 0.04 (0.01; 0.07) 33.16 (19.24; 59.62)
TMAO 3.24 (2.73;9.19) 619.81 (364.75; 1066.12)

Abbreviations: LOQ, Limit of quantification; TMA, trimethylamine; TMAO, trimethylamine oxide. LOQ for TMA in
plasma = 0.017 uM/L. All data are expressed as the median.

https://doi.org/10.1371/journal.pone.0297474.t001

TMA levels were below the limit of quantification, indicating very low levels of TMA in the
blood (Table 1). The renal cortex and medulla exhibited the highest concentrations of choline,
TMA, and TMAO, while the heart and lungs had the lowest concentrations of these sub-
stances. In contrast, the heart had the highest carnitine concentration, whereas the renal cortex
and medulla had the lowest concentrations (Table 2).

Among the FMO genes, FMO1, FMO3, and FMO5 showed the highest expression levels in
the livers of rats. Notably, the FMO3 gene exhibited the highest expression among all the FMO
genes. Minimal expression of FMO1 and FMO3 was observed in the renal cortex and medulla
of rats (Fig 1).

3.1.3 Guinea pigs. In guinea pigs, the plasma carnitine concentration was found to be
11-fold higher than in urine. Conversely, the median concentrations of TMA and TMAO were
significantly higher in urine compared to plasma, with increases of over 800-fold and almost
200-fold, respectively (Table 1). The renal medulla exhibited the highest choline concentration,
while the heart had the lowest concentration. The heart had the highest carnitine concentra-
tion, whereas the liver had the lowest concentration. Guinea pigs displayed low concentrations
of TMA and TMAO in all examined tissues, with median concentrations below 20 nM/g. The
liver had the highest TMA concentration, while the renal medulla had the highest TMAO con-
centration. The heart had the lowest concentrations of both TMA and TMAO (Table 2).

Guinea pigs exhibited low expression of the FMO genes in the examined tissues, with no
significant difference observed between the tissues. FMO3 showed the highest expression
among the FMO genes (Fig 1).

3.2 Part 2 -Interspecies comparison

3.2.1 TMA and TMAO concentrations in plasma and tissues. Rats exhibited a higher
plasma concentration of creatinine compared to mice and guinea pigs (Table 3). Mice dis-
played significantly higher plasma TMA concentration than guinea pigs, while also showing a
significantly lower TMAO/TMA ratio in plasma. Plasma TMA levels in rats were below the
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Table 2. Species-specific comparison of TMAO and its precursors in the tissue homogenate.

Parameter [nM/ | Liver Heart Lungs Renal Cortex Renal medulla Kruskal-Wallis

gl test

Mice

Choline 3287.15 (2134.77; 409.01 (378.99; 1185.42 (1121.19; 5936.21 (5516.04; 11558.12 (10385.53; 13407.00) | P < 0.001
4490.67) 488.68) 1250.79) 6513.84)### #i#; &&&

Carnitine 153.86 (129.59; 454.72 (429.28; 402.70 (381.97; 106.79 (86.63; 129.68) 121.26 (100.00; 136.62)###; & | P < 0.001
179.43) 499.83)* 416.83) #it &&

TMA 35.32(20.13;47.56) | 7.05 (5.79; 9.40) 2.76 (2.30;2.96)* 48.31 (41.01; 74.24) 70.80 (48.53; 96.49)##, &&& P < 0.001

&&&

TMAO 2.04 (1.69; 5.23) 9.95 (7.86; 48.03) 21.86 (20.61; 33.20)** | 20.56 (12.92; 114.54)** | 28.75 (11.95; 113.58)** P =0.001

Rats

Choline 1818.51 (1417.03; 247.19 (228.96; 867.00 (829.75; 2295.91 (1329.02; 4344.08 (3478.40; 5055.77)###; | P < 0.001
1893.36) 262.21)* 957.90) 2836.27)## &&&

Carnitine 154.24 (132.83; 650.07 (638.39; 305.01 (291.00; 96.46 (91.01; 101.30) 94.96 (91.31; 99.15)###, && P < 0.001
169.44) 677.23) 321.09) ###, &&

TMA 10.09 (7.97; 12.57) 0.84 (0.75; 1.17) 0.71 (0.60; 0.85) 54.53 (39.55; 86.94)###; | 49.56 (44.03; 55.95)##, &&& P < 0.001

&&&

TMAO 26.75 (16.33;33.03) | 3.95 (3.60; 4.28)* 6.66 (5.40; 10.29) 37.90 (21.85; 48.29)## | 62.52 (46.84; 118.01)###; && | P < 0.001

Guinea pigs

Choline 2286.92 (1584.16; 385.60 (259.56; 1453.19 (1352.48; 5713.83 (5434.18; 9505.60 (8140.01; 10647.24)%; | P < 0.001
3893.22) 544.80) 1547.02) 6143.23)### ###; &&

Carnitine 98.79 (91.10; 116.78) | 690.72 (639.38; 266.78 (215.78; 149.94 (124.75; 178.84)# | 120.96 (104.00; 141.78)### P < 0.001

817.09)*** 285.33)**
TMA 14.02 (4.45; 32.45) 0.99 (0.20; 1.89)** 3.81(1.57;4.27) 7.04 (6.94; 8.59)# 12.49 (9.14; 14.06)###; & P < 0.001
TMAO 9.81 (7.64; 13.98) 3.01 (1.75; 5.64) 6.50 (3.79; 10.96) 16.82 (12.30; 23.46)## 18.15 (11.56; 30.91)## P < 0.001

Abbreviations: TMA, trimethylamine; TMAO, trimethylamine oxide. All data are expressed as the median, Q1, Q3; Kruskal-Wallis test followed by post-hoc Dunn’s

test.

*P < 0.05 vs. liver

**P < 0.01 vs. liver

#P < 0.05 vs. heart

##P < 0.01 vs. heart
###P < 0.001 vs. heart
&P < 0.05 vs. lungs
&&P < 0.01 vs. lungs
&&&P < 0.001 vs. lungs.

https://doi.org/10.1371/journal.pone.0297474.t1002

limit of quantification. All study groups demonstrated a similar median plasma concentration
of TMAO (Fig 2).

In terms of TMA concentration in the liver, mice exhibited higher levels compared to rats
and guinea pigs, with a 3.5-fold and 2.5-fold difference, respectively. However, the TMAO
concentration in the liver of mice was 13-fold lower than that of rats. The TMAO/TMA ratio
in the liver was almost 30-fold higher in rats compared to mice (Fig 3). Mice displayed higher
TMA concentration in the heart compared to rats and guinea pigs, with an 8-fold and 7-fold
difference, respectively. The TMAO concentration in the heart was 3-fold higher in mice com-
pared to rats and guinea pigs. Additionally, the TMAO/TMA ratio in the heart was signifi-
cantly higher in rats compared to mice (Fig 3). Rats exhibited lower TMA concentration in the
lungs compared to mice and guinea pigs, with a 4-fold and 5-fold difference, respectively. The
median TMAO concentration in the lungs was 3-fold higher in mice compared to rats and
guinea pigs. Furthermore, guinea pigs had a 5-fold lower TMAO/TMA ratio in the lungs com-
pared to mice and rats (Fig 3). In the renal cortex, guinea pigs displayed lower TMA
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Fig 1. Tissue FMOs. RT-qPCR analysis of FMO1, FMO3 and FMO5 transcript levels in mice, rats and guinea pigs tissues:
liver, heart, lungs, renal cortex, renal medulla. Abbreviation: FMO, Flavin-containing monooxygenase. All data are expressed
as the median, Q1, Q3, MIN, MAX (n = 5 or 6; use arbitrary units); Kruskal-Wallis test followed by post-hoc Dunn’s test;
*P<0.05; **P<0.01; ***P<0.001.

https://doi.org/10.1371/journal.pone.0297474.9001

concentration compared to mice and rats, with a 7-fold and 8-fold difference, respectively.
The TMAO/TMA ratio in the renal cortex was higher in guinea pigs compared to mice and
rats, with a 7-fold and 4-fold difference, respectively. There were no significant differences
observed between the study groups in terms of TMAO concentration in the renal cortex (Fig
4). The median TMA concentration in the renal medulla was lower in guinea pigs compared

to mice and rats, with a 6-fold and 4-fold difference, respectively. The TMAO concentration in
the renal medulla was 3-fold higher in rats compared to guinea pigs. No significant differences
were found between the groups in terms of the TMAO/TMA ratio in the renal medulla (Fig 4).
3.2.2 Protein quantification of FMO3 and FMO5. The levels of FMO3 protein in the
liver (Fig 5), renal cortex, and renal medulla (Fig 6) were significantly higher in rats and guinea
pigs compared to mice. Furthermore, rats exhibited a significantly higher level of FMO3 pro-
tein in the liver and a significantly lower level in the renal cortex compared to guinea pigs. On

the other hand, the level of FMO5 protein in the liver (Fig 5) was highest in mice. Rats also
showed a high level of FMOS5 protein in the liver.
3.2.3 Choline and carnitine concentrations in plasma and tissues. Among the examined
tissues, rats exhibited the lowest choline concentrations compared to mice or guinea pigs.
Mice had the lowest concentration of carnitine in the heart and the highest concentration in
the lungs. Rats displayed the lowest carnitine concentration in the renal medulla. Guinea pigs
had the lowest concentration of carnitine in the liver and the highest concentration in the
renal cortex (Table 4).

Table 3. Species-specific comparison of TMAO, TMA, and other metabolites plasma and urine concentrations.

Parameter [pM/L]
Plasma

Choline

Carnitine

Urine

Choline

Carnitine

TMA

TMAO
TMAO/TMA ratio
‘Stools

Choline

Carnitine

TMA

TMAO

All data are expressed as the median, Q1, Q3; Kruskal-Wallis test followed by post-hoc Dunn’s test.

*P < 0.05 vs. mice

**P < 0.01 vs. mice

4P < 0.001 vs. mice

#P < 0.05 vs. rats

###P < 0.001 vs. rats.

Mice

42.68 (36.54; 48.78)
22.76 (20.65; 26.43)

372.18 (185.54; 464.65)
47.79 (43.38; 146.93)
17922.01 (345.30; 36429.84)
1788.76 (993.74; 3315.89)
0.10 (0.09; 3.60)

72.71 (60.99; 130.64)
0.85 (0.52; 1.40)
51.16 (32.06; 59.87)
<LOQ

https://doi.org/10.1371/journal.pone.0297474.t003

Rats

Guinea pigs

Kruskal- Wallis test

27.01 (23.39; 40.23) 51.22 (32.06; 67.60) P =0.09

40.60 (38.37; 43.34)* 22.55 (20.03; 32.49)# P =0.007
550.92 (301.78; 778.49) 69.11 (54.19; 97.32)*, ### P < 0.001
36.64 (32.26; 49.21) 1.98 (1.29; 2.31)™** # P < 0.001
3.40 (1.94; 6.19)*** 33.16 (19.24; 59.62) P < 0.001
614.51 (471.73; 798.42)* 619.81 (364.75; 1066.12)* P =0.009
225.51 (58.47; 282.12)*** 13.34 (10.58; 26.75) P < 0.001
19.90 (15.86; 55.94)* 60.84 (34.14; 127.10) P =0.02

0.28 (0.17;1.19) 0.57 (0.38; 0.64) P=0.18

14.41 (9.18; 16.87)* 5.96 (1.75; 10.50)** P =0.001

<LOQ

<LOQ
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Fig 2. Three species comparison—Plasma. Comparison of the concentrations of TMA, TMAO and the TMAO/TMA
ratio in the plasma. Abbreviations: TMA, Trimethylamine; TMAO, Trimethylamine oxide. LOQ for TMA in

plasma = 0.017 uM/1. All data are expressed as the individual values and median; Kruskal-Wallis test followed by post-
hoc Dunn’s test; *P<0.05; **P<0.01.

https://doi.org/10.1371/journal.pone.0297474.g002

4 Discussion

The key finding of our study is the significant variation in tissue concentration of TMA and
TMAO among mice, rats, and guinea pigs, despite comparable plasma levels of TMAO. Addi-
tionally, we observed pronounced differences in the concentrations of methylamines across
different organs and tissues. Specifically, the kidneys displayed the highest concentrations,
while the lungs and hearts exhibited the lowest concentrations of these compounds.

TMAO originates mostly from TMA, a gut microbiota product of dietary choline and car-
nitine [8-13]. TMA crosses the gut-blood barrier and is oxidized to TMAO by hepatic FMO3
[24]. The expression of the gene encoding FMO3, is switched off in the liver of male mice at
the age of 5-6 weeks [28, 33]. In male mice, hepatic FMOL1 is responsible for approximately
10% of TMA oxidation to TMAO. These factors contribute to the higher concentration of
TMA in mice plasma compared to other species [34].

Increasing evidence suggests that plasma TMAO is a marker of cardiovascular, renal, and
metabolic diseases [1-7, 60]. Furthermore, findings from multiple studies suggest a potential
involvement of TMAO and TMA in the development of the aforementioned diseases. How-
ever, it is crucial to acknowledge the current lack of clinical interventional studies in humans.
The existing experimental interventional studies, conducted in diverse animal species and
under varying experimental conditions, have produced conflicting results and interpretations
[39-44].

The present study aimed to address the current gap in knowledge regarding inter-species
differences in tissue concentrations of TMAO, TMA, and their precursors in laboratory ani-
mals. Here, we provide comprehensive data on the levels of carnitine, choline, TMA, and
TMADO in different tissues and body fluids harvested from the three commonly used species of
laboratory animals. Importantly, this study represents the first attempt to evaluate and com-
pare the concentrations of these metabolites across various tissues and body fluids in these
three species, which are most commonly utilized in the generation of animal models for dis-
ease in pre-clinical studies.
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Fig 3. Three species comparison—Tissues. Comparison of the concentrations of TMA, TMAO and the TMAO/TMA
ratios in the liver, heart and lungs. Abbreviations: TMA, Trimethylamine; TMAO, Trimethylamine oxide. All data are
expressed as the individual values and median; Kruskal-Wallis test followed by post-hoc Dunn’s test; *P<0.05;

**P<0.01; ***P<0.001.

https://doi.org/10.1371/journal.pone.0297474.9003
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Fig 4. Three species comparison—Tissues, continuation. Comparison of the concentrations of TMA, TMAO and
the TMAO/TMA ratios in the renal cortex and renal medulla. Abbreviations: TMA, Trimethylamine; TMAO,
Trimethylamine oxide. All data are expressed as the individual values and median; Kruskal-Wallis test followed by
post-hoc Dunn’s test; *P<0.05; **P<0.01; ***P<0.001.

https://doi.org/10.1371/journal.pone.0297474.9004

Choline and carnitine in mammals are obtained from the diet and, to a lesser extent,
through endogenous synthesis [61, 62]. Intestinal bacteria metabolize dietary choline and car-
nitine that are not absorbed in the small intestine, leading to the formation of TMA. In the cur-
rent study, rats exhibited significantly lower choline concentrations in tissues compared to the
other two species. However, plasma choline levels were similar among the three species. Nota-
bly, choline concentration in urine was consistently higher than in plasma in all tested species.
Additionally, the kidneys showed the highest choline concentration, suggesting that the kid-
neys play a primary role in choline excretion [63]. In all three species, the heart exhibited the
highest concentration of carnitine, potentially highlighting its primary role in transporting
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Fig 5. FMO3 and FMO?5 in the liver. Western blot analysis of FMO3 (A) and FMO5 (C) protein levels from total
protein extract prepared from the liver in rats, mice and guinea pigs. (B) A representative immunoblot.
Immunolabeled FMO3 and beta actin loading control bands were quantified using a Molecular Imager. Relative levels
of the test proteins are plotted in arbitrary units. Abbreviations: FMO, Flavin-containing monooxygenase. All data are
expressed as the median, mean, Q1, Q3, MIN, MAX (n = 4-6); ANOVA followed by post-hoc Tuckey test. **P < 0.01;
P < 0.001.

https://doi.org/10.1371/journal.pone.0297474.9005

PLOS ONE | https://doi.org/10.1371/journal.pone.0297474  January 24, 2024 12/21


https://doi.org/10.1371/journal.pone.0297474.g004
https://doi.org/10.1371/journal.pone.0297474.g005
https://doi.org/10.1371/journal.pone.0297474

PLOS ONE Interspecies variations in TMAO pathway

FMO3 in the lungs, renal cortex and medulla

Densitometry WB

A 3 B
2 1.5+
H Rats Mice G.pigs
£ 1.04 ) -
§ S50 kDa —» - ] Fmo3
S os- ' = )
Pelead R oo
g 0.0-
& é“’oog\‘?
*
—
g D
- i
2 1549 kkx%
— — Rats Mice G.pigs
E: 11 gm é S0 kD3 s | F11O3
2 @ 37 kDa JW Beta Actin
2 05
g 0.0~
F & &
W 9
E * Kk F
1.59 ||
*kk
— : .
1.04 e - Rats Mice G.pigs

T e ———

Relative FMO3 protein level (a.u.)

Fig 6. FMO3 in the lungs, renal cortex and medulla. Western blot analysis of FMO3 protein level from total protein
extract prepared and a representative immunoblot from the (A, B) lungs (C. D) renal cortex and (E, F) renal medulla in
rats, mice and guinea pigs. Immunolabeled FMO3 and beta actin loading control bands were quantified using a
Molecular Imager. Relative levels of the test proteins are plotted in arbitrary units. Abbreviations: FMO, Flavin-
containing monooxygenase. All data are expressed as the median, mean, Q1, Q3, MIN, MAX (n = 5-6); ANOVA
followed by post-hoc Tuckey test. *P < 0.05; ***P < 0.001.

https://doi.org/10.1371/journal.pone.0297474.9006

long-chain fatty acids to the mitochondrial matrix. This process is essential for beta-oxidation
and the subsequent production of energy from fatty acids [64]. Interestingly, we found that
guinea pigs had a tenfold higher concentration of carnitine in plasma compared to urine. This
finding suggests that carnitine is a highly conserved compound in guinea pigs, with a signifi-
cant portion being retained rather than excreted in the urine.
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Table 4. Species-specific comparison of choline and carnitine concentrations in various tissues.

Parameter [pM/kg] Mice Rats Guinea pigs Kruskal-Wallis test
Liver

Choline 3287.15 (2134.77; 4490.67) 1818.51 (1417.03; 1893.36)* 2286.92 (1584.16; 3893.22) P =0.02
Carnitine 153.86 (129.59; 179.43) 154.24 (132.83; 169.44) 98.79 (91.10; 116.78)™*, # p =0.002
Heart

Choline 409.01 (378.99; 488.68) 247.19 (228.96; 262.21)* 385.60 (259.56; 544.80) P=0.01
Carnitine 454.72 (429.28; 499.83) 650.07 (638.39; 677.23)* 690.72 (639.38; 817.09)** P =0.002
Lungs

Choline 1185.42 (1121.19; 1250.79) 867.00 (829.75; 957.90) 1453.19 (1352.48; 1547.02)### P < 0.001
Carnitine 402.70 (381.97; 416.83) 305.01 (291.00; 321.09)* 266.78 (215.78; 285.33)*** P < 0.001
Renal cortex

Choline 5936.21 (5516.04; 6513.84) 2295.91 (1329.02; 2836.27)** 5713.83 (5434.18; 6143.23)## P <0.001
Carnitine 106.79 (86.63; 129.68) 96.46 (91.01; 101.30) 149.94 (124.75; 178.84)*, ## P =0.003
Renal medulla

Choline 11558.12 (10385.53; 13407.00) 4344.08 (3478.40; 5055.77)*** 9505.60 (8140.01; 10647.24)# P <0.001
Carnitine 121.26 (100.00 136.62) 94.96 (91.31; 99.15)* 120.96 (104.00; 141.78) P=0.02

All data are expressed as the median, Q1, Q3; Kruskal-Wallis test followed by post-hoc Dunn’s test.

*P < 0.05 vs. mice
**P < 0.01 vs. mice
#**P < 0.001 vs. mice
#P < 0.05 vs. rats
##P < 0.01 vs. rats
###P < 0.001 vs. rats.

https://doi.org/10.1371/journal.pone.0297474.t1004

4.1 TMA and TMAO concentration

Tissue and plasma levels of TMA and TMAO are influenced by the absorption of TMA, its
subsequent oxidation to TMAO, and the excretion of both amines. In the present study, mice
consistently exhibited the highest TMA levels in their tissues. Moreover, mice demonstrated
the highest concentration of TMA in their stool. Based on these findings, we speculate that the
elevated microbial production of TMA in the gut could be an additional factor contributing to
the high plasma concentrations of this compound in mice. To further elucidate the role of gut
microbiota in TMA production, examining TMA concentrations in the blood from the portal
vein across these species would be informative.

The highest concentrations of TMA among the examined tissues were consistently
observed in the renal cortex and medulla, supporting the notion that these organs serve as
major routes for the excretion of TMA and TMAO [65-67].

In our study, the plasma concentration of TMAO in mice, rats, and guinea pigs ranged
between 5 and 10 uM/L (Table 1), which is in line with previously reported levels in healthy
individuals and animals [2, 3, 35, 36, 38, 42, 68-73]. Notably, the plasma concentration of
TMAO was comparable across all three species, despite significant differences in tissue con-
centrations of TMA and TMAO. Variations in the rates of TMA to TMAO oxidation, tissue
clearance, and urine excretion of these compounds may contribute to this phenomenon. The
urinary excretion of TMA and TMAO plays a crucial role in maintaining low plasma levels of
these metabolites. Numerous studies have consistently demonstrated that impaired kidney
function is associated with elevated plasma levels of TMA and TMAO (7, 65, 70, 74]. There-
fore, given the significant differences in tissue concentrations of TMA and TMAO among the
three species, but similar plasma levels of these methylamines, it appears that plasma TMAO
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level could potentially serve as a biomarker for kidney function, akin to plasma creatinine or
cystatin [75-78]. On the other hand, tissue concentrations of TMA and TMAO may provide
more valuable insights into their potential biological roles and functions within the body,
stressing also interspecies differences.

4.2 FMO expression and TMA/TMAO oxidation

In humans, it is widely recognized that FMO3 in the liver plays a significant role in the oxida-
tion of TMA to TMAO [24]. Our study shows that rats have the highest level of FMO3 protein
and the highest TMAO/TMA ratio in the liver, compared to mice and guinea pigs. Moreover,
rats exhibited FMO5 gene expression and a high level of FMOS5 protein in the liver. Notably,
we also detected FMO1 and FMO3 gene expression in the renal cortex and renal medulla of
rats, along with the highest TMAO/TMA ratio in the renal medulla. These findings suggest
that TMA is metabolized to TMAO in the kidneys of rats as well. Other studies have reported
FMOL1 expression in the kidneys of both humans and rats [79, 80]. The TMAO/TMA ratio in
urine was highest in rats. However, both rats and guinea pigs exhibited ratios above 1, con-
firming effective TMA metabolism to TMAO in these species.

Guinea pigs exhibited lower levels of FMO3 protein and a lower TMAQO/TMA ratio in the
liver compared to rats. Additionally, they had the lowest level of FMOS5 protein in the liver
among all the species studied. However, guinea pigs demonstrated the highest level of FMO3
protein in the renal cortex and renal medulla compared to the other two species. Moreover,
the TMAO/TMA ratios were above 1 in both the renal cortex and renal medulla of guinea
pigs. These findings suggest that kidney oxidation likely plays an important role in the metabo-
lism of TMA to TMAO in guinea pigs.

We investigated the expression of FMO1, FMO3, and FMOS5 in five different tissues.
Among the studied species, mice exhibited the highest expression of FMOS5 in the liver. Con-
versely, mice demonstrated low expression levels of FMO1 and FMO3 in the liver as well as
other tissues. Furthermore, mice had the lowest level of FMO3 protein and the highest level of
FMOS5 protein in the liver compared to the other species examined. These findings support the
notion that in the liver of male mice, FMO3 is not actively involved in TMA metabolism [28,
33]. Janmohamed et al. showed that the most expressed FMO in the mice liver is FMO5, which
is consistent with our results [28]. Further studies investigating the role of FMO5 in male mice
are warranted to gain a deeper understanding of its function in TMA metabolism. Addition-
ally, it is noteworthy that in our study in most tissues of mice, the TMAO/TMA ratio was
below 1. This observation suggests that TMA metabolism is relatively low in the overall mouse
body.

Several studies suggest that the guinea pig may be the preferred model for preclinical car-
diovascular research due to its lipoprotein profile, cholesterol metabolism, and heart electro-
physiology, which closely resemble those of humans [81-84]. To date, experimental studies
investigating the role of TMAO in cardiovascular disease in guinea pigs are lacking. This study
establishes the plasma and tissue concentration of TMAO and its precursors in guinea pigs for
the first time, paving the way for further research on evaluating the impact of TMAO in car-
diovascular and other diseases using the guinea pig model.

The limitation of our study lies in the absence of calculations for the total 24-hour turnover
of TMAO and its precursors. Such calculations would necessitate precise measurements of
24-hour intake and excretion in stools, urine, and exhaled air. A more com-prehensive under-
standing of TMAQO metabolism would involve evaluating the metabolism of TMAQ precursors
in the intestinal tract, the efficacy of the gut-blood barrier, and metabolism within the liver,
kidney, and other tissues.
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In this study, we analyzed the concentrations of TMAO and its precursors across various
tissues in rats, mice, and guinea pigs. While plasma TMAO levels were similar, we noted
marked differences in tissue concentrations of TMA, TMAO, and FMOs expression among
the three species. This underscores the interspecies variations in the TMAO pathway, suggest-
ing possible differences in the biological responses to either activation or inhibition of this
pathway through experimental procedures. Recognizing the critical role of species selection in
pre-clinical study design for effective translational research [56, 57], our findings provide valu-
able insights to guide the choice of animal species in upcoming studies.

5 Conclusion

In conclusion, our research provides new data on the distinct concentrations of TMA precur-
sors, TMA, and TMAO in plasma, urine, and tissues across mice, rats, and guinea pigs.
Uniquely, we found that despite similar plasma TMAO levels, tissue concentrations of TMA
and TMAO significantly varied across these species, indicating crucial interspecies differences.
This variation in tissue methylamine concentrations suggests potential disparities in the physi-
ological importance and roles of these compounds, as well as possible differences in biological
responses to exogenous TMA and TMAO. Such understanding could have notable implica-
tions for future research directions, especially in studies focusing on the role of TMA and
TMAO in cardiovascular, renal, and metabolic diseases. Future preclinical studies should take
into account interspecies differences, particularly in the context of FMOs expression and TMA
and TMAO levels. This approach would help ensure that the research outcomes are more rep-
resentative and reflective of the biological diversity and would enable a more comprehensive
understanding of the precise functions of TMA and TMAO in disease pathogenesis.
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