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Abstract

Advancements in brain imaging techniques have significantly expanded the size and com-

plexity of real-time neuroimaging and behavioral data. However, identifying patterns, trends

and synchronies within these datasets presents a significant computational challenge.

Here, we demonstrate an approach that can translate time-varying neuroimaging data into

unique audiovisualizations consisting of audible representations of dynamic data merged

with simplified, color-coded movies of spatial components and behavioral recordings. Multi-

ple variables can be encoded as different musical instruments, letting the observer differen-

tiate and track multiple dynamic parameters in parallel. This representation enables intuitive

assimilation of these datasets for behavioral correlates and spatiotemporal features such as

patterns, rhythms and motifs that could be difficult to detect through conventional data inter-

rogation methods. These audiovisual representations provide a novel perception of the

organization and patterns of real-time activity in the brain, and offer an intuitive and compel-

ling method for complex data visualization for a wider range of applications.

Introduction

Current techniques for in vivo brain imaging, such as functional magnetic resonance imaging

(fMRI), wide field optical mapping (WFOM), 2-photon and light-sheet microscopy provide

large quantities of multi-dimensional, dynamic data. Recent improvements to these techniques

allow real-time recordings, enabling observation of spontaneous events, as well as compelling

‘resting state’ activity [1–6]. This inundation of data to analyze and understand brings with it a

challenging task: to take large datasets, and distill them into concise representations that pre-

serve the information content of the data and offer insights into the mechanisms generating

the spatiotemporal patterns observed [7, 8]. Dimensionality reduction, or spatiotemporal

unimixing is becoming mainstream in the analysis of in-vivo microscopy data to extract the

shapes and time-courses of firing neurons [9]. This approach is similarly the basis of resting

state fMRI analysis, which extracts spatial ‘functional connectivity networks’ based on the tem-

poral correlations of different regions of the brain [10]. However, the outputs of these spatio-

temporal unmixing methods are rarely re-combined into meaningful representations from
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which real-time interactions and inter-component spatiotemporal patterns and dynamics can

be easily appreciated.

Modern neuroscience experiments also include recordings of behavior, such as whisking,

and spontaneous running, stimulus presentations, tasks such as lever pushing, and parameters

such as task performance speed and correctness. These recordings often begin as video

streams. Feature extraction from these behavioral recordings is achievable [11, 12], and can

provide an input for machine learning algorithms to generate predictive models. However, it

can be challenging to determine which of the many features in the video are relevant, and spa-

tial tracking parameters extracted from videos will not necessarily be linearly related to neural

representations (e.g. breathing rate, or the speed of a movement). Conversely, the human

brain is very good at such feature extraction from video streams. The problem is that compar-

ing two or more video representations (brain imaging data and behavioral recordings) at the

same time is very challenging for the human visual system to achieve.

To overcome these issues, we demonstrate here methods for representation of brain imag-

ing data in both the visible and audible space, providing an intuitive representation of high-

dimensional data that can be listened to in parallel with viewing videos of behaviors, and spa-

tial representations of the data. Audible representations of electrophysiology signals have long

been used to guide electrode placement and distinguish signal from noise, while enabling

simultaneous use of the eyes and hands. The idea of representing EEG and fMRI data from

awake humans as audio streams has also been demonstrated previously [13, 14], in addition to

data from mouse brain slices [15]. Our approach improves upon these demonstrations by pro-

viding a toolkit for routine encoding of a wide variety of parameters by leveraging sound’s abil-

ity to simultaneously depict multiple dimensions of dynamic information in parallel. Pitch,

volume, note velocity, attack speed, stereo sound and even musical instrument type are all

parameters that can all be leveraged for auditory stream encoding. Since all of these aspects are

easily recognized and unmixed by the human auditory system [16], a great deal of information

can be compressed into a single audio stream for real-time evaluation of brain imaging data

and associated behavior, providing a unique way to recognize patterns, motifs, co-activations,

delays, rhythms and repetitions not easily noticed by eye alone. As a further dimension for

encoding, our approach also provides visual representations of spatiotemporal dynamics of the

data using colors, further expanding our ability to utilize our sensory system to integrate and

interpret the properties of each dynamic system.

We demonstrate our approach on three different types of experimental neuroimaging data

with audiovisualization of gradually increasing complexity: Wide-field optical mapping

(WFOM) of neural activity to compare the mouse brain under awake and anesthetized condi-

tions (ketamine/xylazine), cellular-level resolution recordings of apical dendrite intracellular

calcium activity in the awake mouse brain using swept confocally aligned planar excitation

(SCAPE) microscopy [1], and wide-field simultaneous neural and hemodynamic recordings of

the awake mouse cortex, along with behavioral recordings. We provide our python-based

graphical user interface PyAnthem (Automated Neuroimaging Timecourse Heuristic Method-

ology) that is capable of reproducing these audiovisualizations and extending the use of this

method to wider ranges of dynamic spatiotemporal data. See S1 Appendix for full details of

this new open-source toolkit.

Materials and methods

Please note that all in-vivo brain imaging datasets shown here were collected as parts of differ-

ent scientific studies into brain dynamics, neurovascular coupling and anesthesia effects, and

not for the sole purpose of this audiovisualization project [3, 5, 6, 17–19].

PLOS ONE Audiovisualization of real-time neuroimaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0297435 February 21, 2024 2 / 15

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: EMCH and VV have

a financial interest in SCAPE microscopy, which is

licensed to Leica Microsystems and Applied

Scientific Instrumentation (ASI). This financial

interest does not alter our adherence to PLOS ONE

policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0297435


Wide Field Optical Mapping (WFOM) data collection (experiments 1 and 3)

WFOM imaging data collection. WFOM is an in-vivo optical imaging technique capable

of recording real-time neuronal activity and hemodynamics across the dorsal cortex of awake,

behaving mice. We leverage transgenic mice expressing calcium-sensitive green fluorescent

protein (GCaMP) in excitatory neurons, which can provide an ensemble spatiotemporal

image of neuronal activity when excited with blue light from a light emitting diode (LED) illu-

mination through a thinned skull cranial window. Reflectance measurements using green and

red LEDs can be spectroscopically converted to dynamic maps of oxy-, deoxy- and total hemo-

globin, signals which can also be used to remove the effects of absorption cross-talk on neuro-

nal fluorescence signals.

During awake WFOM imaging experiments, mice are head-fixed and positioned on a low-

resistance custom-made horizontal wheel that enables them to move and walk, and imaged for

up to 90 minutes per session. The mouse’s behavior is recorded using synchronous webcam

cameras capturing body and pupil movements. Specific details for each experimental dataset

are provided in the Results section.

WFOM imaging system details. Our custom-built WFOM system consists of three high

powered LEDs (Thorlabs, M490L2, M535L2 and M625L3) at wavelengths of 490 nm (Blue),

535 nm (Green), 625 nm (Red), that are strobed to capture hemodynamic (red and green) and

neural (blue) fluctuations simultaneously. Synchronous images are captured using an Andor

Zyla sCMOS camera running at 31.22 Hz and an exposure time of 23.4 ms (resulting in an

imaging frame rate of 10.4 Hz for each variable). A long-pass filter mounted in front of the

camera blocks blue excitation light (FF01-496/LP-25, Semrock) in addition to an infrared

shortpass filter to block behavioral monitoring light. Band-pass filters are placed in front of

each LED (FF01-475/28 for blue, FF01-530/43 for green, and FF01-623/24 for red). For hemo-

dynamic correction, red and green reflectance measurements are used to derive estimated val-

ues of hemodynamic absorption contributions to (blue) excitation and (green) fluorescence

emission light as described previously [2]. The mouse’s behavior is recorded during WFOM

imaging using two independent webcams (PS3 Eye), with a filtered infrared LED light source

illuminating the mouse and a matching infrared filter on the webcams to prevent cross-talk

with imaging light.

Animal preparation. All animal procedures were reviewed and approved by the Institu-

tional Animal Care and Use Committee at Columbia University (protocol AC-AAAS3453).

For all WFOM imaging experiments, we used adult C57BL/6J-Tg(Thy1-GCaMP6f) mice (pur-

chased from Jackson Labs and bred in-house). Mice were initially anesthetized with isoflurane

and underwent a thinned-skull craniotomy over the cortex between coronal and lambdoid

sutures, and implanted with a laser-cut acrylic head plate for restraint. The thinned-skull cra-

niotomy was then protected by an optically clear cyanoacrylate layer (applied during surgery)

to improve transparency and reduce bone regrowth. After surgery, all mice underwent a two-

day post-operative recovery period with analgesia before imaging began.

SCAPE microscopy data collection (experiment 2)

SCAPE imaging data collection. SCAPE microscopy is a single-objective high-speed 3D

volumetric light sheet imaging technique capable of imaging cellular-level GCaMP activity in

awake behaving mice at both high spatial and temporal resolution [1, 20] (Fig 3A and 3B). A

mouse was prepared using viral transfection to produce sparse GCaMP6f labeling in apical den-

drites of layer 5 neurons, and SCAPE data was acquired through a glass cranial window while the

mouse was head-fixed but awake. SCAPE datasets were acquired with 488 nm (blue) excitation
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was acquired for a 60-second trial at 9.4 volumes per second. The size of the imaging volume was

374 x 1032 x 174 microns with a voxel size of 2.5 x 1.27 x 1.17 microns (x-y-z) [1, 18, 20].

Animal preparation. Adult wild-type C57BL mice were initially anesthetized with isoflur-

ane and underwent viral injection (AAV9.Syn.GCaMP6f) into the barrel cortex to label layer 5

cortical neurons with the calcium sensitive fluorescent protein GCaMP6f. Mice were then

implanted with a glass cranial window (dura removed) and a head-fixation head plate and

allowed to recover with analgesia. After several weeks, apical dendrites reaching up to cortical

layers 1–3 were sparsely expressing the fluorescent calcium indicator and could be recorded

using SCAPE microscopy.

Results

Basic audiovisualization workflow

The 4 steps of data processing for audiovisualization are shown in Fig 1. First, data must be

spatiotemporally unmixed into a dimensionality-reduced representation. This step is best

achieved via the analysis method most common to the imaging modality being used, but could

include principal component analysis (PCA), non-negative matrix factorization, k-means clus-

tering, seed-based non-negative least squares fitting or other specialized blind source separa-

tion methods [21–23]. The goal is to represent the data as a linear combination of n temporal

(H(n,t)) and spatial (W(s,n)) components assuming that the data can be represented as:

Vðs; tÞ �Wðs; nÞ �Hðn; tÞ ð1Þ

Videos are then generated by combining W(s,n) and H(n,t) using color-based remixing

based on an n x 3 color map C. At each time-point T, the image corresponds to:

V0ðs;T; 1 : 3Þ ¼Wðs; nÞ � diagðHðn;TÞÞ � Cðn; 1 : 3Þ: ð2Þ

Audio-streams are generated from the temporal components H(n,t) either by directly mod-

ulating pure waveforms based on signal amplitude (‘analog’ method, Fig 1B), or by converting

time-courses to MIDI messages for increased control over note parametrization (‘digital’

method, Fig 1C). The pitch of the note assigned to each component n can be chosen based on

some property of the data, such as the spatial position of each component in W(s,n). The final

step is to merge synchronized audio and video streams into a combined movie. All of these

basic functions can be performed within our open-source PyAnthem software package as

described further in S1 Appendix. A summary of the analysis and preprocessing techniques

for each example shown below is detailed in Table 1.

Experiment 1 –Neural activity in the mouse cortex, awake vs ketamine/

xylazine anesthesia

As a simple example, we start with audiovisualization of a dynamic 2D WFOM dataset in

which we spatiotemporally unmix and then represent data as time-varying pitches and color-

coded components. Dynamic images of neural activity over the dorsal surface of the living

mouse brain were acquired using WFOM through thinned skull in a Thy1-GCaMP6f mouse

[3] (Fig 2A). Data was pre-processed to remove hemodynamic contamination of GCaMP fluo-

rescence [2] (detailed in Materials and Methods).

This dataset was acquired as part of a study to explore the effects of anesthetics on resting

state neural activity in the mouse brain. The mouse was initially imaged awake and head-fixed

on a freely moving wheel to record awake resting state data. The animal was then removed

from the imaging rig and an anesthetic dose of Ketamine/xylazine (115 mg/kg Ketamine, 11.5
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Fig 1. The audiovisualization process for a generalized dataset. A) The dataset V(s,t) is represented as n temporal (H(n,t)) and spatial (W(s,n))

components, which are then used to create both an audible representation and a color-based remixed visualization of the dataset respectively.

Datasets can be 3D or 4D, but a 3D WFOM dataset is used for this illustration. B) Audio generation method 1 (analog). Basis timecourses modulate

static tones (either sinusoids or software instrument sounds), and are played simultaneously, producing an audio stream. C) Audio generation

method 2 (digital). Basis timecourses are converted to MIDI note events that can be rendered as musical instruments. Here, each event is defined as a

portion of the timecourses that exceeds threshold T, with length L. The strength of the note S is the peak amplitude of the note within the window L.

https://doi.org/10.1371/journal.pone.0297435.g001
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mg/kg Xylazine) was injected intraperitoneally. After the animal was fully anesthetized, it was

again head-fixed and imaging data was acquired.

Dimensionality reduction. To estimate the primary temporal components of the data in

an unsupervised manner, bilateral GCaMP data from the awake experiment was k-means clus-

tered into 18 components via correlation distance measure. These clusters were then ordered

according to their centroid position from the front to the back of the brain, and each

Table 1. Summary of experimental analysis steps used to create audiovisualizations.

Experiment Method Data Sources Audio conversion technique Time course selection Number of components

1 WFOM Neural (GCaMP6f) Analog K-means 18

2 SCAPE Neural (GCaMP6f) Digital K-means 43

3 WFOM Neural (GCaMP6f), Hemodynamic, Behavior Analog & Digital K-means 12

https://doi.org/10.1371/journal.pone.0297435.t001

Fig 2. Simple audiovisualization of wide field neural activity in awake vs. anesthetized mouse. A) Schematic of WFOM setup. B) Wide field image showing dorsal

cortex of the thinned-skull mouse (left), k-means clustering output of neural activity (right), and note assignment for each k-means cluster (bottom). This k-means output

was used to obtain the basis timecourses for both awake and anesthetized datasets. C) Timecourses obtained from ROIs defined by clustering in B are used to derive spatial

components using Nonnegative Least Squares (NNLS) fitting to each pixel’s timecourse. The basis timecourses are then used to create an audio stream. Plots at the bottom

show the average original-data timeseries (V(t), yellow) compared to the linear model (V’(t), orange), and the residual V(t)-V’(t) is plotted below it in blue. (see S1 and S2

Movies for final audiovisualizations).

https://doi.org/10.1371/journal.pone.0297435.g002
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component was assigned colors from the Matlab™ ‘jet’ color map (Fig 2B). We ensured that

input data for this clustering corresponded to periods when the mouse was not running. Eigh-

teen basis timecourses H(n,t) were then obtained using eroded k-means spatial clusters as

regions of interest (ROIs). Non-Negative Least Squares (NNLS) fitting was then used to gener-

ate 18 spatial maps corresponding to the weight of each time-course W(s,n) in each pixel of

the raw dataset V(s,t) [24]. Re-multiplying W and H yields model data V’(s,t) that can be com-

pared to the original data to observe information that was lost in the dimensionality-reduced

linear approximation (e.g. see S1 and S2 Movies). The same eroded k-means ROIs were used

to extract basis time-courses from the ketamine/xylazine-anesthetized dataset, and then NNLS

was used to generate that dataset’s corresponding spatial components and linear

representation.

Video stream generation. Using the color assignments shown in Fig 2B, spatial compo-

nents W and temporal components H were multiplied and remixed to create dynamic color

visualizations of neural activity. To clearly show periods of increased neural activity, all values

below zero are represented as black in movies, so careful selection of this baseline is needed if

significant decreases are present (here, the baseline chosen was the mean of the interval used

to calculate GCaMP %ΔF/F the k-means clusters, i.e. at rest).

Analog audio stream generation + pitch encodes position. H(n,t) was used to create an

audio stream by multiplying each temporal component with a unique audio frequency sinu-

soid and then summing all of the components together (Fig 1B). The note pitches chosen were

an ascending Cmin7 chord (C, E[, G, and B[, spanning 5 octaves across 18 components),

ordered according to the centroid position of the W components ascending from back to front

of the brain. Fig 2B shows the ordering of the 18 components and the corresponding musical

note assigned to each. We note that it is important not to simply use arbitrary integer values

for note frequencies, and to instead use natural note frequencies from the chromatic 12-tone

scale to improve listenability. Finally, the audio stream was added as a soundtrack to the neural

data spatial component video V’(s,t,c).

Effects of anesthesia on brain dynamics. S1 and S2 Movies show the outputs from the

above analysis on a mouse before and after induction of ketamine/xylazine anesthesia respec-

tively. As can be appreciated from these representations, the awake brain exhibits a variety of

different activation patterns, typical of resting state datasets previously reported [2], whereas

ketamine/xylazine anesthesia resulted in a dramatic, repetitive rostro caudal wave of neural

activity. This pattern is consistent with prior reports of slow wave neural dynamics under keta-

mine [25–27]. Audiovisual representations of this activity reveal a consistent rhythmic pattern

from high to low notes, and yet it is also possible to perceive that each wave is not completely

unidirectional, as some waves retrace forwards or originate in peripheral components.

Experiment 2 - SCAPE microscopy of apical dendrites of layer 5 neurons in

awake mouse brain

Audiovisualization can also be applied to microscopy data. In the following example, we utilize

real-time 3D SCAPE microscopy data capturing spontaneous calcium events in apical den-

drites of neurons in the awake mouse somatosensory cortex. By converting neuronal events to

a midi format, we enable use of a piano VST (Virtual Software Technology). We use timing

features of the data to choose note assignments.

Dimensionality reduction. After background subtraction and detrending of the 4-dimen-

sional SCAPE dataset, each voxel’s time series V(sx,sy,sz,t1-n) was checked for values that

exceeded a z-score of 4. If more than 5% of the values in a voxel exceeded this threshold over

the full time-series it was passed to the next clustering step, otherwise it was removed. The
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remaining voxels were then clustered into 85 components using K-means clustering. The

resulting basis time courses were then used to create spatial maps using NNLS. These 85 com-

ponents were then manually pruned down to 43 components by removing those that did not

show well-defined morphologies in their spatial maps. Each 3D spatial component was median

filtered (3x3x3 voxel filter) spatially to reduce background.

The resulting 43 spatial (W) and temporal (H) components are shown in Fig 3C. In this

case, the unmixed spatial components W(i,j,k,n) are 3-dimensional in space. Components

were color-coded according to the component’s centroid in the lateral dimension. S3 Movie

(S3 Movie) shows results as 3-view maximum intensity projections (MIPs).

Digital audio stream generation using MIDI encoding + pitch encodes event

sequence. To improve both the ease of listening and clarity of the audio stream compared to

experiment 1, instead of simply summing sinusoids and varying their volume, here we

encoded neural activity as a piano note. The percussive nature of a piano strike (fast onset fol-

lowed by slow decay) allows the listener to easily hear the complexity of multiple event onsets

while still perceiving the duration of each event.

To convert extracted time-courses H(n,t) into musical notes, distinct neural events need to

be identified and represented by their magnitude, time of onset and duration of activity. For

microscopy data in which events clearly emerge from a dark background, event identification

is possible with a simple threshold, although care should be taken not to set the threshold too

low, to avoid grouping multiple events into one sustained note. All events are then represented

based on their peak amplitude, onset and duration (Fig 3C), such that small, weaker events are

Fig 3. Audiovisualization of a 4D SCAPE microscopy dataset. A-B) Diagrams of SCAPE objective and mouse placement. C) Maximum Intensity Projections (MIP), top

and side view of one time-point in the raw dataset during a dendritic firing event. D) Basis timecourses (H), arranged spatially on the left, and then arranged in order of

first spike, with the original spatial color assignments kept. Audible note frequency follows the spike ordered components on the right, rather than the spatially arranged

components on the left. E) MIP of top and side projection of all 43 spatial components after unmixing, color coded spatially from right (red) to left (pink). Inset shows four

example components, which are also highlighted below in D. See S2 Fig for individual images of all spatial components. See S3 Movie for dynamic audiovisualization.

https://doi.org/10.1371/journal.pone.0297435.g003
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present but audibly scaled to match their magnitude. This digitization can then easily be con-

verted into the MIDI message format in which each note is assigned a; note on (sec), note off

(sec), note strength (ranging from 0 to 127), chromatic key choice (0 to 127, with 60 as middle

C, or C3), and instrument (here, we used piano). This format can be converted into music

using any VST, including Garage Band or REAPER, and is performed automatically in

PyAnthem (see S1 Appendix).

In this example, rather than using note pitch to encode spatial position (as in experiment

1), we chose to sort components by the timing of their first event (Fig 3D). This means that

that notes increase in pitch over time, but will gradually become more mixed as the same neu-

ron fires a second, third or fourth time during the trial.

Audiovisualization of SCAPE microscopy of mouse dendritic activity. The resulting

audiovisualization is shown in S3 Movie. Ordering notes according to event timing gives a

unique perspective on the relative timing and frequency of firing events of each neuron. We

note that labeling of neurons in this case was sparse, and therefore does not represent the full

activity of the somatosensory region. However, this representation permits assessment of the

firing properties of single neurons that could be readily compared to real-time behavioral

recordings, presentation of stimuli or the performance of tasks.

We also note that this analysis sought a deliberately low-dimensional representation of this

data, which clustered similar time-courses together to yield groups of well-correlated pixels

that belong to a dendritic tree, and differ sufficiently from other pixels over time to differenti-

ate them from another dendritic tree (see S2 Fig for individual components). This low

dimensionality removed higher order spatiotemporal noise in the dataset, but also did not seek

to discover subtler differences in the timing of activity patterns along each dendrite or that

may have differed within a dendritic tree from one event to the next.

Experiment 3 - Neural and hemodynamic recordings in the awake,

behaving mouse

Here we demonstrate a full pipeline in which WFOM data of both neural activity and hemody-

namics across the dorsal surface of an awake mouse are represented simultaneously by two dif-

ferent musical instruments, rendered in parallel with a video stream of behavioral recordings.

Dimensionality reduction and video stream generation. The same approach as in exper-

iment 1 was used to reduce the collected neural data into 12 components (k-means clustering,

followed by NNLS to extract spatial maps W). The same eroded ROIs, defined by the neural

data were then also used to obtain basis timecourses for the hemodynamic data, followed by

NNLS to extract the hemodynamic W. Color remixing was used to create movies of both

hemodynamic and neural datasets in the same way as experiment 1. Colors were chosen from

a jet color map, and assigned from the front (red) to the back (blue) of the dorsal surface of the

brain (see Fig 4C) in an identical way for both neural and hemodynamic components. A com-

posite movie was generated that includes behavioral and pupil data, after temporal synchroni-

zation between all of the video streams.

Combined analog and digital audio stream generation + instrument encodes measur-

able. The audio stream was generated using the analog method (Fig 1B) for hemodynamic

activity and the digital method (Fig 1C) for neural activity. The neural data was encoded as

piano notes, while the slower, more continuous nature of hemodynamic fluctuations were

encoded as violin. These two instruments provide a clear audible difference in the two

dynamic datasets, despite their simultaneity. A Cmin7 chord was used for both data streams,

with notes ascending from the back (rostral) to the front (caudal) of the brain. It should be

noted that all audible sounds represented positive signals, which are dependent on the chosen
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baseline. Thus, it was important for this audiovisualization to select a baseline that was during

a relatively quiet period of activity to avoid losing sub-threshold events.

Audiovisualization of neurovascular dynamics during spontaneous behavior.

S4 Movie (S4 Movie) shows four simultaneous video streams–behavioral, pupil, neural and

hemodynamic measures of the awake behaving mouse. First, it is easily observed that sharp

increases in neural activity, represented by the piano notes, are typically followed by slower

Fig 4. Audiovisualization of both neural and hemodynamic WFOM data with simultaneous behavior in an awake mouse. A) Example frames of

behavioral, pupil, GCaMP and hemodynamic data. B) Plot of temporal basis timecourses, extracted using k-means clustering. C) Color mixed representation of

NNLS output W, and reconstructed color mixed dataset at example timepoints from both neural (top) and hemodynamic (bottom) datastreams. The blue bar

in B represents the time period of example data shown here. See S4 Movie for full audiovisualization.

https://doi.org/10.1371/journal.pone.0297435.g004
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matching hemodynamic chords, consistent with the properties of neurovascular coupling in

the brain acting as a delayed spatiotemporal low pass filter of neural activity [28]. The behavior

of the mouse is also clearly depicted in the audiovisualization of brain data. Onsets of running

are striking events including significant activation of hindpaw regions, with hemodynamics of

the region following behind. However, differences in the sequence of neural activation for dif-

ferent running bouts can also be discerned. At 15 seconds, the mouse begins grooming, and

these finer movements are well represented by short, quiet notes that represent activation of

forepaw somatosensory and motor regions. Activation of the bilateral visual cortex is seen at

the start of the run when the WFOM illumination LEDs first turn on (see S1 Fig for an ana-

tomical map of functional regions of the mouse cortex).

Choosing a suitable baseline and thresholds is particularly important for audiovisualization

of datasets that are more smoothly varying over time. If a chosen baseline is too high or low,

important audio events may not reach threshold, or may be saturated and difficult to distin-

guish from one another. The baseline of basis time-courses should always be inspected, and

should generally be chosen from a period of relative quiescence. Data can also be filtered or

detrended (as in experiment 2) or represented on a non-linear or logarithmic scale to empha-

size specific data differentials where appropriate. Where signal decreases below baseline are of

particular interest, they could be represented as an additional sound or instrument, and could

be represented as grayscale or an additional color in spatial representations.

Discussion

The application of audiovisualization to real-time neuroimaging data was demonstrated for a

variety of different applications. We showed that both mesoscale and cellular-level microscopy

recordings of brain activity can be assimilated, with a different perspective offered by reducing

large and complex datasets to simple, easily accessible audio streams coupled with relevant

visual representations of that activity and / or simultaneously acquired variables such as behav-

ior. Although we do not suggest that audiovisualization be the first step to screen through

banks of large data, we have found this technique to be valuable to gain perceptions of complex

spatiotemporal features of data in different conditions. We use this information to guide sub-

sequent quantitative extraction of features for hypothesis testing relating to rhythms, motifs,

abnormal activity and behavioral representations in both neural and hemodynamic data.

While machine learning and AI are increasingly enabling screening of large datasets for pat-

terns and correlates, initialization of these algorithms and interpretation of their outputs can

be challenging [29, 30]. The human auditory and visual systems are incredibly sophisticated,

and are able to hear and see patterns and features that exceed the current ability of computers.

Our senses can remember, integrate over time, detect patterns, selectively amplify and focus

on features independent of their amplitude, and interpret parallel streams of multisensory

information. Audiovisualization of data leverages this human ability to enable assimilation of

many variables in parallel by merging diverse experimental variables into interpretable repre-

sentations that fill a much larger portion of our sensory space than classical observations of

grayscale data.

This audiovisualization approach can be applied to a variety of dynamic data streams

including fMRI, other functional microscopy datasets, and even far beyond analysis of just

brain activity. We note that additional perception can be achieved if data is looped, sped up or

slowed down to different degrees, depending on the data type. Aspects of animal behavior

such as movement, pupil size, heart rate, and other vital signals can also be incorporated into

audiovisualization depending on the needs of the application. For example, pupil area and

movement (shown in Fig 4B) could also be included as an audible signal, in addition to other
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behavioral measures, such as heart rate or fine motor movements. Percussion instruments or

other discernable types of sound could also be incorporated.

One further aspect of this work is the demonstration that real-time neural and hemody-

namic activity in the brain actually has similar patterns and rhythms to composed music. We

intuit that this music-like nature of whole-brain activity could perhaps relate to the timing pat-

terns of our own brain’s activity and perhaps our brain’s state-dependent preferences for dif-

ferent rhythms and patterns of music.

Supporting information

S1 Appendix. The PyAnthem graphical user interface. Description, details and usage

instructions for shared audiovisualization software.

(PDF)

S1 Fig. Color-coded cortical functional area atlas for a similar view to that captured in

WFOM data. Adapted from the Allen Institute Brain Atlas.

(PDF)

S2 Fig. All spatial components of dendrites extracted from 4D SCAPE microscopy dataset

(experiment 2). Each panel shows top and side maximum intensity projections (MIPs) of spa-

tial (W) components.

(PDF)

S1 Movie. Audiovisualization of neural activity from the dorsal surface of the thinned

skull cortex of the awake mouse. Left: Raw GCaMP activity. Middle: Spatiotemporally

unmixed linear model, created by multiplying temporal H (obtained by k-means clustering

into 18 ROIs) with spatial W (obtained as an output of NNLS, where H was used as the input).

Right: color remixed reconstructed model data, where each component of W was assigned a

unique color from the jet color map, arranged from top (red) to bottom (blue). Movie’s sound-

track uses analog (sine-wave) based audio encoding of temporal patterns of each spatial com-

ponent, ordered in an ascending Cmin7 scale from the back (bottom) to the front (top) of the

brain. Note: Movie has sound.

(MP4)

S2 Movie. Audiovisualization of neural activity from the dorsal surface of the thinned

skull cortex of the ketamine/xylazine anesthetized mouse. Left: Raw GCaMP activity. Mid-

dle: Reconstructed data, created by multiplying temporal H (obtained by k-means clustering

into 18 ROIs) with spatial W (obtained as an output of NNLS, where H was used as the input).

Right: color remixed reconstructed model data, where each component of W was assigned a

unique color from the jet color map, arranged from top (red) to bottom (blue). Movie’s sound-

track uses analog (sine-wave) based audio encoding of temporal patterns of each spatial com-

ponent, ordered in an ascending Cmin7 scale from the back (bottom) to the front (top) of the

brain. Note: Movie has sound.

(MP4)

S3 Movie. Audiovisualization of SCAPE microscopy data capturing calcium activity in api-

cal dendrites in the awake mouse brain. Panels show top and side maximum intensity projec-

tions of color-encoded re-mixed spatial components. Dimensionality reduction was applied to

voxels in which at least 5% of values over time exceeded a z-score of 4. Time-course from these

voxels were then k-means clustered, and the resulting timecourses were used as an input for

NNLS. 43 output components were color-coded from left to right using an HSV color map.

Movie’s soundtrack depicts supra-threshold events as piano notes and were chosen on an
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ascending scale according to order of activity. Note: Movie has sound.

(MP4)

S4 Movie. Audiovisualization of neural activity and blood flow from the dorsal surface of

the thinned skull cortex of the awake mouse. Behavioral data (top), neuronal activity

(GCaMP6f) (bottom left), and cortical hemodynamics (bottom right). Webcam data was

acquired simultaneously using two PS3 Eye webcams. Raw GCaMP data was k-means clus-

tered to derive regions of interest (ROIs) from which to extract 12 basis time-courses from

both neural and hemodynamic data-streams. Corresponding spatial components fitting a lin-

ear model to the original data were derived using non-negative least-squares fitting. Spatial

components were then color-coded and re-combined for both datasets, with colors from the

Matlab™ jet color map ordered from the front (top, red) to the back (bottom, blue) of the

brain. Time-courses for each ROI were converted into audible representations, combined in

the movie’s soundtrack as piano notes for neural activity and violin as hemodynamics. Note:
Movie has sound.

(MP4)

S1 File.

(PDF)
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