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Abstract

Single nucleotide polymorphisms are the most common form of DNA alterations at the level

of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS)

were carried to identify potential risk genes or genomic regions by screening for SNPs asso-

ciated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit,

Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6

transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and

sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as

primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been

linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of

computational tools to explore out nsSNPs that are potentially damaging to heath by modify-

ing the structure or activity of the SCN9A protein. Over 14 potentially damaging and dis-

ease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H,

F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of

algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and

ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were

performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and

M936V). Such nsSNPs may become the center of further studies into a variety of disorders

brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic vari-

ations will aid in organizing large-scale investigations and developing targeted therapeutics

for disorders linked to these variations.

1. Introduction

Single variant polymorphisms (SNVs) are segments of DNA with variations of only one base

pair across individuals. The human genome has millions of SNPs that serve as biological
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markers due to the fact that individuals usually differ in one nucleotide out of every 1,000 or so

[1–3]. Over half a million SNPs in the DNA coding sequence have been correlated to the emer-

gence of previously unknown disorders [4,5]. Knowing which SNPs had an impact on the

morphology was crucial for understanding the genetic basis of disease and phenotypic diver-

sity, as well as deciding which markers to exploit in population-based association studies [6,7].

Missense mutations (nsSNPs) have a significant probability of inducing phenotypic variation

in humans by modifying protein expression [8,9]. Many studies have found that nsSNPs

account for about half of the DNA variations correlated with hereditary disorders [10]. GWAS

studies explore those SNPs which are more common in people with the disease in order to

identify genes which may contribute to disease susceptibility [11].

Further, SCN9A gene polymorphisms have been linked to a spectrum of pain perception,

from extreme insensitivity to intense hypersensitivity, by encoding the alpha monomer of

NaV1.7 channels was attributed to variations in pain sensitivity such as primary erythermal-

gia, congenital analgesia, and paroxysmal pain disorder [12–15]. Recent research have led

to the discovery of variants that contribute to persistent pain disorders [15]. It is evident

that abnormal transcription of voltage-gated Na+ channels (VGSCs) is a key mechanism

causing a variety of diseases, notably migraine, pain, MS, and epilepsy [16]. Over the past

decade, cellular-level research has provided insight about transmembrane channels and

involved in the body pain response, such as the capsicum-activated TRPV1 heat receptor

[17]. New studies have shown the catechol-O-methyltransferase (COMT) and tetrahydro-

biopterinm role in pain perception that regulates nociceptors and chronic inflammation

[18–20]. The NaV1.7 channels, often termed as the VGSCs-IV type subunit are made up of

active pore-forming αlpha-monomers and accessory βeta-subunits and are needed for the

formation of electrical impulses in nerve and endothelial cells, respectively [21–24]. In

humans, nine distinct Na+ channels have been identified, each of which is encoded by a sin-

gle SCN1A-SCN9A gene [18,25–28].

The SCN9A (NC 000002.12) gene encodes the Nav1.7 and spans 113.5 kb with 26 exons

and mapped on human chromosome 2q24.3. Sodium channels produced by this gene and

are mainly found in neurons of the dorsal root ganglion (DRG) and the sympathetic ganglia.

Each domain of this Na+ channel, which contains 1988 amino acid, is split into six mem-

brane segments [18–20,29–31]. A VGSC requires at least three subunits: an alpha-subunit

and one or two βeta-subunits, which are much smaller. Each of the repetitive domains was

tightly packed into the centre of the polypeptide chains, and the P-loop region between the

S5 and S6 segment is essential for pore formation. There are four homology domains

(DI-IV) in the alpha-subunit, and each of them splits the into six membrane segments (S1-

6) [32]. Over evolutionary period, 9 distinct variants of the genes that generate the alpha

monomer have emerged. Such genes have a broad array of tissue specificity and structural

characteristics. Several diseases were linked to variations in a certain amino acid that

occurred as a result of these gene alterations. These instances are tremor, dystonia, pain per-

ception disorders, epilepsy, paralysis, ataxia, arrhythmia, cardiac and skeletal muscles disor-

der, and so more. They may also be associated with specific psychological problems.

Researchers have discovered that SCN9A genetic mutation can cause a diverse variety of

pain sensitivity, from extreme insensitivity to extreme sensitivity [20,29,33–35]. In this

paper, we considered various In-silico approaches for pinpointing the human SCN9A non-

synonymous polymorphisms.

2. Material and methods

The research methodology that was followed in this study is depicted schematically in Fig 1.
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2.1. Retrieval of SNPs

Human SCN9A dbSNPs data was collected from a number of open-access databases, notably

NCBI (http://www.ncbi.nlm.nih.gov) and the sequence was obtained from Uniprot (https://

www.uniprot.org). Studies explored the detrimental impacts of missense SNPs on the SCN9A
gene.

2.2. Assessment of deleterious consequences of SNPs

To assess the probable consequence of genetic variants retrieved from the dbSNP databases,

we used a total of seven distinct bioinformatics tools. The aforementioned methods used:

SNPnexus (https://www.snp-nexus.org) includes Sorting Intolerant from Tolerant (SIFT) and

Polymorphism Phenotyping (PolyPhen) [36]. Based on the tolerance score, SIFT with a score

of�0.05 is regarded as damaging, whereas with a value larger than the threshold is considered

tolerant [36–39]. For each amino variant, Polyphen generates a position-specific independent

count (PSIC) index. Differential PSIC scores for variations reveal the direct functional impact

Fig 1. Entire workflow for nsSNPs screening in the SCN9A gene using computational tools.

https://doi.org/10.1371/journal.pone.0297367.g001
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of polymorphisms on protein function [36,40–43]. SNAP2 (https://rostlab.org/services/

snap2web) assess the effect (+100) or neutral (-100) of variants on the protein structures [44].

PPh-2 (http://genetics.bwh.harvard.edu/pph2) predicts how point mutations would affect pro-

tein expression [45]. It classifies mutations as possibly lethal (>0.15), probably damaging

(>0.85), or benign depending on the existence or absent of protein substitutions in the query

sequence [37,38,41,45,46]. CADD (https://cadd.gs.washington.edu) integrates a wide range of

data into a single quantitative score and ranks genetic variants in the human genome such as

single-base variations (SNVs) and Insertion/Deletion (InDels) [42,45]. Mutpred2 (http://

mutpred2.mutdb.org/index.html) used to examine the potential structural implications of

nsSNPs arising from protein alterations combined with biological and molecular evidence

[47–49]. PANTHER (http://pantherdb.org) repository of biological and evolutionary evidence

on all protein-coding genes [50]. It is a comprehensive resource for classification of genes

according to their evolutionary history, and their functions [51]. ConDEL (https://bbglab.

irbbarcelona.org/fannsdb) was created to examine the standardized scores from different algo-

rithms, with the outcomes denoted as 0.0 for Neutral and 1.0 for Deleterious [52].

2.3. Screening of disease- associated SNPs

To examine the association of screened nsSNPs with a disease, P-Mu, PhD-SNP, and SNPs

&GO were performed. Any variant with a p-value of greater than 0.5 was classified as a dis-

ease-associated nsSNPs. P-MUT (http://mmb.irbbarcelona.org/PMut) allows users to access

all single amino acid variants on human proteins. It predicts pathological characteristics linked

with a mutation in people with an 80% accuracy [53]. PhD-SNP (https://snps.biofold.org/phd-

snp/phd-snp.html) with an accuracy of 78% and a score range of 0–9, this method may deter-

mine whether a mutation occurs is a benign polymorphic or is related to inherited mutations

in humans [36,38,40,46,54]. SNP &GO (https://snps-and-go.biocomp.unibo.it/snps-and-go)

assesses amino acid changes at a given locus in a particular protein [36–38,46]. Meta-SNP

(https://snps.biofold.org/meta-snp) predicts disease when there are more than 0.5 mutations.

Single predictor outputs are used as input in Meta-SNP, which achieves an overall accuracy of

79 percent [55].

2.4. Functional effects of SNPs on protein stability

To check the stability, I-Mutant (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/

I-Mutant3.0.cgi), a type of vector support machine-based web server that forecasts any modifi-

cations to protein stability upon being mutated [46]. As input, the SCN9A sequence and vari-

ants, temperature (25˚C) and pH (7) were submitted. It predicts the reliability index of the

outcomes on a range from zero to ten, where ten signifying the highest reliability [36,38,56].

MU Pro (http://mupro.proteomics.ics.uci.edu) evaluates protein sequence variations using

wild and mutant residues, and a number below 0 (mutation has an effect on protein function),

whereas a value larger than 0 indicates that the modification enhances protein stability [36,57].

2.5. Phylogenetic conservation analysis of nsSNPs

Using gene sequence, we calculated the conservation of amino acid sites through evolution by

using ConSurf (https://consurf.tau.ac.il/consurf_index.php) [36,38,58].

The Bayesian approach resulted in a cutoff of conserved scores: Grading 1–4 as dynamic, 5–6

as moderate, and 7–9 as consistent [59,60]. Conserved patterns were anticipated from an input

SCN9A FASTA sequence, yielding a conservation score and color scheme. For further study,

we selected high-risk nsSNPs found in the highly conserved region [43].
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2.6. Homology Modeling of SCN9A gene

Using the SWISS-MODEL platform (http://swissmodel.expasy.org), we built the 3D configu-

rations of both wild-type and mutated proteins to predict structural stability and variations

[61]. By homology modeling methods, the native SCN9A structure was modeled, and then sub-

jected to a single point mutation in the pymol (https://pymol.org/2) [62]. The struc-

ture refinement was done by using ModRefiner (http://zhanglab.ccmb.med.
umich.edu/ModRefiner) [63], and five separate refined protein models are provided at

the end and each model will be downloaded as a PDB file [64].

2.7. Structural validation and RMSD calculation

The structural model was selected and subjected for the structural validation using SAVES

server (https://saves.mbi.ucla.edu) The SAVES incorporates PROCHECK, and ERRAT to ver-

ify the quality of the whole 3D model. [41,65]. The model’s quality was also evaluated by

RAMACHANDRAN plot generated by ProCHECK [36]. The 3D verification evaluates the

concordance between a tertiary protein structure and its primary structure [66]. Afterwards

TM-align (https://zhanglab.ccmb.med.umich.edu/TM-align) was used to compare wild type

protein structure with mutant protein structures. In this method, we use a superposition to cal-

culate both the template modeling score (TM-score) and the root mean square deviation

(RMSD). TM-score provides a numeric value between 0 and 1, where 1 indicates a precise

match between the two structures. A greater RMSD value is indicative of greater structural

divergence between wild-type and mutant forms [67–69]. The RAMAHANDRAN Plot also

considered the dihedral angle of atoms in amino acid residues to pinpoint the preferred region

of amino acids [70–72].

2.8. Protein–Ligand docking analysis

Molecular docking was performed in order to find ligand protein interaction and for finding

potential ligands. For this, we docked all selected ligands with SCN9A using PyRx program

(https://pyrx.sourceforge.io). The Lamarckian genetic algorithm (LGA) which incorporates

AutoDock and AutoDock Vina, was applied for virtual ligand screening [73–75]. The 10 great-

est exclusive values were calculated for each ligand, with the active parameters set to the grid

size of the center (XYZ axis). The AutoDock tools were used to convert the PDB files to Pdbqt

format and calculate the binding affinities [76]. For virtual screening, Discovery Studio

(https://discover.3ds.com/discovery-studio-visualizer-download) was used for 2D and 3D

interaction of ligands with protein. They showed the size and location of bonding sites, hydro-

gen bond interactions, hydrophobic interactions, and bonding distances of a docked ligand

[77,78].

3. Results

3.1. Download SNPs datasets

According to the NCBI dbSNP database, the human SCN9A gene had 335369 SNPs. Exons are

DNA fragments that undergo translation after introns are eliminated during splicing, and is

often utilized to refer a protein-coding regions, which is erroneous, particularly in humans,

where less than 30% of exonic sequences code for proteins. It is critical to comprehend that

exons and introns may also be found in untranslated regions (UTRs), both in the 5’ and 3’

UTRs. The study of SNPs in such UTRs sheds light on the functional and structural repercus-

sions of uncommon exonic SNPs in the human genome. The human SCN9A gene comprises

of 26 coding exons, and the 3’ UTRs of SCN9A are highly similar with around 80% sequence
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similarity between the human and mouse genes. It highlights the significance of controlling

SCN9A gene across species. From Ensembl (335369), 2,782 SNPs found in UTRs, synonymous

(4,056), non-synonymous (10418), exonic (2536), intronic (240596), 3’UTR (2243), 5’UTR

(529), non-coding (64753), and 255,466 SNPs became identified within coding region as

shown in Fig 2. The SCN9A SNPs were assessed further in this study to anticipate their impact

on target protein, stability, and activity and only nsSNPs were evaluated for further

investigation.

3.2. Functional prediction of deleterious SNPs

The retrieved 66326 missense SNPs were analyzed first using SNPnexus and assigned each one

an index value. In the SIFT algorithm, 5914 nsSNPs are found as deleterious out of 5544 mis-

sense SNPs that may have a functional effect on the protein. The output value for Polyphen

varies from 0 to 1, with 1 being the most damaging and 0 shows neutral behavior. Among

nsSNPs, 1693 nsSNPs are possibly damaging and 4339 were benign and 4179 nsSNPs are

highly deleterious as shown in Fig 3. We selected common nsSNPs that scored 0 in SIFT and 1

in PolyPhen to ensure that only the most detrimental SNPs would be studied. We found 18

nsSNPs out of 132 that met the criterion and categorized them as high risk of affecting protein

function. The complete data of commonly found 18 nsSNPs are given in Table 1. With a

Fig 2. Pie chart distribution of Single nucleotide polymorphisms (SNPs) in SCN9A gene.

https://doi.org/10.1371/journal.pone.0297367.g002
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range from -100 to +100, SNAP-2 evaluates the no influence of one amino acid residue.

SNAP-2 indicated that 3 nsSNPs including C710W (rs1358344300), D743Y (rs1186212683)

and C1370Y (rs1390718765) shows a highest score of 90, 89 and 86 as shown in Table 1.

In PPh-2, 18 nsSNPs were projected to be detrimental (PSIC > 0.5); 18 of these variants

were anticipated to be highly damaging, with a PSIC score of 1. MutPred2 to assess the 18

prevalent SNPs for their possible effects and were expected to be deleterious to the SCN9A

Fig 3. Prediction of functional consequences of nsSNPs by A) SIFT and B) PolyPhen.

https://doi.org/10.1371/journal.pone.0297367.g003

Table 1. High risk non-synonymous SNPs identified by SIFT, Polyphen, Mutpred2 and SNAP2.

Variant ID Nucleotides AA Variations SIFT Score Prediction Polyphen Prediction SNAP2 Effect Score MutPred2

Score Score

rs201035087 C/G E1889D 0 Deleterious 1 Probably Damaging Effect 69 0.636

rs1277590831 A/G L1802P 0 Deleterious 1 Probably Damaging Effect 71 0.941

rs767347325 A/C F1782V 0 Deleterious 1 Probably Damaging Effect 46 0.805

rs760665758 C/T D1778N 0 Deleterious 1 Probably Damaging Effect 67 0.608

rs376892319 G/A P1706S 0 Deleterious 1 Probably Damaging Effect 31 0.777

rs1390718765 C/T C1370Y 0 Deleterious 1 Probably Damaging Effect 86 0.948

rs752362481 C/T V1311M 0 Deleterious 1 Probably Damaging Effect 41 0.887

rs1173515969 T/C T1291A 0 Deleterious 1 Probably Damaging Effect 50 0.857

rs1223854779 A/G Y1248H 0 Deleterious 1 Probably Damaging Effect 58 0.808

rs1269325856 G/T F1237L 0 Deleterious 1 Probably Damaging Effect 57 0.902

rs1451456893 T/C M936V 0 Deleterious 1 Probably Damaging Effect 39 0.944

rs757870879 A/G I929T 0 Deleterious 1 Probably Damaging Effect 51 0.936

rs529022680 C/A V877F 0 Deleterious 1 Probably Damaging Effect 82 0.911

rs1186212683 C/A D743Y 0 Deleterious 1 Probably Damaging Effect 89 0.943

rs1010654142 C/A W730L 0 Deleterious 1 Probably Damaging Effect 63 0.865

rs1358344300 A/C C710W 0 Deleterious 1 Probably Damaging Effect 90 0.912

rs200398202 C/G D623H 0 Deleterious 1 Probably Damaging Effect 71 0.79

rs947776327 C/T M358I 0 Deleterious 1 Probably Damaging Effect 2 0.873

https://doi.org/10.1371/journal.pone.0297367.t001

PLOS ONE In-Silico study of non-synonymous functional SNPs in the human SCN9A gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0297367 February 23, 2024 7 / 22

https://doi.org/10.1371/journal.pone.0297367.g003
https://doi.org/10.1371/journal.pone.0297367.t001
https://doi.org/10.1371/journal.pone.0297367


protein based on the results, with scores ranging from 0.636 to 0.948 and P values less than

0.05. Scores with P< 0.05 and g> 0.5 indicated an actionable hypothesis, scores with P < 0.05

and g> 0.75 indicated a confident hypothesis, and scores with P< 0.01 and g> 0.75 were

classed as very confident hypotheses based on the mechanistic disruption induced by the

nsSNPs mutations. As a result, all of the selected nsSNPs were categorized as very confident or

highly probable to be detrimental hypotheses. The PANTHER tool predicts whether the

nsSNPs will influence the protein function. For 18 nsSNPs, the estimated score was equal to or

less than 3, leading in a probability of adverse effect greater than 0.5. From CADD values

range from non-deleterious to deleterious, with greater scores indicates the highly damaging

polymorphism. In addition, ConDEL prediction shows 18 nsSNPs have deleterious effect on

SCN9A gene and Table 2 shows the complete forecast outcomes.

3.3. Prediction of disease causing nsSNPs

The SNP & GO algorithm identified 17 nsSNPs that were related with disease, while the muta-

tion T1291A (rs1173515969) was graded as neutral. The prediction results are summarized in

Table 3. P-Mutant indicates a certain 15nsSNPs will cause disease, which classify them as

TRUE, While P1706S, T1291A and V877F predict FALSE result. As shown in Table 3, Meta-

SNP predicts 2 nsSNPs (P1706S, T1291A) shows neutral effect on SCN9A protein. The predic-

tion score (<0.5) makes the SNP neutral and disease causing (>0.5). PhD-SNP found only 5

nsSNPs were neutral including E1889D, P1706S, T1291A, I929T and M358I and remaining

were disease causing, as shown in the Table 3.

3.4. Prediction of SCN9A protein stability

The DDG forecasted by I-Mutant 3.0 identified 5 mutations were expected to increase the sta-

bility of the mutant protein, whereas the remaining 13 nsSNPs were predicted to decrease the

Table 2. Cumulative prediction of possible deleterious nature of nsSNPs.

Variant ID Nucleotides AA Variations PPh-2 Score Prediction PANTHER CADD Score ConDEL Score Prediction

rs201035087 C/G E1889D 1 Probably Damaging Probably Damaging 23.4 0.6604 Deleterious

rs1277590831 A/G L1802P 1 Probably Damaging Probably Damaging 25.1 0.55786 Deleterious

rs767347325 A/C F1782V 1 Probably Damaging Probably Damaging 28.3 0.52343 Deleterious

rs760665758 C/T D1778N 1 Probably Damaging Probably Damaging 26.7 0.53728 Deleterious

rs376892319 G/A P1706S 1 Probably Damaging Probably Damaging 26.4 0.6071 Deleterious

rs1390718765 C/T C1370Y 1 Probably Damaging Probably Damaging 26.3 0.74338 Deleterious

rs752362481 C/T V1311M 1 Probably Damaging Probably Damaging 25.4 0.68273 Deleterious

rs1173515969 T/C T1291A 1 Probably Damaging Probably Damaging 28.6 0.585421 Deleterious

rs1223854779 A/G Y1248H 1 Probably Damaging Probably Damaging 28.9 0.645473 Deleterious

rs1269325856 G/T F1237L 1 Probably Damaging Probably Damaging 24.9 0.732668 Deleterious

rs1451456893 T/C M936V 1 Probably Damaging Probably Damaging 26.2 0.571746 Deleterious

rs757870879 A/G I929T 1 Probably Damaging Probably Damaging 28.2 0.573044 Deleterious

rs529022680 C/A V877F 1 Probably Damaging Probably Damaging 26 0.535492 Deleterious

rs1186212683 C/A D743Y 1 Probably Damaging Probably Damaging 28.7 0.714423 Deleterious

rs1010654142 C/A W730L 1 Probably Damaging Probably Damaging 42 0.713647 Deleterious

rs1358344300 A/C C710W 1 Probably Damaging Probably Damaging 38 0.695742 Deleterious

rs200398202 C/G D623H 1 Probably Damaging Probably Damaging 26.4 0.656425 Deleterious

rs947776327 C/T M358I 1 Probably Damaging Probably Damaging 26.8 0.58972 Deleterious

*PPh2—Polyphen2.

https://doi.org/10.1371/journal.pone.0297367.t002
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stability of the protein, hence lowering protein activity. Disease-related nsSNPs were predicted

using a sequence-based method from the I-Mutant 3.0 package. Findings for the estimated

structural influence of 18 potential nsSNPs were obtained from Mu-Pro servers. The findings

of the protein stability assessment are listed in Table 4.

3.5. Evolutionary conservation of deleterious nsSNPs

The ConSurf analysis revealed a high degree of structural and functional conservation among

all SCN9A residues. On the other hand, we focused on solely on the 9-scoring residues that

corresponded to the 14 high-risk nsSNPs we discovered. According to the findings, Y1248H

are highly exposed as they are functional residues. It can be shown in Table 4 that C710W

(rs1358344300) and W730L (rs1010654142) are projected to be structural residues, which indi-

cates that they are deeply buried. Fig 4 displays the data that proved these 14 high-risk nsSNPs

to be truly detrimental to the structure and/or function of the SCN9A protein.

3.6. SWISS modeling for the SCN9A protein

The prediction score indicates that 14 highly-conserved mutations on the SCN9A protein were

evaluated to detect the protein conformational modifications induced by them. The list of

those 14 nsSNPs are as follows; E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M,

Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H. For comparative homology

modeling the generated sequences were selected of at least >30% similarities and identities.

We got 50 templates with 64.41% STML ID 6Iqa.1.A identification for the query sequence. To

learn how mutations drastically alter the stability of proteins, we modeled the three-dimen-

sional structure of the SCN9A protein using the template PDB ID 6lqa.1. A (range: 2-1978aa).

The results obtained by using a template with a quality of 6lqa.1 and then using PyMOL to cre-

ate a model are displayed in Fig 5.

Table 3. Prediction of disease causing SNPs by P-Mutant, Meta SNP, PhD SNP and SNP & GO.

Variant ID Nucleotides AA Variations P-Mutant Meta SNP PhD SNP SNP & GO

rs201035087 C/G E1889D 0.5263 TRUE Disease 1 Neutral 0.477 Disease 1

rs1277590831 A/G L1802P 0.6997 TRUE Disease 7 Disease 0.853 Disease 3

rs767347325 A/C F1782V 0.882 TRUE Disease 4 Disease 0.828 Disease 3

rs760665758 C/T D1778N 0.8536 TRUE Disease 3 Disease 0.566 Disease 2

rs376892319 G/A P1706S 0.3946 FALSE Neutral 0 Neutral 0.163 Disease 1

rs1390718765 C/T C1370Y 0.8652 TRUE Disease 4 Disease 0.893 Disease 4

rs752362481 C/T V1311M 0.8184 TRUE Disease 1 Disease 0.731 Disease 4

rs1173515969 T/C T1291A 0.4511 FALSE Neutral 5 Neutral 0.159 Neutral 8

rs1223854779 A/G Y1248H 0.7505 TRUE Disease 5 Disease 0.728 Disease 4

rs1269325856 G/T F1237L 0.8398 TRUE Disease 6 Disease 0.917 Disease 3

rs1451456893 T/C M936V 0.8577 TRUE Disease 3 Disease 0.583 Disease 7

rs757870879 A/G I929T 0.7922 TRUE Disease 3 Neutral 0.29 Disease 7

rs529022680 C/A V877F 0.4994 FALSE Disease 4 Disease 0.561 Disease 8

rs1186212683 C/A D743Y 0.8492 TRUE Disease 6 Disease 0.798 Disease 8

rs1010654142 C/A W730L 0.882 TRUE Disease 8 Disease 0.877 Disease 8

rs1358344300 A/C C710W 0.7855 TRUE Disease 7 Disease 0.836 Disease 9

rs200398202 C/G D623H 0.6523 TRUE Disease 4 Disease 0.76 Disease 7

rs947776327 C/T M358I 0.5567 TRUE Disease 2 Neutral 0.287 Disease 4

https://doi.org/10.1371/journal.pone.0297367.t003
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The most favored, additional allowed, generously allowed, and disallowed regions are col-

ored in red, yellow, light yellow, and white respectively.

The above listed proteins have been downloaded with the respective PDB files and mutated

by PyMol. The mutants (L1802P, F1782V, D1778N, V1311M, and M936V) showing high

RMSD value as shown in Table 5. Validation of the modeled framework was performed by

SAVES and RAMACHANDRAN plot evaluation was used to examine at the secondary struc-

ture. All constraints imposed by potential energy calculations were respected by the resulting

structure. On a RAMACHANDRAN plot, the majority of the amino acid residues in the

SCN9A protein (82.90%) were found in a highly favorable region as depicted in Fig 5. The

complete predicted results can be found in Table 5.

3.7. Molecular Docking by PyRx

To discover ligand-protein interactions, molecular docking was used by PyRx tool; we docked

all of the selected ligands with SCN9A. They created ten distinct conformations for each ligand,

which are characterized by binding affinity (-Kcal/mol).The docking results of ligands indi-

cates that these binding affinities relate to their level of activity, and all 20 compounds with

binding affinities are given in Table 6. We selected 9 compounds with strong binding affini-

ties, notably batrachotoxin, carbamazepine, flecainide, funapide, naloxone, phenytoin, ranola-

zine, saxitoxin, and vixotrigine, and docked them with all 6 of our native and mutated protein

complexes further to investigate their interactions. Discovery studio, which offers a 2D repre-

sentation of all docking interactions, was used for the research.

The binding free energy of all the chosen ligands is higher than -4Kcal/mol. The highest

binding energy revealed that the SCN9A protein docked successfully with Batrachotoxin. The

Batrachotoxin and Funapide shows highest binding affinity -7.7 and -7.5Kcal/mol, which are

greater than other ligand-binding affinities. A Batrachotoxin ligand was fixed in the SCN9A

binding pocket sites by forming the conventional hydrogen bond with residues TYR 405, GLN

408, and SER 969; and Vander wall interactions with ALA 965, ASN 412, LEU 866, ASN 409,

Table 4. List of nsSNP’s predicted by Mu-Pro, I mutant and ConSURF.

Variant ID Nucleotides AA Variations MU Pro Score I mutant Score ConSurf

rs201035087 C/G E1889D Decrease -1.003035 Decrease 5 9,e,f

rs1277590831 A/G L1802P Decrease -2.0284824 Decrease 2 9,b,s

rs767347325 A/C F1782V Decrease -0.5691432 Decrease 8 9,b,s

rs760665758 C/T D1778N Decrease -0.9162488 Decrease 5 9,e,f

rs376892319 G/A P1706S Decrease -1.753187 Decrease 8 9,b,s

rs1390718765 C/T C1370Y Decrease -1.1410874 - - 9,b,s

rs752362481 C/T V1311M Decrease -0.3113898 Decrease 6 9,b,s

rs1173515969 T/C T1291A Decrease -0.6659933 Decrease 8 9,b,s

rs1223854779 A/G Y1248H Decrease -1.5449369 Decrease 9 8,e,f

rs1269325856 G/T F1237L Decrease -1.1002138 Increase 5 9,b,s

rs1451456893 T/C M936V Decrease -0.5491587 Decrease 8 9,b,s

rs757870879 A/G I929T Decrease -1.0086574 Decrease 7 9,b,s

rs529022680 C/A V877F Decrease -1.162129 Decrease 8 9,b,s

rs1186212683 C/A D743Y Decrease -0.828799 Increase 1 9,b,s

rs1010654142 C/A W730L Decrease -0.330446 Increase 4 8,b

rs1358344300 A/C C710W Decrease -0.8210315 Decrease 4 8,b

rs200398202 C/G D623H Decrease -1.0159569 Decrease 7 7,e

rs947776327 C/T M358I Decrease -0.6336562 Increase 3 9,b,s

https://doi.org/10.1371/journal.pone.0297367.t004

PLOS ONE In-Silico study of non-synonymous functional SNPs in the human SCN9A gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0297367 February 23, 2024 10 / 22

https://doi.org/10.1371/journal.pone.0297367.t004
https://doi.org/10.1371/journal.pone.0297367


ILE 413, SER 973, SER 972, ALA 865, THR 233, ILE 234, ALA 237 and LEU 869. The interact-

ing residues obtained from docking are presented in Fig 6. Differences between mutant and

natural ligand-protein residue interactions, indicative of altered functional features due to

mutations, are listed in Table 7.

According to Table 7, polymorphisms not only alter the protein’s conformation because of

modifications to the number of interacting residues, but also because of alterations in hydro-

gen bonds and hydrophilic associations.

3. Discussion

The prevalence of deleterious non-synonymous substitutions in the SCN9A gene was deter-

mined by evaluating 15 different In-Silico analyses. This difference highlights the need for a

comparative evaluation to accurately identify the nsSNPs that often significantly impair

SCN9A gene activity. Consequently, we used a meta-analysis of 14 different computational

methods to determine how to properly classify nsSNPs, from benign to detrimental. We

focused on the 18 nsSNPs identified as deleterious by SNPnexus and that were classified as

harmful by the 2 tools (Table 1). More than five algorithms showed high consistency in

Fig 4. Pie chart displaying the prevalence of deleterious missense mutations. Evaluation of 15 In silico tools reveals the percentage and numerical quantity of

deleterious nsSNPs.

https://doi.org/10.1371/journal.pone.0297367.g004
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forecasting of the nsSNPs were harmful, deleterious, or disease-associated. Despite the fact

that most of the 18 most damaging nsSNPs identified here were not tested in vitro, and there is

no information on the functional significance of these mutations in SCN9A protein, the find-

ings indicate that they should be prioritized for further populational and laboratory studies.

The nsSNPs in the SCN9A gene that have an impact in biological processes were studied using

a method that combines the forecasts of various tools to identify the most genetic mutations.

When the single sodium channel (Na1.7) is inactivated, all pain sensation is abolished (apart

from nerve pain). Significant effects could be anticipated in the domain of analgesia if

Fig 5. Procheck-RAMACHANDRAN plot of the native SCN9A predicted model.

https://doi.org/10.1371/journal.pone.0297367.g005

Table 5. Structural validation and comparison of SCN9A gene.

ERRAT PROCHECK TM Align

Variation ID Score Core Allow Generously Disallowed RMSD TM score

E1889D 86.569 82.80% 12.00% 2.80% 2.40% 0.25 0.99787

L1802P 84.3731 82.10% 11.60% 3.00% 3.20% 0.36 0.99757

F1782V 83.7886 82.10% 11.80% 3.00% 3.10% 0.33 0.99833

D1778N 88.5607 81.60% 12.60% 3.30% 2.50% 0.35 0.99759

C1370Y 85.8092 81.80% 12.60% 3.20% 2.40% 0.31 0.99815

V1311M 85.7669 81.90% 11.60% 3.70% 2.80% 0.35 0.99799

Y1248H 85.0478 82.30% 12.20% 2.80% 2.70% 0.34 0.99779

F1237L 86.724 82.50% 12.50% 2.70% 2.30% 0.29 0.99745

M936V 83.5866 82.20% 11.60% 3.70% 2.50% 0.36 0.99738

I929T 86.4583 82.80% 12.00% 2.90% 2.40% 0.25 0.9977

V877E 84.8745 82.70% 11.40% 3.30% 2.70% 0.25 0.99761

D743Y 85.954 82.90% 11.60% 3.50% 2.00% 0.34 0.99781

C710W 84.297 82.00% 12.50% 3.20% 2.30% 0.32 0.99763

D623H 84.6386 82.70% 12.20% 2.90% 2.20% 0.31 0.99731

https://doi.org/10.1371/journal.pone.0297367.t005
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antagonist for Na1.7 might be identified. [79] The Na1.7 channel generally serves as gatekeeper

channels, amplifying weak impulses and pushing neurons to threshold voltages where the far

more complicated Na1.8 channels became activated. Because Na1.8 channels generate the

majority of the current needed to produce action potentials and transduce pain, they are a key

player in this pathway [80–83].

Moreover, the point mutation found in SCN9A enables the channels to be triggered by less

significant depolarizing events and, as a result, have increased activity [84]. The SCN9A (NC

000002.12) gene encodes the Nav1.7 and spans 113.5 kb with 26 exons and mapped on human

chromosome 2q24.3 [18,85]. Sodium channels produced by this gene and are mainly found in

neurons of the DRG and the sympathetic ganglia. Each domain of this Na+ channel, which

contains 1988 amino acid is split into six membrane segments. [18–20,29–31] Further, SCN9A
polymorphisms have been linked to a spectrum of pain perception, from extreme insensitivity

to intense hypersensitivity, by encoding the alpha monomer of NaV1.7 channels was attributed

to variations in pain sensitivity [12–15]. A new nonsense mutant R523X, which affects the first

linker that joins domains 1 and 2, was discovered in exon 10 of a Pakistani family. The same

linker, S459X has previously been associated with loss of function, indicating that this site is

essential for the development of the channel [18]. The patient had previously been found to be

a homozygous carrier of the prevalent polymorphism in the SCN9A gene, which codes for the

NaV1.7-dbSNP rs6746030 (R1150W). This SNP was originally believed to be part of quantita-

tive changes in the pain threshold in various patient cohorts rather than being associated with

erythromelalgia [86].

Likewise, A study found a significant association between pain intensity and SNP

rs6746030. The Nav1.7 coding sequence is modified by the two alleles of the rs6746030 [18].

These were independently transduced into HEK293 cells, and patch-clamping was used to

evaluate their electrophysiological effects. They concluded that pain perception varies in

Table 6. Top ranked binding affinities of 20 compounds with native and mutant proteins.

Ligands SCN9A Wild L1802P F1782V D1778N V1311M M936V

Batrachotoxin -7.7 -7.5 -7.5 -7.6 -7.5 -7.5

Benzazepinone -6.1 -6.2 -6.2 -6.2 -6.2 -6.2

Carbamazepine -6.7 -6.9 -6.9 -7.8 -6.9 -6.9

Chromane -5.2 -5.4 -5.4 -5.4 -5.4 -5.4

Flecainide -6.3 -6.8 -6.8 -6.8 -6.8 -7

Funapide -7.5 -8.3 -8.2 -8.3 -8.2 -8.3

Ascorbic acid -4.4 -5.1 -5.1 -5.1 -5.1 -5.1

Lacosamide -5.4 -6.1 -6.1 -6.1 -6.1 -6.1

Lamotrigine -5.8 -6 -5.7 -6 -5.9 -5.9

Lidocaine -5.4 -6 -6 -6 -6 -5.9

Mexiletine -5.1 -5.4 -5.4 -5.4 -5.4 -5.4

Naloxone -6.9 -7.2 -7.3 -7.2 -6.2 -7.2

Phenytoin -6.9 -7.7 -7.7 -6.7 -6.7 -7.7

Ralfinamide -6.8 -6.3 -6.3 -6.3 -6.3 -6.3

Ranolazine -6.6 -6.9 -6.8 -6.9 -6.7 -6.6

Riluzole -5.9 -5.6 -5.6 -5.7 -5.6 -5.6

Saxitoxin -6.9 -5.7 -5.7 -5.7 -5.8 -5.7

Tetrodotoxin -6.3 -6 -5.9 -5.9 -6 -6

Topiramate -5.8 -5.8 -5.8 -5.8 -5.8 -5.8

Vixotrigine -6.8 -6.7 -6.8 -6.7 -6.7 -6.7

https://doi.org/10.1371/journal.pone.0297367.t006
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Fig 6. Interaction of protein ligands with typical SCN9A and mutant D1778N, F1782V, L1802P, M939V, and V1311M.

https://doi.org/10.1371/journal.pone.0297367.g006
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Table 7. Interacting residues obtained from docking. Wild protein, L1802P, F1782V, D1778N, V1311M and M936V variants with ligands including their binding resi-

dues and hydrophobic interactions.

Protein-Ligands Hydrogen bond Interactions Hydrophobic

Interactions

Protein-Ligands Hydrogen bond Interactions Hydrophobic

Interactions

Wild- Batrachotoxin TYR 405, GLN408, SER 969,

ALA965, LEU869, ALA237,

ILE234, THR233, ALA865, SER972,

SER873, LEU866, ASN409, ILE413,

ASN412

NULL L1802P-

Batrachotoxin

SER972, ASN1461, ASN975,

GLN1462, LYS1465, ASP1458,

GLU406, LEU967, LEU968,

SER1764, ILE1457, PHE871,

LEU1760, GLU1761

NULL

Wild- Funapide THR233, GLN408, ASN409,

ILE413, LEU866, ASN868,

ALA965, LEU238, ASN961,

ASN412

ILE234, ALA237,

LEU898, TYR405

L1802P-

Carbamazepine

LEU967, ILE1457, ILE1760,

SER972, PHE971

LEU968, GLU406

Wild- Naloxone TYR405, THR233, LEU866,

ASN868, ASN412, GLN408,

ASN961

LEU869,ALA237,

LEU238,ILE234

L1802P-

Funapide

ASP1458, GLN1462, ASN1461,

ASN975, PHE971, SER972,

LYS1465

LEU968, LEU1760,

LEU964, LEU967,

ALA402, ILE1457

Wild- Phenytoin ASN961, LEU238, LEU866,

ASN868, ASN412, ASN409,

TYR405, GLN408

ILE234, ALA237,

LEU869,

L1802P-

Naloxone

ASP1458, LEU967, ILE1457,

LEU1760, GLU406, ASN409,

SER972, ASN975, PHE971

LEU968, ASN1461

Wild- Saxitoxin ILE413, SER973, LEU866, TYR405,

LEU968, GLU406, GLN410,

ALA965, SER969, SER972

NULL L1802P-

Phenytoin

SER1445, PHE1446, ILE1756,

ILE1453, LEU960, VAL959,

ASN956, PHE1405

PHE963, LEU1449,

LEU398

F1782V-

Batrachotoxin

SER972, ASN1461, ASN975,

GLN1462, LYS1465, ASP1458,

GLU406, LEU967, LEU968,

SER1764, ILE1457, PHE871,

LEU1760, GLU1761

NULL L1802P-

Ranolazine

ASN975, GLU406, SER1764,

ASP1458, LEU967, ASN1461,

LEU964, ASN1461, LEY964,

SER972, PHE971

LEU968, LEU1760,

ALA402, ILE1457

F1782V-

Carbamazepine

GLU1761, SER1764, MET403,

LEU957, LEU968, ILE1457

GLU406, LEU1760,

ALA402

V1311M-

Batrachotoxin

SER972, ASN1461, ASN975,

GLN1462, LYS1465, ASP1458,

GLU406, LEU967, LEU968,

SER1764, ILE1457, PHE871,

LEU1760, GLU1761

NULL

F1782V-Funapide ASP1458, GLN1462, ASN1461,

ASN975, PHE971, SER972,

LYS1465

LEU968, LEU1760,

LEU964, LEU967,

ALA402, ILE1457

V1311M-

Carbamazepine

SER1764, LEU1760, LEU967,

LEU968, ASP1458, PHE971,

ASN975, SER972, GLU406,

ASN1461, GLU1761

ILE1457

F1782V- Naloxone LEU398, LEU960, PHE963, ILE

1453, ASN 1753, ILE1756,

PHE1748, VAL959, CYS925,

ILE1441, SER1445

LEU1449, PHE1446,

PHE1405

V1311M-

Flecainide

ASP1458, MET403, SER1764,

GLU1761, ASN1461, PHE971

GLU406, ILE1457,

LEU968, LEU967,

LEU1760, LEU964,

ALA402

F1782V- Phenytoin ILE1756, ILE1453, PHE1405,

SER1445, PHE1446, ASN956,

VAL959, LEU960

PHE963, LEU398,

LEU1449

V1311M-

Funapide

ASP1458, GLN1462, ASN1461,

ASN975, PHE971, SER972,

LYS1465

LEU968, LEU1760,

LEU964, LEU967,

ALA402, ILE1457

D1778N-

Batrachotoxin

SER972, ASN1461, ASN975,

GLN1462, LYS1465, ASP1458,

GLU406, LEU967, LEU968,

SER1764, ILE1457, PHE871,

LEU1760, GLU1761

NULL V1311M-

Phenytoin

ASN1461, SER1764, GLU406,

GLU1761, LEU964, LEU967

LEU1760, LEI968,

ILE1457, ALA402

D1778N-

Carbamazepine

ASP1458, GLU406, LEU968,

SER972, PHE971, LEU967,

ILE1457, GLY1454, ASN975,

ASN1461, LYS1465

ASP1458 V1311M-

Ranolazine

PHE971, ASP1458, ASN1461,

LEU967, SER1764, GLU1761,

GLU406,LYS1465, LEU964,

SER772, ASN975

LEU968, ALA402,

ILE1457

D1778N- Funapide ASP1458, GLN1462, ASN1461,

ASN975, PHE971, SER972,

LYS1465

LEU968, LEU1760,

LEU964, LEU967,

ALA402, ILE1457

V1311M-

Vixotrigine

LEU967, GLN410, LEU964,

ILE413, SER972, ASN409, TYR405,

PHE971, ASN1461

LEU1760, LEU968,

ALA402, ILE1457,

GLU406

D1778N-Naloxone LEU924, ASN965, VAL959,

PHE1405, PHE1446, LEU1449,

LEU960, CYS925

PHE963, ILE1453,

LEU398, ILE1756

M936V -

Batrachotoxin

SER972, ASN1461, ASN975,

GLN1462, LYS1465, ASP1458,

GLU406, LEU967, LEU968,

SER1764, ILE1457, PHE871,

LEU1760, GLU1761

NULL

(Continued)
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response to nociceptive stimuli based on the SCN9A rs6746030 genotype. The patient was

found to be heterozygous for the SCN9A gene mutation c.4384T>A (p.F146I), which is related

with PEPD [29]. Primary erythromelalgia (PEM) is an autosomal dominant disorder caused

by SCN9A gene mutations, and these variants (Q10R, I136V, P187, S211T, F216S, I228M,

I234T, S241T, N395K, V400M, P610T, G616R, DII, L823R, F826Y, I848T, G856R, L858H,

L858F, A863P, Q875E, DelL955, R1150W, DIII, N1245S, DIV, W1538R, A1632E and

A1632G) are strongly linked to PEM. In 2004, Yang et al [87,88] were the first to link the disor-

der to SCN9A gene.

The biophysical properties of Nav1.7 are altered in a similar manner by all PEM mutations;

this alteration involves a shift of the activation voltage to hyperpolarized potentials, the magni-

tude of which appears to correlate with the severity of symptoms; [88] while the variants

R996C, V1298D, V1298F, V1299F, I1461T, F1462V, T1464I, A1632E,M1627K,G1607R,

I228M, R185H, L1612P and V1740L have reported SCN9A mutations that are found Paroxys-

mal extreme pain disorder (PEPD, formerly known as familial rectal pain syndrome) patients,

is caused by gain of function mutations in SCN9A that alter the biophysical properties of the

Nav1.7 channel [19,88–92]. People who had the PEM polymorphism N1245S showed greater

olfactory sensitivity, whereas the variation N641Y, Q10R, G327E, I775M, R429C, and Y1958C

experienced epilepsies and lost their smell sense due to the activation of Nav1.7 in the olfactory

epithelia [93,94]. It was found that several mutations exist in 1 and 2 domain, the majority of

which are nonsense variants that result in proteins being cut off prematurely [88]. Some poly-

morphisms such as S459X, I767X, W897X, R277X, Y328X, E693X, R830X, F1200L, R1488X,

K1659X, I1235L, W1689X, R523X, R896Q, K370Q, G375A, E919X, M1190X, G1822, R896G

AND Q369X) were identified as involved in complete insensitivity to pain

[18,19,35,43,79,81,88,95].

Fig 2 shows the outcomes of a query of the NCBI and Uniprot databases for pathogenic

nsSNPs. The polymorphisms defined as SCN9A-associated or pathogenic in the dbSNP data-

base including E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L,

M936V, I929T, V877E, D743Y, C710W, and D623H were predicted as harmful consequences

in 14 tools, while 5 SNPs (L1802P, F1782V, D1778N, V1311M and M936V) were thoughts to

be highly deleterious. Homology modeling with SWISS Model was used to generate a 3D

model of the protein sequences of both wild-type (SCN9A) and mutants, allowing us to inves-

tigate the effects of these 5 variations. High RMSD mutants, including L1802P, F1782V,

D1778N, V1311M, and M936V, are well-known to be incredibly detrimental. Thus, PyRx was

brought to use for protein-ligand interaction. Using PyRx, we docked 20 ligands to both wild-

type and mutated SCN9A (L1802P, F1782V, D1778N, V1311M, and M936V). The binding

Table 7. (Continued)

Protein-Ligands Hydrogen bond Interactions Hydrophobic

Interactions

Protein-Ligands Hydrogen bond Interactions Hydrophobic

Interactions

D1778N-Ranolazine PHE971, ASP1458, ASN1461,

LEU967, SER1764, GLU1761,

GLU406,LYS1465, LEU964,

SER772, ASN975

LEU968, ALA402,

ILE1457

M936V-

Flecainide

PHE1748, LEU924, VAL1959,

CYS925, PHE1405, SER1445,

LEU964, LEU967, ILE1457,

LEU960

LEU1449, PHE1446,

LEU398,PHE963,

ILE1453, ILE1756,

LEU1760

M936V- Naloxone LEU398, LEU960, PHE963, ILE

1453, ASN 1753, ILE1756,

PHE1748, VAL959, CYS925,

ILE1441, SER1445

LEU1449, PHE1446,

PHE1405

M936V-

Funapide

ASP1458, GLN1462, ASN1461,

ASN975, PHE971, SER972,

LYS1465

LEU968, LEU1760,

LEU964, LEU967,

ALA402, ILE1457

M936V- Phenytoin ILE1756, ILE1453, PHE1405,

SER1445, PHE1446, ASN956,

VAL959, LEU960

PHE1446, PHE963,

LEU1449

https://doi.org/10.1371/journal.pone.0297367.t007
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affinity of ligand-receptor compounds was used to evaluate the index value at each site. Dock-

ing was developed to study how ligand binding activity correlates with three-dimensional pro-

tein structure. Research method used in this research common underlying on creating an

association between the modifications and their molecular consequences on the protein. Since

each program/tool performs on a distinct algorithm, the results are more reliable when multi-

ple are utilized to accomplish a single purpose.

4. Conclusions

Genetic analysis for identifying phenotypic or disease-associated polymorphism is a complex

situation that demands for advanced techniques. We investigated a variety of methods to

determine the variations in the human SCN9A gene that are likely be damaging. The voltage-

gated sodium-channel type IX subunit Nav1.7, which is located in peripheral neurons and is

encoded by the SCN9A gene, is vital to the generation of action potentials. The SCN9A muta-

tions were associated with primary erythermalgia, channelopathy-associated insensitivity to

pain, and paroxysmal intense pain condition. In this study, 14 nsSNPs with a mutational effect

on the SCN9A function and structure were found to be highly deleterious, according to the

trajectory analysis and stepwise prediction of pathogenicity of nsSNPs (SNPNexus > SNAP2

> PolyPhen 2> Mutpred2>PANTHER> CADD> ConDEL> P-Mutant> Meta SNP> PhD

SNP> SNP & GO). Five nsSNPs have been examined as deleterious SNPs in the SCN9A pro-

tein using a structural homology-based method by the Swiss model. In the present study, we

analyzed the L1802P, F1782V, D1778N, V1311M and M936V SNPs associated with the

SCN9A gene was docked with selected 9 molecules with significant binding affinities including

Batrachotoxin, Carbamazepine, Flecainide, Funapide, Naloxone, Phenytoin, Ranolazine, Saxi-

toxin and vixotrigine and docked with native and mutant structures and visualized by Discov-

ery studio. Future genome association studies will be able to detect damaging SNPs linked to

specific patients with pain according to the findings of this study. To characterize this data on

SNPs, extensive clinical trial based research on a broad population are needed, as well as exper-

imental mutational studies for the confirmation of the outcomes.
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sodium channels. Pflügers Archiv-European Journal of Physiology, 2020. 472: p. 865–880. https://doi.

org/10.1007/s00424-020-02419-9 PMID: 32601768

89. Themistocleous A.C., et al., The clinical approach to small fibre neuropathy and painful channelopathy.

Practical neurology, 2014. 14(6): p. 368–379. https://doi.org/10.1136/practneurol-2013-000758 PMID:

24778270

90. Dimyan M.A. and Cohen L.G., Neuroplasticity in the context of motor rehabilitation after stroke. Nature

Reviews Neurology, 2011. 7(2): p. 76–85. https://doi.org/10.1038/nrneurol.2010.200 PMID: 21243015

91. Estacion M., et al., NaV1. 7 gain-of-function mutations as a continuum: A1632E displays physiological

changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and pro-

duces symptoms of both disorders. Journal of Neuroscience, 2008. 28(43): p. 11079–11088. https://

doi.org/10.1523/JNEUROSCI.3443-08.2008 PMID: 18945915

92. Mohammed Z.A., Kaloyanova K., and Nassar M.A., An unbiased and efficient assessment of excitability

of sensory neurons for analgesic drug discovery. Pain, 2020. 161(5): p. 1100. https://doi.org/10.1097/j.

pain.0000000000001802 PMID: 31929383

93. Haehner A., et al., Mutation in Nav1. 7 causes high olfactory sensitivity. European Journal of Pain,

2018. 22(10): p. 1767–1773. https://doi.org/10.1002/ejp.1272 PMID: 29934995

94. Zimmermann K., et al., Sensory neuron sodium channel Nav1. 8 is essential for pain at low tempera-

tures. Nature, 2007. 447(7146): p. 856–859. https://doi.org/10.1038/nature05880 PMID: 17568746

95. Marchi M., et al., A novel SCN9A splicing mutation in a compound heterozygous girl with congenital

insensitivity to pain, hyposmia and hypogeusia. Journal of the Peripheral Nervous System, 2018. 23(3):

p. 202–206. https://doi.org/10.1111/jns.12280 PMID: 29978519

PLOS ONE In-Silico study of non-synonymous functional SNPs in the human SCN9A gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0297367 February 23, 2024 22 / 22

https://doi.org/10.1007/s00424-020-02419-9
https://doi.org/10.1007/s00424-020-02419-9
http://www.ncbi.nlm.nih.gov/pubmed/32601768
https://doi.org/10.1136/practneurol-2013-000758
http://www.ncbi.nlm.nih.gov/pubmed/24778270
https://doi.org/10.1038/nrneurol.2010.200
http://www.ncbi.nlm.nih.gov/pubmed/21243015
https://doi.org/10.1523/JNEUROSCI.3443-08.2008
https://doi.org/10.1523/JNEUROSCI.3443-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18945915
https://doi.org/10.1097/j.pain.0000000000001802
https://doi.org/10.1097/j.pain.0000000000001802
http://www.ncbi.nlm.nih.gov/pubmed/31929383
https://doi.org/10.1002/ejp.1272
http://www.ncbi.nlm.nih.gov/pubmed/29934995
https://doi.org/10.1038/nature05880
http://www.ncbi.nlm.nih.gov/pubmed/17568746
https://doi.org/10.1111/jns.12280
http://www.ncbi.nlm.nih.gov/pubmed/29978519
https://doi.org/10.1371/journal.pone.0297367

