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Abstract

Composite materials are popular because of their high performance capabilities, but new

material development is time-consuming. To accelerate this process, researchers studying

material informatics, an academic discipline combining computational science and material

science, have developed less time-consuming approaches for predicting possible material

combinations. However, these processes remain problematic because some materials are

not suited for them. The limitations of specific candidates for new composites may cause

potential new material pairs to be overlooked. To solve this problem, we developed a new

method to predict possible composite material pairs by considering more materials than pre-

vious techniques. We predicted possible material pairs by conducting link predictions of

material word co-occurrence networks while assuming that co-occurring material word pairs

in scientific papers on composites were reported as composite materials. As a result, we

succeeded in predicting the co-occurrence of material words with high specificity. Nodes

tended to link to many other words, generating new links in the created co-occurrence mate-

rial word network; notably, the number of material words co-occurring with graphene

increased rapidly. This phenomenon confirmed that graphene is an attractive composite

component. We expect our method to contribute to the accelerated development of new

composite materials.

Introduction

Interest in composites has increased recently, and the composite materials market is estimated

to increase from USD 88.0 billion in 2021 to USD 126.3 billion by 2026 [1]. Composites are

materials that consist of two or more composition materials with considerably different chemi-

cal or physical properties. Composite materials are popular because they have two or more

properties. For instance, carbon fiber reinforced polymers (CFRPs), one of the most popular

composites, have both strength and lightness. CFRPs are applied in various fields, such as auto-

motive and aerospace engineering, to reduce costs and energy consumption [2]. Among
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composites of materials, those with completely different properties, such as Prussian blue and

cellulose have attracted particular attention in recent years [3]. Morinobu Endo, one of the

pioneers of carbon nanofibers and carbon nanotubes (CNTs), is working on the compounding

of innovative material combinations, such as CNTs and polymer materials [4–6]. However,

developing new composite materials is time-consuming, as one study reported that the devel-

opment of new materials takes over 20 years [7]. One reason for this phenomenon is that there

is a very large number of potential material options; MatWeb, an online material database, has

data on over 170,000 materials [8]. Since many material combinations can be combined, find-

ing new and compositable pairs of materials from them is difficult.

To solve this problem, material informatics (MI), which is an academic field combining

material science and computer science, is attracting attention [9]. This academic discipline

aims to accelerate the process of designing and finding new materials by experimental data

analysis. Some studies have reported that data analysis methods, such as neural networks, simi-

larity measurements, and data mining, can be applied to predict the physical characteristics of

new composites [10–12]. Although MI is a new field, it has made rapid progress, leading to the

development of high-performance composites [13].

However, some materials are unsuitable for MI; for example, some polymers have physical

property values that are difficult to calculate and are unsuitable for MI [14]. The limitations of

candidate materials in MI may lead to the overlooking of new combinations of materials.

Thus, developing a method to investigate materials from a wider viewpoint to find new pairs is

needed.

MI is notable; however, the usefulness of bibliometric networks for discovering new materi-

als has been proven. One study succeeded in predicting new heat-conductive materials with a

network of knowledge extracted from scientific publications [15]. Since new scientific knowl-

edge is generated in existing knowledge networks, it is important to consider a prior knowl-

edge network of material science to predict new materials [16]. Scientific papers contain

various information about scientific knowledge relationships, such as citation relationships.

Regarding journal papers on composite materials, the authors describe pairs of materials

selected as components for composites; “Graphene-Polyaniline” and “TiO2/Graphene” are

examples of material pairs [17, 18].

Link prediction in a network is a method to detect a possible combination between many

candidates. This technique predicts the existence of a link between two nodes from structural

changes in a network. Link prediction is applied in various situations, such as in the prediction

of technological spinoffs that are used in unanticipated field technologies in an industry and in

the combinations of promising research collaborators; link predictions of networks of interact-

ing proteins have been applied to predict protein functions [19–21]. There are several link pre-

diction methods, one of which is based on information related to the network structure [22].

This technique refers to information that describes the link structure around the nodes, for

example, follower/followee relationships on social networks and protein–protein interaction

relationships. Examples of network structure indexes are the common neighbor (CN), Jaccard

coefficient (JC), resource allocation index (RA), Adamic/Adar index (AA), and preferential

attachment (PA) [23–27].

By considering the usability of bibliometric networks for discovering new materials and

link prediction techniques for detecting possible pairs, we hypothesize that new composite

materials can be predicted by performing link prediction on the co-occurrence networks, with

the material words described in the paper being nodes and their co-occurrence relationships

being links. The purpose of this study is to predict compositable pairs of materials from a

larger number of candidates than in previous studies for investigating materials from a broader

perspective to discover new combinations. We assume that using bibliographic information
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has the potential to consider a larger number of materials than physical information because

bibliographic information contains data on a high number of materials; additionally, informa-

tion on materials described in academic papers can be extracted from databases. More than

150000 papers on composite materials are stored in Web of Science (WoS) databases, which is

an online subscription-based scientific citation indexing service maintained by Clarivate Ana-

lytics. In this study, we extract the bibliometric information of materials and conduct link pre-

diction of the co-occurrence network of material words to detect new and compositable

material pairs.

Methods

Method outline

Our method involved the following four steps (Fig 1). The details of each step are as follows:

• Extracting papers on composite materials

• Listing material words from collected papers

• Creating a co-occurrence network of material words

• Link prediction of a co-occurrence network of material words

Extracting scientific journal papers describing composite materials

To extract academic papers on composite materials, we obtained bibliographic data related to

composite materials from the Science Citation Index and the Social Science Citation Index

gathered by the Institute for Science Information. We used WoS for accessing these databases

to collect academic articles published over a wide range of years because the WoS databases

include journal publication records from a broader span of years than those of other databases.

Fig 1. Method outline.

https://doi.org/10.1371/journal.pone.0297361.g001
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We analyzed a citation network as follows. First, we searched for academic publications

from the period before 8/15/2020 using the query “composite material*” (the asterisk* indi-

cates a wildcard that can help to locate the appropriate results). Second, we created a citation

network of the extracted papers with the obtained citation data. Third, papers not linked to

others were excluded because we considered papers without citations of other studies to be

irrelevant to the primary subject (composite materials). In this study, we analyzed the extracted

papers included in a maximum component of a citation network.

Listing material words from collected papers

We extracted material words from the collected academic articles and counted the numbers of

scientific papers in which each material word occurred by following an academic landscape

system [28]. We selected the 100 most frequently appearing material words and named them

“the 100 material words”. We only analyzed material words with high frequencies of occur-

rence because material words with low frequencies were less likely to co-occur with others.

Creating a co-occurrence network of extracted material words

We examined whether the two specified material words co-occurred or not, that is, whether

there was a journal including both of them. We created a co-occurrence network of nodes and

links representing the 100 material words and their co-occurrence relationships, respectively.

Link prediction of a co-occurrence network

We defined three training periods (TRP1 (1/1/2010–12/31/2012), TRP2 (1/1/2011–12/31/

2012), and TRP3 (1/1/2012–12/31/2012)) and one testing period (TSP (1/1/2013–2015/12/

31)). Generally, the training/testing periods used for link prediction are 5–10 years; however,

shorter periods were selected for this study [29, 30]. We concluded that shorter periods were

appropriate for analyzing the changes in this research field because these changes have rapidly

increased in recent years; the rate of increase in the number of scientific papers related to this

topic has risen to a similar degree [31].

We created five co-occurrence networks using the extracted papers published on dates

before 12/31/2009, 12/31/2010, 12/31/2011, 12/31/2012, and12/31/2012. Material word pairs

that co-occurred for the first time in each period were identified by taking the difference in the

material word co-occurrence network between the start and end of each period. For example,

for TRP1, links with co-occurrence networks were not found in the extracted papers that were

published by 12/31/2009, but links were found in the extracted papers that were published by

12/31/2012; therefore, that date was regarded as the first instance of co-occurrence for TRP1.

Next, we calculated the scores of the material word pairs with the network structure index.

We used eight network structure indexes—CN, JC, RA, AA, PA, common neighbors using

community information (CNSH), the internal resource allocation index using community

information (RASH), and the intercluster measure (WIC)—because network structure indexes

were deemed appropriate for the link prediction of small networks [32]. Each node pair (x, y)

index was calculated according to the following equations (Table 1) [23–27, 33–35]. In this

study, CNSH, RASH, and WIC were calculated with the material class; the details of this step

are described in the results section as community information.

Using the score of the network index, we judged which combinations of training periods

and network indexes were the most appropriate for link prediction with the following steps.

First, we counted the true positives (TPs), false positives (FPs), true negatives (TNs), and false

negatives (FNs) of the link prediction process by setting each score as a cutoff in a training

period; from there, we selected the best cutoff of each combination of a training period and a
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network index (Fig 2). TP and TN were outcomes where the link prediction correctly pre-

dicted the positive and negative classes, respectively, whereas FP and FN were outcomes where

the link prediction incorrectly predicted the positive and negative classes, respectively. Second,

we calculated the sensitivities and specificities from the TPs, FPs, TNs, and FNs with Formulas

(1) and (2) [36]. The sensitivities and specificities represent the accuracies of the positive and

negative predictions, respectively. In our study, sensitivity or specificity referred to the discov-

ery accuracies of pairs of materials that could or could not be composited. Third, we plotted

the receiver operating characteristic (ROC) curves, displaying (sensitivity, 1–specificity), as

shown in Fig 3. Finally, we calculated the average accuracies and areas under the curve

(AUCs) and evaluated the accuracies of the link prediction processes in each of the 24 cases

(the cases were combinations of eight network structure indexes and three training periods)

based on these values. The average accuracy was determined by the average values of the sensi-

tivities and specificities (Formula (3)). AUC represented the area between the horizontal axis

and the ROC curve, plotting (sensitivity, 1–specificity), as shown in Fig 3 and Formula (4)

[37]. The AUC calculation required a value of area from 0% to 100%: the higher the area values

Table 1. Score for node pairs {x, y} under link prediction using each index (where Γ(x) = the number of neighbors

of node x in the cooccurrence network, f(u) = 1 if x and y belong to the same community and f(u) = 0 otherwise,

and δ = the arbitrary constant (the Default Value is 0.001)).

Network index Equation Network index Equation

CN GðxÞ \ GðyÞ PA jGðxÞjjGðyÞj
JC jGðxÞj\jGðyÞj

jGðxÞj[jGðyÞj
CNSH GðxÞ \ GðyÞ þ

X

u2GðxÞ\GðyÞ

f ðuÞ

RA
X

u2GðxÞ\GðyÞ

1

jGðuÞj
RASH

X

u2GðxÞ\GðyÞ

f ðuÞ
jGðuÞj

AA
X

u2GðxÞ\GðyÞ

1

logjGðuÞj
WIC jLW

x;y j

jLIC
x;y jþd

https://doi.org/10.1371/journal.pone.0297361.t001

Fig 2. Link prediction outline.

https://doi.org/10.1371/journal.pone.0297361.g002
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were, the more accurate the link prediction [38].

Sensitivity ¼
TP

TP þ FN
ð1Þ

Specificity ¼
TN

TN þ FP
ð2Þ

Average accuracy ¼
Sensitivityþ Specificity

2
ð3Þ

AUC ¼
Z

ðSensitivityÞdðSpecificityÞ ð4Þ

Results

Extracting scientific journal papers on composite materials

A total of 75076 papers containing at least one keyword were collected. We focused on the

maximum connected component, which accounted for approximately 59% of the total papers

(44430 of 75076 papers).

Listing material words from collected papers

The 100 material words extracted from the collected papers were classified into 4 classes: car-

bon, ceramic, metal and organic materials (Table 2); the numbers of material words catego-

rized into each class were 7, 41, 10 and 42, respectively.

The number of scientific papers with the top 10 and top 100 most frequently occurring

material words are shown in Table 3 and S1 Table, respectively. This number differed widely

among the various material words; graphene showed the maximum occurrence number at

8736, and calcium hydroxide showed the minimum occurrence number at 36. The top 10

most frequently occurring material words comprised 3 carbon, 2 ceramic, 2 metal, and 3

organic materials. Although carbon materials accounted for a small proportion of the 100

material words, most of them appeared in many scientific papers.

Fig 3. Example ROC curve and AUC graph.

https://doi.org/10.1371/journal.pone.0297361.g003
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Counting the co-occurrence between two material words

We counted the number of material words that co-occurred with the 100 material words in

2012 or 2015, and we named these material words “co-occurring material words”. The num-

bers of co-occurring material words of the top 10 and top 100 most commonly occurring

material words are shown in Table 4 and S2 Table, respectively. This number varied greatly

depending on the material words, as the maximum and minimum number of co-occurring

words in 2015 were 85 for silica and 2 for vanadium phosphate.

We calculated the average percentages of co-occurrence in the material word pairs for each

material class and compared these values (Table 5). The percentages of co-occurrence with the

100 material words in each material class for carbon, ceramic, metal, and organic materials

were 56.3%, 34.5%, 56.8%, and 39.0%, respectively. The percentage of co-occurrence of the

carbon and metal material classes was high (85.7%), whereas that of the ceramic and organic

material classes was low (29.6%).

Link prediction of a co-occurrence network

To identify the conditions with high link prediction accuracies, we conducted link prediction

for 24 patterns (the patterns were combinations of eight network indexes and three training

periods) and compared the results. The AUCs and average accuracies of link prediction in the

patterns are shown in S3 Table, and the ROCs are shown in S1–S8 Figs.

Table 2. The 100 material words in each material class (listed in descending order of occurrence number).

Material class “carbon”: CNT, graphite, graphene, diamond, boron carbide (B4C), fullerene, carbon nitride (C3N4)

Material class “ceramic”: silica (SiO2), silane (SiH4), boron nitride (BN), silsesquioxane, kaolinite, melamine, zeolite,

polysiloxane, titanium dioxide (TiO2), alumina, aluminum oxide (Al2O3), zinc oxide (ZnO), calcium phosphate

(Ca3(PO4)2), barium titanate (BaTiO3), zirconium dioxide (ZrO2), calcium carbonate (CaCO3), copper oxide

(CuO), iron(III) oxide (Fe2O3), manganese oxide (MnO2), silver nitrate (AgNO3), nickel oxide (NiO), tin oxide

(SnO2), cerium oxide (CeO2), iron(III) chloride (FeCl3), magnesium oxide (MgO), titanium diboride (TiB2), cobalt

ferrite (CoFe2O4), molybdenum disulfide (MoS2), lithium iron phosphate (LiFePO4), tricobalt tetroxide (Co3O4),

vanadium oxide (V2O5), lithium vanadium (Li3V2), calcium chloride (CaCl2), molybdenum trioxide (MoO3),

lithium chloride (LiCl), cadmium sulfide (CdS), nickel hydroxide (Ni(OH)2), calcium hydroxide (Ca(OH)2),

calcium silicate (Ca2O4Si), vanadium phosphate, triiron tetraoxide (Fe3O4)

Material class “metal”: copper, silver, nickel, gold, aluminum, zirconium, platinum, palladium, chromium,

aluminum

Material class “organic”: polyethylene, epoxy, polystyrene, polyaniline (PANi), cellulose, polyester, polyvinyl alcohol

(PVA), polyurethane, polypropylene, polypyrrole, chitosan, polymethylmethacrylate (PMMA), nylon,

polycarbonate, polyamide, polyimide, hydrogel, collagen, polyelectrolyte, pyridine, glucose oxidase,

polyacrylonitrile, polyvinylidene, polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polysulfone,

polyvinylpyrrolidone, polycaprolactone, polybutadiene, polylactic acid, polysaccharide, polydimethylsiloxane,

chitin, polythiophene, cyclodextrin, polyacrylamide, polyolefin, vinylpyridine, carboxymethyl cellulose, polylactide,

polyetherimide, polydopamine

https://doi.org/10.1371/journal.pone.0297361.t002

Table 3. Number of scientific papers in which each of the top 10 most commonly occurring material words

appeared.

Material

word

Number of papers in which the word

occurred

Material

word

Number of papers in which the word

occurred

graphene 8736 aluminum 3500

epoxy 7980 cellulose 3359

CNT 6386 graphite 3269

SiO2 5741 PANi 2827

TiO2 4382 copper 2475

https://doi.org/10.1371/journal.pone.0297361.t003
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By comparing the results for each network index, it was seen that the network indexes

showed higher values with CN or CNSH. The average AUCs using CN, JC, RA, AA, PA,

CNSH, RASH and WIC were 77.0%, 70.7%, 74.8%, 73.9%, 71.8%, 77.3%, 57.2% and 55.0%,

respectively. The average accuracies using CN, JC, RA, AA, PA, CNSH, RASH and WIC were

67.6%, 65.2%, 67.8%, 67.8%, 66.4%, 68.8%, 57.4% and 55.8%, respectively. Since the values

with CN and CNSH were high, CN and CNSH were regarded as the appropriate network

indexes for this link prediction technique.

By comparing the results for each training period, it was determined that the training

period with the highest values depended on the network index. The average AUC values using

TRP1, TRP2, and TRP3 were 69.6%, 69.9%, and 69.6%, respectively; these values were nearly

the same. However, the training period with the highest AUC differed according to the net-

work index; for example, link prediction using CN and CNSH showed the highest values with

TRP2 and TRP1, respectively. The average accuracies using TRP1, TRP2 and TRP3 were

63.9%, 65.1% and 64.8%, respectively; these values were nearly the same. Nevertheless, the

training period with the highest average accuracy differed according to the network index; for

example, link prediction using CN and CNSH showed the highest values with TRP3 and

TRP1, respectively. Since the training period with the highest values differed according to the

network index as above, the best training period for the link prediction depended on the net-

work index.

From the above results, the following pairs of network indexes and training periods with

higher AUCs and average accuracies were determined to be appropriate for link prediction in

this study: {CN, TRP2}, {CN, TRP3}, and {CNSH, TRP1}. To evaluate the usefulness of these

pairs, we conducted link prediction during the testing period and calculated the accuracies

with these pairs. First, we counted the TPs, FPs, FNs, and TNs of each cutoff with CN and

CNSH and calculated the sensitivities, specificities and average accuracies (Tables 6 and 7).

Next, we conducted link prediction with the following three cutoffs (defined as positive):

CN� 9, CN� 5, and CNSH� 8, which were calculated using {CN, TRP2}, {CN, TRP3}, and

{CNSH, TRP1}, respectively; since the average accuracies of link prediction using each pair

were 64.7%, 64.1% and 56.9%, respectively, link prediction using {CN, TRP2} showed the high-

est accuracy.

Table 4. Number of co-occurring material words and the percentage of co-occurrence of the top 10 most commonly occurring material words.

Material word Number of co-

occurring material

words

Percentage of co-occurrence Material word Number of co-

occurring material

words

Percentage of co-occurrence

2012 2015 2012 2015

graphene 43 80 66.1% aluminum 57 62 11.9%

epoxy 62 72 27.0% cellulose 50 60 20.4%

CNT 76 82 26.1% graphite 64 73 25.7%

SiO2 78 85 33.3% PANi 54 65 24.4%

TiO2 63 70 19.4% copper 52 67 31.9%

https://doi.org/10.1371/journal.pone.0297361.t004

Table 5. Percentage of co-occurrence in material word pairs with each material class.

Material class Carbon Ceramic Metal Organic 100 material words

Carbon 83.7% 50.2% 85.7% 50.7% 56.3%

Ceramic 50.2% 33.6% 47.8% 29.6% 34.5%

Metal 85.7% 47.8% 86.0% 53.8% 56.8%

Organic 50.7% 29.6% 53.8% 42.9% 39.0%

https://doi.org/10.1371/journal.pone.0297361.t005
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CN� 7 showed the highest average accuracy (64.8%) of cutoffs using CN; this value was

close to the average accuracy using CN� 9 (64.7%). Therefore, {CN, TRP2} showed a high

link prediction accuracy during the testing period. In the testing period, link prediction using

CN�9 successfully predicted the co-occurrence of 364 of 666 co-occurrence material word

pairs, and it successfully predicted the non-co-occurrence of 5036 of 6736 non-co-occurrence

material word pairs. Link prediction with CN�9 showed lower sensitivity (54.7%) and higher

specificity (74.8%) than that using CN�7, of which the sensitivity and specificity were 66.7%

and 62.9%, respectively. In agreement with the previous results, {CN, TRP2} was regarded as

an appropriate pair for link prediction during the testing period.

Discussion

Listing material words from collected papers

Even though carbon accounts for a small proportion of the 100 material words, most of them

appear in many scientific papers. This observation implies that carbon materials exhibit high

levels of usefulness as components of composites. For example, graphene, which appears in

most papers mentioning some of the 100 material words, is composed of many kinds of mate-

rials, including organic, ceramic and metal materials, and its wide-ranging applications

include battery electrode materials, reinforced plastics, photocatalytic materials, and cell cul-

ture basics [39–42]. CNTs, which appear in the third most papers out of the 100 material

words, are compounded with many kinds of materials, including ceramic, metal and organic

Table 6. Accuracies of link prediction in the testing periods for each cutoff using CN.

Cutoff Sensitivity Specificity Average accuracy

�1 658/666 (98.8%) 508/6736 (7.5%) 53.2%

�2 648/666 (97.3%) 1274/6736 (18.9%) 58.1%

�3 608/666 (91.3%) 1938/6736 (28.8%) 60.0%

�4 568/666 (85.3%) 2632/6736 (39.1%) 62.2%

�5 536/666 (80.5%) 3214/6736 (47.7%) 64.1%

�6 480/666 (72.1%) 3780/6736 (56.1%) 64.1%

�7 444/666 (66.7%) 4240/6736 (62.9%) 64.8%

�8 402/666 (60.4%) 4640/6736 (68.9%) 64.6%

�9 364/666 (54.7%) 5036/6736 (74.8%) 64.7%

�10 316/666 (47.4%) 5380/6736 (79.9%) 63.7%

https://doi.org/10.1371/journal.pone.0297361.t006

Table 7. Accuracies of link prediction in the testing periods for each cutoff using CNSH.

Cutoff Sensitivity Specificity Average accuracy

�1 649/666 (0.974%) 469/6736 (0.93) 52.2%

�2 624/666 (0.937%) 1065/6736 (0.842) 54.8%

�3 575/666 (0.863%) 1678/6736 (0.751) 55.6%

�4 536/666 (0.805%) 2231/6736 (0.669) 56.8%

�5 496/666 (0.745%) 2675/6736 (0.603) 57.1%

�6 454/666 (0.682) 3111/6736 (0.538) 57.2%

�7 410/666 (0.616) 3542/6736 (0.474) 57.1%

�8 369/666 (0.554) 3936/6736 (0.416) 56.9%

�9 333/666 (0.5) 4261/6736 (0.367) 56.6%

�10 305/666 (0.458) 4555/6736 (0.324) 56.7%

https://doi.org/10.1371/journal.pone.0297361.t007
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materials [43, 44]. The applications of CNT composites vary; for example, CNT composites

have been applied in reinforced plastics, electrode materials and wearable devices [45]. In addi-

tion, CNT composite development is expected to accelerate in the future because of the estab-

lishment of mass production methods for CNTs [46]. In contrast, calcium hydroxide, which

occurs in the fewest scientific papers of the 100 material words, is compounded mainly with

resin. The application range of calcium hydroxide is narrower than those of graphene and

CNTs, as calcium hydroxide-based compounds are primarily used for crown restoration [47].

Prof. Bunshi Fugetsu of the University of Tokyo, who is an expert in composite materials,

claimed that this result represents the attractiveness of carbon materials. Graphene and CNTs

have high reactivity and strength as components of composites. Plus, many composites can

only be realized with them because of their unique shape.

Counting co-occurrence instances between two material words

We test our research hypothesis that material word pairs co-occurring for the first time were

reported as composite materials. We investigate whether material word pairs that co-occurred

with silica or CNTs for the first time from 2012 to 2015 are described as composite materials.

As a result, 11 out of 13 material word pairs are actually reported as composites: {silica, carbox-

ymethyl cellulose}, {silica, polyetherimide}, {silica, polyolefin}, {silica, PVDF}, {silica,

LiFePO4}, {CNT, zirconium}, {CNT, polydopamine}, {CNT, C3N4}, {CNT, CoFe2O4}, {CNT,

CuO} and {CNT, Li3V2} [48–58]. The others are not reported as composites: {silica, kaolinite}

and {silica, MoS2} [59, 60]. Since most pairs of materials are composited, our hypothesis is

reasonable.

As a result of our method, the number of co-occurring material words varies widely. This

phenomenon occurs partly because the ease of handling is different in each material. For

example, graphene and CNTs are manageable due to their high reactivity and strength, but ful-

lerene is not manageable because of its poor solubility [61]. Fullerene is relatively uncommon

as a research theme because research on fullerene is likely to take more time to make discover-

ies. However, Prof. Fugetsu states that fullerene is a very interesting material and is worth to be

researching.

Link prediction of a co-occurrence network

The cutoff calculated from {CN, TRP2} shows high accuracy for link prediction in both the

training period and the testing period. We discuss the cause of this result below.

First, we examined why CN and CNSH showed high link prediction accuracy in the train-

ing periods. We concluded that this phenomenon occurs because CN and CNSH have similar

properties to the created co-occurrence networks of material words. CN and CNSH show that

two nodes having a link to an in-common node are more likely to have a link than those with-

out links to in-common nodes. Nodes in the created co-occurrence networks of material

words that are linked to many in-common nodes tend to have new links (details are described

in the next subsection). Nodes with many neighbors tend to have many common neighbors

with another node. In other words, link prediction using CN or CNSH is more likely to cor-

rectly predict new links, and it shows high accuracies and AUCs. However, RA, AA, and

RASH are based on the theory that two nodes linked to a node with few in-common neighbors

are likely to have a link. Thus, link prediction using these indexes tends to show that nodes

linked to few in-common neighbors have new links in the material word co-occurrence net-

work, even though nodes with many neighbors are more likely to have new links. RA, AA, and

RASH show lower accuracies and AUCs than CN and CNSH because their nodes linked to

few in-common nodes do not have new links.
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Next, we discuss why link prediction using CNSH shows low average accuracies and AUCs

in the testing period. This result indicates that adding community information (in this case,

material class) reduces the link prediction accuracy; in other words, the instances of co-occur-

rence between two material words in different material classes increase. The number of mate-

rial words in which graphene and CNTs co-occurred in the testing period increases rapidly

from 43 to 93 and from 76 to 91, respectively. Since only five of the 100 material words are car-

bon materials, 95 of the 100 material words are noncarbon materials; in other words, graphene

and CNTs co-occur with many material words in other material classes.

Finally, we infer why the optimal training period differs by network index. We assume that

this is in part because the instances of co-occurrence between material words in different classes

increase rapidly. Link prediction shows high accuracy in TRP1 in the case of using network

indexes that add community information (CNSH, RASH, and WIC); however, it tends to exhibit

low accuracy in TRP1 when using network indexes that do not add community information

(CN, JC, RA, AA, and PA). This result indicates that linking old data (in this case, TRP1) is opti-

mal when using network indexes that add community information, such as CNSH, because

there are few instances of co-occurrence between two material words in different material classes

in old data. As above, we conclude that network indexes that do not add community information

are appropriate for new data, and other indexes are appropriate for old data.

Evaluation of the link prediction accuracy

The cutoff calculated from {CN, TRP2} is defined as the best in our method because it shows

high accuracy in both the training and testing periods. This cutoff shows high specificity

(74.8%) during the training period and is regarded as a useful cutoff for the following reasons.

Values evaluating the accuracy of true/false predictions depend on the case. In the case of can-

cer screening, sensitivity is more important than specificity because positive cases (i.e., patients

who have cancer) must not be overlooked. In contrast, cold assessment emphasizes specificity

because it is important to reduce false positives (i.e., patients who do not have a cold but are

diagnosed with it) to accelerate examination. We consider specificity to be more important

than sensitivity in our method because researchers need to avoid research themes that are

unlikely to produce results due to time and budget limitations. This finding is also because an

emphasis on sensitivity may lead to a focus on research themes that are only likely to produce

results, decelerating innovation. Since innovation is based on diverse knowledge, researchers

must broaden their research scope to avoid disregarding innovative discoveries [62]. From the

aforementioned theories, we consider the cutoff calculated from {CN, TRP2} to be useful, indi-

cating that we have succeeded in calculating a useful cutoff with the testing data.

Next, we analyze the common characteristics of material word pairs for which link predic-

tion with the best cutoff cannot predict co-occurrence. The ratio of FN material pairs for each

material word is calculated from the following formula, and we determine the material words

of the co-occurrence that were overlooked based on the ratio.

A ¼
B
T
C

B
ð5Þ

A: FN rate of material word pairs for the material word x, B: Material word pairs containing

x that co-occur during TRP2, C: Material word pairs that are not predicted to co-occur.

As a result, the FN of the following 12 material words is 100%: carboxymethyl cellulose,

polydopamine, V2O5, polylactide, C3N4, Li3V2, MoO3, cyclodextrin, melamine, CaCl2, poly-

etherimide and LiCl. These material words tended to co-occur with a few material words in

2012, as cyclodextrin co-occurred with fewer than 10 material words. On the other hand, the
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FNs of the following material words were 0%: gold, PVA, polyurethane, aluminum, PMMA,

BaTiO3, nylon, polyimide, B4C and titanium diboride (TiB2). As they co-occur with more than

10 material words, they tend to have co-occurrence with more words than those for which FN

is 100%. Therefore, our method is likely to show higher accuracy for predicting co-occurrence

with material words that already co-occur with many words.

Because material words that co-occur with many words are more likely to have new

instances of co-occurrence, we assume that material words that co-occur with those already

having many co-occurring words can be predicted by focusing on non-co-occurring words. To

verify this, we calculate the percentage of co-occurrence from 1/1/2016 to 8/15/2020 of the 100

material words, and the values of the top 10 most frequently occurring material words. The 100

material words are shown in Table 8 and S4 Table, respectively. As the number of co-occurring

material words in 2015 and the co-occurrence rate between 2016 and 2020 show a high correla-

tion coefficient of 0.732, we find that in general, the greater the number of co-occurring material

words is, the higher the percentage of co-occurrence. While the average of 100 material words is

14.1%, only graphene and CNTs, which co-occur with more than 80 material words in 2015,

show a high co-occurrence rate exceeding 50%. From the above results, the prediction of the

co-occurrence of material words that already have many instances of co-occurrence is highly

possible by focusing on the material words that are not unreasonable.

Conclusions

Innovative material combinations were emphasized. However, it was difficult for previous

methods to detect possible pairs of materials from a wide range of materials because the physi-

cal properties of some materials such as polymers were hard to quantify. To solve this problem,

we predicted possible pairs of materials by conducting link prediction on the co-occurrence

network under the assumption that pairs of material words co-occurring in scientific papers

on composites are reported as composite materials. Our MI method analyzed various kinds of

materials including polymer materials such as cellulose and succeeded in searching com-

poundable material combinations from thousands of pairs, which was far more than those in

previous studies [10–12]. Our method exhibited the potential to promote compoundable and

innovative pairs of materials by the cross-sectional exploration of materials.

The limitation of our method was that its specificity and prediction accuracy of material

words that co-occurred with fewer others were low. Thus, our future work is to conduct link

prediction on only material words co-occurring with fewer others to find better conditions. In

addition, we plan to try other network indexes and/or implement multiple indexes to improve

the sensitivity and specificity.

Supporting information

S1 Fig. ROC curves for CN with each training period.

(TIFF)

Table 8. Percentage of the co-occurrence of the top 10 most frequently occurring material words.

Material word Percentage of co-occurrence from 1/1/2016 to 8/15/2020 Material word Percentage of co-occurrence from 1/1/2016 to 8/15/2020

graphene 68.4% aluminum 32.4%

epoxy 18.5% cellulose 41.0%

CNT 52.9% graphite 30.8%

SiO2 21.4% PANi 32.4%

TiO2 31.0% copper 37.5%

https://doi.org/10.1371/journal.pone.0297361.t008
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