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Abstract

Addressing the profound impact of Tapping Panel Dryness (TPD) on yield and quality in the

global rubber industry, this study introduces a cutting-edge Otsu threshold segmentation

technique, enhanced by Dung Beetle Optimization (DBO-Otsu). This innovative approach

optimizes the segmentation threshold combination by accelerating convergence and diver-

sifying search methodologies. Following initial segmentation, TPD severity levels are metic-

ulously assessed using morphological characteristics, enabling precise determination of

optimal thresholds for final segmentation. The efficacy of DBO-Otsu is rigorously evaluated

against mainstream benchmarks like Peak Signal-to-Noise Ratio (PSNR), Structural Simi-

larity Index (SSIM), and Feature Similarity Index (FSIM), and compared with six contempo-

rary swarm intelligence algorithms. The findings reveal that DBO-Otsu substantially

surpasses its counterparts in image segmentation quality and processing speed. Further

empirical analysis on a dataset comprising TPD cases from level 1 to 5 underscores the

algorithm’s practical utility, achieving an impressive 80% accuracy in severity level identifi-

cation and underscoring its potential for TPD image segmentation and recognition tasks.

1 Introduction

1.1 Rubber tree tapping panel dryness

The rubber tree, a pivotal economic crop, significantly contributes to the global economy with

its primary product, natural rubber [1]. Growth, latex yield, and health of rubber trees are vul-

nerable to various environmental and human-induced factors [2–4]. Tapping Panel Dryness

(TPD) poses a major challenge during latex extraction, leading to latex tube degeneration and

considerable yield reduction [3, 5–8]. Unraveling the mechanisms underlying TPD is essential

for boosting resilience and latex production in rubber trees and for the sustainable evolution

of the rubber industry [9, 10]. Recent advancements in the molecular understanding of TPD

[2, 7, 9, 11, 12] have been significant, yet their practical application in disease identification

remains hindered by traditional methods. The industry’s current reliance on visual inspections

by experienced professionals is limited by subjectivity and varying efficiency and accuracy
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levels. With extensive global rubber plantations and diverse disease manifestations, traditional

manual methods fall short. Image processing technologies emerge as a superior alternative,

offering objectivity and robust big data handling, thus providing precise disease assessments

essential for research and developing effective disease management strategies in rubber trees.

The fundamental goal in image recognition, especially considering the unique image char-

acteristics of the cuts and latex, is to achieve precise segmentation. High-quality image seg-

mentation directly contributes to enhanced diagnostic accuracy, promoting objectivity and

uniformity in evaluations. This approach facilitates automatic disease identification in TPD-

affected trees across different stages, assisting researchers in real-time monitoring and future

latex yield prediction, and propelling forward the study of rubber tree diseases.

1.2 Image segmentation

Image segmentation, an integral component in image processing, lays the technical ground-

work for condition diagnosis by isolating image regions with varying characteristics [13].

While traditional segmentation methods primarily leverage threshold setting, histogram analy-

sis [14], region growing, fuzzy clustering [15, 16], K-means clustering [17], and edge detection

[18, 19], advanced techniques incorporate active contours, graph cuts, and sophisticated math-

ematical and probabilistic models [20]. Notably, deep learning approaches [21–25] like Fully

Convolutional Networks (FCN) [26],U-Net [27],PSPNet [28] and FC-DenseNet have revolu-

tionized segmentation with their high precision in pixel-level classification. Deep learning

methods offer unmatched segmentation accuracy and efficiency; however, automated thresh-

old segmentation techniques remain popular for their simplicity and effectiveness [29, 30]. For

example, the multi-threshold Tsallis entropy recursive algorithm by Wang et al. [31] acceler-

ates segmentation while ensuring efficiency. Sharma et al. [32] introduced an optimized multi-

level threshold segmentation algorithm, proving its efficacy in brain tumor segmentation and

advancing threshold segmentation research. Lei et al. [33] proposed an adaptive granularity

Renyi rough entropy method, which augments threshold segmentation accuracy and speed,

demonstrating its utility in rapid and efficient image segmentation.

In the context of TPD in rubber plantations, the environmental complexity and signal insta-

bility demand more timely and robust recognition technologies. Despite deep learning’s supe-

rior performance in image segmentation, its high hardware requisites restrict application in

wearable devices. Threshold-based segmentation, known for its lightweight and efficient

nature, becomes a fitting alternative, especially suitable for wearable device integration, offer-

ing vital support for intelligent TPD recognition. Therefore, advancing research and develop-

ment of these algorithms is imperative for managing rubber tree diseases and facilitating early

diagnosis.

1.3 Application of Otsu algorithm in image segmentation

The Otsu algorithm, serving as an adaptive threshold segmentation method, has proven highly

effective in images with bimodal histograms [34]. Despite its widespread adoption, the algo-

rithm encounters performance limitations in scenarios with highly variable background and

target intensity, or significant noise disturbances. For instance, its robustness is compromised

in high-noise images affected by salt-and-pepper noise, leading to segmentation inaccuracies

[35]. To address these challenges, novel improvements have been proposed. Notably, the inte-

gration of the 3D Otsu algorithm with local contrast enhancement has significantly amelio-

rated segmentation quality while preserving edge details [36]. Methods combining pixel

intensity with spatial context, through energy curve optimization, have shown promise under

varying lighting conditions, yet they grapple with dynamic environments [37]. Hybrid
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algorithms, like the amalgamation of Otsu with K-means clustering, have enhanced accuracy

in multi-light spot center detection but impose greater computational demands [38]. Addi-

tionally, the 2D Otsu algorithm, when coupled with adaptive energy segmentation and genetic

algorithms, demonstrates efficiency, albeit with lingering challenges in handling complex tex-

tures and color variations [39, 40].

In this research domain, the application of metaheuristic optimization algorithms is crucial.

These algorithms, inspired by natural phenomena and artificial intelligence, are adept at tack-

ling diverse and intricate optimization challenges [41, 42]. Algorithms such as genetic algo-

rithms, Whale Optimization Algorithm (WOA), Particle Swarm Optimization (PSO), and

Harris Hawks Optimization (HHO) have each contributed uniquely to threshold selection,

each with distinct strengths and weaknesses [43–54]. Recent advancements include swarm

intelligence algorithms for multi-threshold segmentation, particularly effective in processing

COVID-19 chest X-rays and CT scans [55–59]. Chen et al. [59] augmented the Artificial Bee

Colony algorithm with dynamic strategies, boosting initial convergence and global search effi-

ciency. Abualigah et al. [56] innovated with a multi-threshold method based on the Arithmetic

Optimization Algorithm (AOA), DAOA, enhancing local search capabilities through differen-

tial evolution techniques. Liu et al. [55] merged ant colony optimization with Cauchy mutation

and Levy flight strategies, significantly elevating search efficiency and segmentation precision.

Emam et al. [60] devised an enhanced Reptile Search Algorithm (mRSA) optimizing both

global optimization and image segmentation, showcasing remarkable performance in MRI

brain image multi-threshold segmentation. Chen et al. [61] introduced the HVSFLA algo-

rithm, ensuring diverse and active search mechanisms, excelling in multi-threshold segmenta-

tion applications for invasive ductal carcinoma of the breast. Abdel-Basset et al. [62] proposed

an improved balance optimization algorithm for optimal threshold discovery in grayscale

images. These advancements not only propel swarm intelligence applications in medical image

processing but also offer potent tools for medical decision-making.

On the other hand, the integration of metaheuristic algorithms with the Otsu method has

significantly advanced its capabilities. A study by [63] introduced the DE-GWO-Otsu algo-

rithm, a hybrid of Differential Evolution (DE), Grey Wolf Optimization (GWO), and Otsu’s

method. This approach addressed the stability and local optima challenges of the GWO. In

another innovation, [64] proposed the FOA-Otsu method, merging the Fruit Fly Optimization

Algorithm with the Otsu technique, which considerably enhanced real-time image segmenta-

tion performance while halving segmentation time. Additionally, [65] developed an Improved

Golden Jackal Optimization algorithm (IGJO) integrated with the Otsu method, markedly

boosting the accuracy and efficiency in skin cancer image segmentation. The use of the AOA

by [66] for determining optimal thresholds in multi-layer segmentation demonstrated effec-

tiveness when coupled with the Otsu fitness function. Furthermore, Rather et al. [67]

employed a Levy flight and chaos theory-based Gravity Search Algorithm (LCGSA) to opti-

mize computational efficiency in multi-threshold segmentation, overcoming traditional seg-

mentation issues like local minima and premature convergence. Liu et al. [68] innovated with

the HCROA, a primate-inspired WOA, combined with the Chimp Optimization Algorithm,

to enhance exploration and exploitation balance, thereby improving segmentation accuracy

and noise robustness. Finally, [69] merged Enhanced Fuzzy Elephant Herd Optimization

(EFEHO) with the Otsu method, facilitating rapid diagnosis in Alzheimer’s disease and Mild

Cognitive Impairment (MCI) contexts.

Despite the significant progress made by metaheuristic algorithm-enhanced Otsu methods

in various application domains, their robustness [70] and segmentation accuracy remain inad-

equate when dealing with images containing complex lighting, angles, and texture variations,

such as rubber tree tapping scars and latex images. The computational complexity is also
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relatively high. To address this challenge, this study introduces the DBO-Otsu algorithm, a

novel integration of the classic Otsu’s method with the innovative Dung Beetle Optimizer

(DBO), specifically targeting complex image segmentation tasks. The DBO algorithm, inspired

by the natural behavior of dung beetles, such as their unique rolling and foraging strategies,

effectively enhances search diversity, efficiency, and global convergence [71, 72]. Compared to

other metaheuristic algorithms, DBO exhibits pronounced advantages in multi-threshold

image segmentation tasks, particularly in terms of convergence speed and solution precision,

which are crucial for accurately segmenting TPD in this study. Moreover, the effectiveness of

this algorithm has been proven in various practical applications: DBO has demonstrated sig-

nificant performance improvements in spaceborne SAR image waterbody detection [73, 74],

lung cancer detection and classification [75], and pesticide residue identification in rapeseed

oil [76]. These successful cases further validate our choice of DBO as the framework for

improvement. Additionally, according to the No Free Lunch (NFL) theorem [77], no optimi-

zation algorithm excels in all problem types, thus spurring the development of new algorithms

and the enhancement of existing ones. Therefore, selecting DBO as the optimization algorithm

for this study is based on its unique strengths in addressing specific categories of problems.

The advantages of the algorithm are illustrated in Fig 1.

This paper’s primary contributions are as follows: (1) The development of the DBO-Otsu

algorithm, tailored specifically for complex image segmentation challenges, markedly improv-

ing processing efficiency and accuracy. (2) An innovative enhancement of the traditional Otsu

method within the DBO-Otsu framework, involving an initial preprocessing stage for multi-

threshold segmentation to remove low gray-scale areas, thereby focusing on high gray-scale

segments, particularly latex and scars. (3) A comprehensive evaluation of the DBO-Otsu algo-

rithm through a suite of established performance metrics, showcasing its superior performance

across various dimensions. (4) An in-depth exploration of the DBO algorithm’s application

potential in image segmentation, substantiated by practical use cases, notably in diagnosing

rubber tree TPD. The paper is organized into subsequent sections as follows: Section 2 eluci-

dates the principles of the Otsu algorithm and the workings of the DBO mechanism; Section 3

elaborates on the DBO-Otsu algorithm’s implementation and its innovative aspects relative to

the conventional Otsu method; Section 4 demonstrates the algorithm’s effectiveness and

Fig 1. The improvement and application.

https://doi.org/10.1371/journal.pone.0297284.g001
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comparative analysis via experimental results; Section 5 concludes with a summary of the find-

ings and a discussion on prospective applications.

2 Theoretical foundations

2.1 Otsu algorithm

The Otsu algorithm is a technique for image binarization segmentation based on global

adaptive thresholding [78]. Its core idea revolves around selecting the optimal threshold by

calculating the maximum inter-class variance using the gray level histogram of the image

[79] Let’s consider a digital image of size M × N, containing L distinct gray levels, represented

as the set {0, 1, 2, . . ., L − 1}. If ni denotes the number of pixels at gray level i, then the image’s

total pixel count is represented as MN = n0 + n1 + n2 + . . . + nL−1. Consequently, the normal-

ized histogram is defined by the ratio of the pixel count for each gray level to the total pixel

count, pi = ni/MN, from which we have

XL� 1

i¼0

pi ¼ 1; pi � 0 ð1Þ

Consider the threshold T(k) = k where 0< k< L − 1. The input image is categorized into

two classes: C1 and C2.C1 encompasses pixels with gray values in the range [0, k] while C2

includes those in the range [k + 1, L − 1]. Based on this, the probabilities P1(k) and P2(k) repre-

sent classifications into C1 and C2 respectively.

PðkÞ ¼

P1ðkÞ ¼
Xk

j¼0

pj

P2ðkÞ ¼
XL� 1

j¼kþ1

pj ¼ 1 � P1ðkÞ

8
>>>>>><

>>>>>>:

ð2Þ

For a given threshold value,T(k), we denote the average gray value of pixels in class C1 as

m1(k) and in class C2 as m2(k). Respectively:

m1ðkÞ ¼
1

P1ðkÞ

Xk

i¼0

ipi

m2ðkÞ ¼
1

P2ðkÞ

XL� 1

i¼kþ1

ipi

8
>>>>><

>>>>>:

ð3Þ

The average gray level of the image is defined as:

mG ¼
XL� 1

i¼0

ipi ð4Þ

s2
B represents the between-class variance, with its formula being:

s2
B ¼ P1ðm1 � mGÞ

2
þ P2ðm2 � mGÞ

2 ð5Þ
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Again citing k, the end result is:

s2
BðkÞ ¼

½mGP1ðkÞ � mðkÞ�2

P1ðkÞ½1 � P1ðkÞ�
ð6Þ

Thus the optimal threhold is k*, which maximizes s2
BðkÞ:

s2
Bðk

∗Þ ¼ max
0�k�L� 1

s2

BðkÞ ð7Þ

For multilevel threshold segmentation, the assumption is that m threshold levels (t1, t2, . . .,

tm) segment the image into m + 1 categories: C0, C1, C2, . . ., Cm. The objective function for the

segmentation process is:

JðtÞmax ¼ s0 þ s1 þ � � � þ sm

s0 ¼ o0ðm0 � mGÞ
2

s1 ¼ o1ðm1 � mGÞ
2

� � �

sm ¼ omðmm � mGÞ
2

ð8Þ

From the analysis of the outlined objective function, it becomes clear that the algorithm’s

solution space extends over a q − 1 dimensional realm, with q indicating the total count of

thresholds. Within this multidimensional space, specific calculations are crucial, primarily

those centered around the inter-class variance, which include determining averages among

different classes. Considering these computations, the time complexity for executing multi-

level threshold segmentation as per the Otsu method escalates to O(Lq), where L signifies the

quantity of gray scale levels. The exhaustive nature of computations across the q − 1 dimen-

sional space results in an exponential surge in time complexity relative to the increase in

threshold numbers. Contrasting with single-level threshold techniques, multi-level threshold

approaches adopt a greater number of thresholds, thereby capturing a more detailed essence of

the image. Consequently, while multi-level threshold segmentation furnishes enhanced image

detail, it simultaneously amplifies computational complexity. Striking an optimal balance

between computational time and segmentation accuracy is imperative, thereby mandating the

selection of an apt number of thresholds for effective image segmentation.

2.2 DBO algorithm

The position update of the beetle during its rolling behavior can be characterized using a spe-

cific mathematical model:

xiðt þ 1Þ ¼ xi ðtÞ þ a� k� xiðt � 1Þ þ b� Dx

Dx ¼ jxiðtÞ � Xoj
ð9Þ

Let t represent the current iteration number, serving to control the algorithm’s iterative

process. The symbol xi(t) denotes the position of the ith dung beetle at the tth iteration, signify-

ing a candidate solution in the solution space. Additionally, k 2 (0, 0.2] represents a deflection

coefficient constant, essential for controlling the dung beetle’s deflection degree during its

search. Another constant, denoted by b, belongs to the range (0, 1), where α is a specific
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coefficient with values of either -1 or 1 (refer to Algorithm 1). Lastly, Xω signifies the global

worst position, whereas Δx models the changes in light intensity.

Algorithm 1 Selection strategy for a
Input:
probability value l
Output:
natural coefficients a
h  rand(1)
if h > l then
a  1

else
a  −1

end if
When a dung beetle encounters an obstacle during its rolling phase and is hindered from

proceeding, it resorts to a reorientation dance to identify a new direction. Consequently, the

position during this dancing behavior is defined by:

xiðt þ 1Þ ¼ xiðtÞ þ tanðyÞjxiðtÞ � xiðt � 1Þj ð10Þ

where θ 2 [0, π], if θ is equal to 0, neither p

2
nor π will update the dung beetle’ s position.

In dung beetle optimization algorithms, the choice of apt spawning sites by female dung

beetles plays a pivotal role in ensuring the survival and procreation of their progeny. To model

the behavior of female dung beetles when selecting a spawning area, we employ a boundary

selection strategy as follows:

Lb∗ ¼ maxðX∗ � ð1 � RÞ; LbÞ

Ub∗ ¼ minðX∗ � ð1 � RÞ;UbÞ
ð11Þ

here, X* represents the current local optimal position. The symbols Lb*, and Ub* define the lower

and upper boundaries of the spawning area, respectively. Furthermore, R = 1 − t/Tmax, Tmax are

maximum iteration numbers, while Lb and Ub specify the lower and upper constraints of the

optimization problem. In the Dung Beetle Optimization Algorithm (DBO), upon establishing the

spawning area, female dung beetles prioritize breeding balls within that vicinity for laying eggs.

It’s pivotal to highlight that every female dung beetle within the DBO framework produces a sin-

gle breeding ball per iteration. The position of these breeding balls remains fluid throughout the

iteration process, represented as:

Biðt þ 1Þ ¼ X∗ þ b1 � ðBiðtÞ � Lb∗Þ þ b2 � ðBiðtÞ � Ub∗Þ ð12Þ

in this context, the position of the ith breeding ball during the tth iteration is symbolized by Bi(t),
with b1 and b2 serving as two distinct random vectors, each of size 1×D. Here, D encapsulates the

optimization problem’s dimensionality. Importantly, the positioning of breeding balls adheres

strictly to the confines of the designated spawning area. (Refer to Algorithm 2 for further details.)

Algorithm 2 Breeding ball position update strategy
Input:
maximum number of iterations Tmax, number of breeding balls N,current
number of iterations t
Output:
Location of the ith breeding ball Bi
R = 1 − t/Tmax
for i  1 to n do

Update the position of the breeding ball using Eq (12)
for j  1 to D do

if Bij > Ub* then
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Bij  Ub*
end if
if Bij < Lb* then

Bij  Lb*
end if

end for
end for

Fig 2 depicts the movement of rolling dung beetles, represented by dark blue dots, in a

three-dimensional search space. The yellow dot at the center of a small sphere indicates the

current local optimal position, X*, representing the best solution found in the current itera-

tion. Within this sphere, small black dots symbolize breeding balls, each enclosing a dung bee-

tle egg. Red dots at the extremities of both the large and small spheres demarcate the upper

and lower boundary limits. These boundaries restrict the beetles’ rolling and egg-laying range,

ensuring they search and reproduce effectively within the algorithm’s optimal range.

Adult dung beetles, often referred to as ‘baby dung beetles’, emerge from the ground in

search of food. To model the foraging behavior of dung beetles in their natural habitat, it’s

essential to define an optimal foraging area. The boundaries of this area are delineated as fol-

lows:

Lbb ¼ maxðXb � ð1 � RÞ; LbÞ

Ubb ¼ minðXb � ð1 � RÞ;UbÞ
ð13Þ

In this, Xb represents the global optimal position while Lbb and Ubb respectively indicate

the lower and upper bounds of the optimal foraging area. Further parameter definitions are

given in Eq (11). Consequently, the position of the dung beetle is updated as:

xiðt þ 1Þ ¼ xiðtÞ þ C1 � ðxiðtÞ � LbbÞ þ C2 � ðxiðtÞ � UbbÞ ð14Þ

here, xi(t) specifies the position of the ith dung beetle during the tth iteration. This update pro-

cess involves two random vectors:C1 and C2. The former, C1, is a random number following a

normal distribution, aiding in modulating the exploratory behavior of the dung beetle. Mean-

while,C2 is a random vector within the interval (0, 1), adjusting the beetle’s position in relation

to both the globally optimal position and the optimal foraging area.

Additionally, a category of dung beetles, termed ‘thieves’, is integrated into the algorithm.

Their primary role is to pilfer dung balls from fellow beetles for sustenance. As inferred from

Eq (13), Xb symbolizes the prime food source. It’s plausible, then, to consider the vicinity of Xb

as the prime zone for food competition. As iterations proceed, the position data of these thiev-

ing dung beetles evolves and is characterized as follows:

xiðt þ 1Þ ¼ Xb þ S� g � ðjxiðtÞ � X∗j þ jxiðtÞ � XbjÞ ð15Þ

in this representation, xi(t) indicates the position of the ith thieving dung beetle at the tth itera-

tion. Additionally, g is a random vector of dimensions 1×D, adhering to a normal distribution,

and S is a constant.

Building upon the preceding discussion, the devised DBO algorithm first determines the

maximum iteration count and sets the total population size of dung beetles as N. All agents are

subsequently initialized at random, with their roles distributed based on a specified propor-

tionate diagram. This distribution is visualized with sectors, where 20% corresponds to ball-

rolling dung beetles, 20% to ball-breeding dung beetles, 25% to small dung beetles, and the

remaining 35% to stealing dung beetles.
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For illustrative purposes, let’s assume a total population of 30 dung beetles. Using Fig 3 as a

guide, beetles are allocated to each agent category. Here, orange, yellow, green, and brown

rectangles symbolize rolling dung beetles, breeding balls, small dung beetles, and stealing dung

beetles respectively. This allocation ensures that during the algorithm’s operation, dung beetles

of distinct roles synergize based on their unique behaviors, aiming for enhanced optimization.

Subsequently, the positions of the rolling dung beetle, breeding ball, little dung beetle, and

stealing dung beetle are incessantly refreshed. Guided by specific rules and equations within

Fig 2. The conceptual model of boundary selection strategy.

https://doi.org/10.1371/journal.pone.0297284.g002
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the algorithm, they undergo adaptive shifts through iterative processes. Ultimately, the algo-

rithm presents the global best position Xb, accompanied by its respective fitness value.

3 DBO-Otsu

3.1 Improvement of the traditional Otsu algorithm

A rubber cut mark map is randomly taken as in Fig 4, and its grayscale histogram is shown in

Fig 5. In this experiment, the threshold value of the latex and cut mark region of interest is

between 150–255, and it can be seen from the histogram that the traditional Otsu algorithm is

affected by the global pixel distribution, and the threshold value (shown by the red solid line in

the figure) will be to the left, which is affected by a large number of low grayscale regions, and

it is unable to segment the region of our interest. If this threshold is used for segmentation, the

segmentation map is shown in Fig 6, and it is obvious that it is impossible to distinguish the

cut marks from the latex.

After experimental comparisons, the following improvements are proposed. The image of

interest is represented by L gray levels (1; 2; . . .; L). First, a suitable gray scale Th is set as the

first threshold. According to the selected threshold, the gray scale of the image is divided into

two parts:[0, Th] and [Th + 1, L − 1]. For an image with pixels N × M, the number of pixels

with gray level i is n, and the total number of pixels n is

n ¼ M � N ¼
XL� 1

i¼0

ni ð16Þ

Fig 3. The beetle proportion chart.

https://doi.org/10.1371/journal.pone.0297284.g003

Fig 4. Original image.

https://doi.org/10.1371/journal.pone.0297284.g004
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The number of pixels in [0; Th] is nl, and the number of pixels in [Th + 1; L − 1] is nr.

nl ¼
XTh

i¼0

ni and nr ¼
XL� 1

i¼Thþ1

ni ð17Þ

The probability that a pixel is in [0; Th] is pil and the probability that a pixel is in [Th + 1; L
− 1] is pir.

pil ¼
ni

nl
and pir ¼

ni

nr
ð18Þ

Setting the gray values as j, k, l, m, the range of [Th + 1; L − 1] is divided into five categories:

C0,C1,C2,C3 and C4. The distribution probability of C0,C1,C2,C3 and C4 is ω0, ω1, ω2, ω3 and ω4,

Fig 5. Grayscale histogram.

https://doi.org/10.1371/journal.pone.0297284.g005

Fig 6. Segmentation image.

https://doi.org/10.1371/journal.pone.0297284.g006
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denoted as:

o0 ¼
Xj

i¼Thþ1

pir and o1 ¼
Xk

i¼jþ1

pir

o2 ¼
Xl

i¼kþ1

pir and o3 ¼
Xm

i¼lþ1

pir

o4 ¼
XL� 1

i¼mþ1

pir

ð19Þ

The average pixel gray probabilities of C0,C1,C2,C3 and C4 are μ0, μ1,μ2, μ3 and μ4.

m0 ¼
Xj

i¼Thþ1

i � pir and m1 ¼
Xk

i¼jþ1

i � pir

m2 ¼
Xl

i¼kþ1

i � pir and m3 ¼
Xm

i¼lþ1

i � pir

m4 ¼
XL� 1

i¼mþ1

pir

ð20Þ

The average gray level μ in the range [Th + 1; L − 1] can be expressed as follows:

m ¼
XL� 1

i¼Thþ1

i � pir ð21Þ

The between-class variances for C0,C1,C2 and C3 were:

s2
B ¼ o0ðm0 � mÞ

2
þ o1ðm1 � mÞ

2 ð22Þ

Referring to j, k, l, m, the optimal threshold are j*, k*, l*, m* such that the maximum value

is reached s2
Bðj

∗; k∗; l∗;m∗Þ

s2
Bðj

∗; k∗; l∗;m∗Þ ¼ max
1�j<k<l�L� 1

s2

Bðj; k; l;mÞ ð23Þ

The obtained j*, k*, l*, m* range is in [Th + 1; L − 1]. The improved version processes [Th
+ 1; L − 1] as separate images. As a result, the effect of a large number of pixels in the low gray

range on the region of interest can be ignored in the selection of the threshold.

3.2 Otsu method improved with DBO algorithm

The time complexity of the improved Otsu method is O(L4). In order to reduce the computa-

tion time, we combine the DBO algorithm with the improved Otsu method and propose the

DBO-Otsu method. The specific steps are as follows, as illustrated in Fig 7.

In the DBO-Otsu algorithm, the gray scale value K during Otsu calculation is considered as

the coordinates X of the dung beetle population in the algorithm, and according to Eq (23)

The fitness of each dung beetle individual is calculated, and the fitness is inverted. Then the

DBO algorithm is used to simulate the behavioral patterns of dung beetles, comparing the fit-

ness values and updating the coordinates X in the iterative process, and finally finding the opti-

mal threshold value to replace the exhaustive method in the traditional Otsu algorithm.
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It should be noted that due to the design of the algorithm, the coordinates obtained result

in floating point numbers, while the grayscale values of the image are in the discrete integer

range [0, 255]. Therefore, when calculating the individual fitness, the coordinates need to be

processed and limited to integers for subsequent calculations.

The DBO-Otsu pseudocode is shown in Algorithm 3.

Algorithm 3 DBO-Otsu algorithm
Inputs: maximum number of iterations Tmax, population size N
Outputs: optimal position Xb and its fitness value fb
Randomly initialize the dung beetle population i  1, 2, . . ., N
Initialize parameters: Dim = 4, bounds 2 [1, 256], T = 150, t = 0,
N = 60
while t � Tmax
for i  1 to N do
if i = = Dung Beetle then
δ = rand(1)
if δ < 0.9 then
Use Algorithm 1 to select α
Update location using formula (9)

else
Update location using Eq (12)

end if
else if i = = Breeding Balls then

Fig 7. DBO-Otsu flowchart.

https://doi.org/10.1371/journal.pone.0297284.g007
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Update using Algorithm 2
else if i == Little Dung Beetle then
Update using Eq (14)

else if i == Stealing Dung Beetles then
Update using formula (15)

end if
end for
if new position is better then
Update it

end if
t = t + 1

end while
return Adaptation value fb

3.3 Segmentation strategies of DBO-Otsu at different levels

In low-level Tapping Panel Dryness (TPD) images, where the latex quantity has not signifi-

cantly diminished, as illustrated in Figs 8–10.

The final threshold in the multi-threshold output of the DBO-Otsu algorithm provides a

high-quality segmentation of the latex. However, for images of higher-level TPD, where latex

is sparse, as shown in Figs 11–13, the original approach, resulting in Figs 14–16, often fails to

reflect the actual scenario. In these cases, the latex regions no longer manifest as distinct peaks

on the grayscale histogram, rendering traditional multi-threshold segmentation methods inef-

fective in isolating the latex areas.

To address this challenge, this study introduces an improved segmentation strategy, specifi-

cally for high-level TPD images with scarce latex. This method initially performs multi-thresh-

old segmentation using DBO-Otsu, followed by a morphological assessment of the tapping cut

images to examine the segmentation outcome. If the segmented shape is not curvilinear, it is

Fig 8. Low-level epidermis disease Fig 1.

https://doi.org/10.1371/journal.pone.0297284.g008

Fig 9. Low-level epidermis disease Fig 2.

https://doi.org/10.1371/journal.pone.0297284.g009

Fig 10. Low-level epidermis disease Fig 3.

https://doi.org/10.1371/journal.pone.0297284.g010
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identified as a high-level TPD image. The strategy then utilizes the maximum non-zero value

at the end of the grayscale histogram as the final latex segmentation threshold, thereby pre-

cisely locating the latex areas. This approach considers the high grayscale value but low pixel

count characteristic of the latex, enhancing accuracy in identifying and segmenting sparse

Fig 11. High-level epidermis disease Fig 1.

https://doi.org/10.1371/journal.pone.0297284.g011

Fig 13. High-level epidermis disease Fig 3.

https://doi.org/10.1371/journal.pone.0297284.g013

Fig 12. High-level epidermis disease Fig 2.

https://doi.org/10.1371/journal.pone.0297284.g012

Fig 14. High-level epidermis disease Latex Fig 1.

https://doi.org/10.1371/journal.pone.0297284.g014
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latex regions. Moreover, it effectively avoids missegmentation due to histogram noise or high

grayscale values in non-latex areas, crucial for analyzing high-level TPD images as accurate

extraction of latex areas is vital for disease assessment and subsequent processing. Re-segment-

ing the latex using this method, as represented in Figs 14–16, aligns the results with actual con-

ditions, successfully extracting the latex images.

4 Experiments and analysis of results

4.1 Parameter settings of the algorithm

In order to assess the performance of the proposed DBO-Otsu algorithm, we randomly

selected three images from the rubber dataset as benchmark images. Due to the stochastic

nature of metaheuristic algorithms, the results vary with each execution. In this context, each

algorithm was subjected to 50 experimental trials, and the results were then averaged. This

method was compared for performance with the original Otsu method, SSA-Otsu method

[80], WOA-Otsu method [81], WSO-Otsu method [82], GWO-Otsu method [83], AHA-Otsu

method [84], and CSA-Otsu method [85]. The parameter settings for each algorithm are

shown in Table 1. Except for pop_num and Max_iter, which were modified to accommodate

the complexity of the experiments, the regional parameters were adopted from recommended

studies.

All these experiments were conducted using MATLAB R2022b on a Windows 11 operating

system, with 16GB RAM memory and an Intel Core i5–11300 H CPU operating at 3.10 GHz.

4.2 Evaluation metrics

4.2.1 PSNR. Peak Signal-to-Noise Ratio (PSNR) is a widely used metric in image and

video processing for objective quality assessment. It is defined as the ratio between the maxi-

mum possible power of a signal and the power of the noise that affects the fidelity of its repre-

sentation. The PSNR is usually expressed in logarithmic decibel scale. The PSNR is calculated

Fig 16. High-level epidermis disease Latex Fig 3.

https://doi.org/10.1371/journal.pone.0297284.g016

Fig 15. High-level epidermis disease Latex Fig 2.

https://doi.org/10.1371/journal.pone.0297284.g015
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using the following formula:

PSNR ¼ 10 � log
10

MAX2
I

MSE

� �

ð24Þ

Where: MAXI is the maximum possible pixel value of the image. MSE is the Mean Squared

Error between the reference image and the distorted image.

4.2.2 FSIM. Feature Similarity Index (FSIM) is a more advanced metric that considers

luminance, contrast, and structure similarities between the reference and distorted images to

compute the similarity index. The FSIM is calculated using the following formula:

FSIM ¼
1

N

X 2 � mX � mY þ C1

m2
X þ m

2
Y þ C1

�
2 � sXY þ C2

s2
X þ s

2
Y þ C2

ð25Þ

Table 1. Parameter setting of the testing algorithm.

Algorithm Parameter Setting

SSA-Otsu pop_num 60

Max_iter 200

WOA-Otsu pop_num 60

Max_iter 200

WSO-Otsu pop_num 60

Max_iter 200

fmax 0.75

fmin 0.07

tau 4.11

pmin 0.5

pmax 1.5

a0 6.25

a1 100

a2 0.0005

GWO-Otsu pop_num 60

Max_iter 200

AHA-Otsu pop_num 60

Max_iter 50

CSA-Otsu pop_num 60

Max_iter 200

rho 1

p1 2

p2 2

c1 2

c2 1.8

gamma 2

alpha 4

beta 3

DBO-Otsu pop_num 60

Max_iter 200

P_percent 0.2

k 0.1

b 0.3

S 0.5

https://doi.org/10.1371/journal.pone.0297284.t001
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Where: μX and μY are the local means of images X and Y, respectively. σX and σY are the local

standard deviations of images X and Y, respectively. σXY is the local cross covariance between

images X and Y. C1 and C2 are constants. N is the total number of pixels in the images.

4.2.3 SSIM. Structural Similarity Index (SSIM) is another advanced metric for comparing

the similarity between two images. The SSIM index is designed to improve on traditional met-

rics like PSNR and MSE by considering changes in structural information, luminance, and

contrast. The SSIM is calculated using the following formula:

SSIMðx; yÞ ¼
ð2 � mx � my þ C1Þ

ðm2
x þ m

2
y þ C1Þ

�
ð2 � sxy þ C2Þ

ðs2
x þ s

2
y þ C2Þ

ð26Þ

Where: μx and μy are the mean of images x and y, respectively. σx and σy are the variance of

images x and y, respectively. σxy is the covariance of images x and y. C1 and C2 are constants

used to avoid division by zero.

4.3 Indicator testing

In our comparative study, the DBO-Otsu algorithm was evaluated against six other advanced

Otsu methodologies: SSA-Otsu, WOA-Otsu, WSO-Otsu, GWO-Otsu, AHA-Otsu, and

CSA-Otsu. We employed several metrics for this assessment, including runtime, PSNR, FSIM,

and SSIM. Runtime, as a measure of real-time performance, is a critical factor in gauging the

efficiency of an algorithm. PSNR, FSIM, and SSIM, which are closely tied to the structural

attributes of images, serve as indicators of the segmentation quality. Selected results from this

comparative analysis are shown in Table 2, focusing on operational data for levels 4–6, 4–12,

4–19, and 4–20.

In terms of runtime, the DBO-Otsu algorithm demonstrated superior performance over

other enhanced Otsu methods, maintaining moderate processing times in all experimental set-

ups. In the analysis of the DBO-Otsu method, a comprehensive evaluation was conducted,

focusing on the average PSNR, FSIM, and SSIM scores under diverse experimental conditions.

The assessment in the Table 3 revealed that the DBO-Otsu method consistently demon-

strated high performance. Specifically, it achieved the highest average ranking in both PSNR

and SSIM scores, with an impressive average rank of 1.50 for each. In the FSIM category,

DBO-Otsu also performed commendably, securing an average rank of 2.25. These rankings

underscore its proficiency in several key areas, particularly in one of the experimental domains

where it excelled. The integration of the DBO-Otsu method with the advanced DBO algorithm

has been instrumental in enhancing segmentation accuracy.

The statistical significance of DBO-Otsu’s performance was determined using a Wilcoxon

signed-rank test at a significance level of 0.1. The outcomes in Table 4 revealed statistically sig-

nificant results for the DBO-Otsu method in terms of PSNR and SSIM, whereas the FSIM

scores did not reach a similar level of statistical significance. These results confirm the effec-

tiveness of the DBO-Otsu method and highlight areas for potential refinement.

To visually illustrate the efficacy of various optimization algorithms in threshold optimiza-

tion, we generated convergence curves, as depicted in Fig 17. The horizontal axis on these

curves represents the number of iterations, while the vertical axis reflects the best fitness value

achieved to date.

As can be seen in Fig 17, although other algorithms like SSA demonstrated superior final

results in some experiments (such as 4–8, 4–19, and 4–20), DBO-Otsu exhibited strong perfor-

mance in both convergence speed and accuracy, which was particularly evident in most of the

tested functions.
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4.4 Detail verification

In Table 1, we present the selected thresholds and describe the division of the image into five

regions based on these thresholds, with each pixel’s value determined by its corresponding

region. The detailed assessment process includes: firstly applying multi-threshold processing

on the original image using different methods, then selecting regions containing key

Table 2. Test result of seven algorithms.

Group Algorithm ScarThreshold LatexThreshold Time PSNR FSIM SSIM

4–6 SSA 170.607846 202.3673229 0.454 8.149481674 0.514599926 0.126894101

WOA 193.3105468 255.4191533 0.292 7.569149399 0.505307484 0.114336442

WSO 174.129266 202.9681429 0.293 8.067329821 0.513251516 0.123459772

GWO 170.9923696 202.4617205 0.297 8.149481674 0.514599926 0.126894101

AHA 170.6434785 202.960859 0.326 8.149481674 0.514599926 0.126894101

CSA 170.704867 202.3591813 0.293 8.149481674 0.514599926 0.126894101

DBO 171.4228188 204.8375643 0.372 8.165899285 0.521412398 0.127876046

4–12 SSA 155.5854386 207.8677594 0.44 8.289015524 0.557163498 0.09489891

WOA 149.0694241 203.5416501 0.293 15.17593885 0.590534328 0.550520428

WSO 154.2989164 202.5409691 0.283 8.333545453 0.558486259 0.100172884

GWO 157.7155776 205.8915754 0.3 8.224993212 0.556169337 0.093358665

AHA 155.2227337 207.6226922 0.332 8.289015524 0.557163498 0.09489891

CSA 155.304461 207.5493689 0.297 8.289015524 0.557163498 0.09489891

DBO 152.3887825 204.0333982 0.335 8.364000908 0.557133382 0.100182992

4–19 SSA 171.4507 193.7683 0.45 11.44445 0.444172 0.074768

WOA 171.3533 193.0518 0.357 11.37516 0.432095 0.071192

WSO 166.0914 195.5994 0.338 11.49231 0.440329 0.076701

GWO 171.3085 193.8558 0.931 11.44445 0.444172 0.074768

AHA 171.8939 193.1976 0.596 11.44445 0.444172 0.074768

CSA 168.8158 193.9061 0.366 11.51899 0.452194 0.078359

DBO 166.6904 193.8078 0.462 11.54439 0.452779 0.079371

4–20 SSA 197.4308 209.5352 0.601 6.124981 0.60167 0.041313

WOA 182.7351 208.6473 0.4 11.72238 0.613376 0.562652

WSO 193.5352 213.5405 0.871 6.128787 0.606108 0.045566

GWO 197.0394 209.767 0.491 6.124981 0.60167 0.041313

AHA 197.4107 209.7839 0.405 6.124981 0.60167 0.041313

CSA 197.0325 209.6747 0.361 6.124981 0.60167 0.041313

DBO 181.2085 208.6152 0.464 7.256473 0.641461 0.133997

Note: Bold indicates the best score for each item

https://doi.org/10.1371/journal.pone.0297284.t002

Table 3. Final average rankings of algorithms in PSNR, FSIM, and SSIM.

Algorithm Average PSNR Ranking Average FSIM Ranking Average SSIM Ranking

SSA 4.75 4.25 4.75

WOA 4.00 4.25 4.00

WSO 3.75 4.25 3.75

GWO 5.25 5.00 5.25

AHA 4.75 4.25 4.75

CSA 4.00 3.75 4.00

DBO 1.50 2.25 1.50

https://doi.org/10.1371/journal.pone.0297284.t003
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information for comparison. Lastly, we calculate the difference in grayscale values for each

pixel in these regions compared to the corresponding areas in the original image to determine

a detail score.

To more clearly demonstrate and evaluate these details, specific regions were analyzed in

Figs 18–20, which contain detailed information about the rubber tree tapping cuts (see Fig 21).

Furthermore, we established a scoring system for curve similarity as follows:

Score ¼
XL

i¼1

scoreðiÞ

scoreðiÞ ¼
1; jgrayðiÞ � gray1ðiÞj � 50

� 1; jgrayðiÞ � gray1ðiÞj > 50

8
<

:

ð27Þ

Where i is the index of the pixel in the selected region, L is the total number of pixels in that

region, gray1(i) represents the grayscale value of the processed curve at the ith point, and gray
(i) is the grayscale value of the original curve at the ith point.

Fig 17. Iterative comparison figure.

https://doi.org/10.1371/journal.pone.0297284.g017

Fig 18. Detail analysis of original image 1.

https://doi.org/10.1371/journal.pone.0297284.g018

Table 4. Wilcoxon test results comparing DBO with other algorithms.

Algorithm PSNR p-value FSIM p-value SSIM p-value

SSA 0.0625 0.1250 0.0625

WOA 0.8125 0.4375 0.8125

WSO 0.0625 0.1250 0.0625

GWO 0.0625 0.0625 0.0625

AHA 0.0625 0.1250 0.0625

CSA 0.0625 0.1250 0.0625

https://doi.org/10.1371/journal.pone.0297284.t004
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The score increases when the difference in values at a given point between the two curves is

small; it decreases when the difference is large. The total scores are then summed to obtain a

final score. By comparing the scores in Table 3, we detailed the segmentation results of various

algorithms.

The score increases when the difference in values at a given point between the two curves is

small; it decreases when the difference is large. The total scores are then summed to obtain a

final score. By comparing the scores in Table 5, we detailed the segmentation results of various

algorithms.

In each set of experiments, DBO-Otsu scored the highest in detail retention, demonstrating

its superiority in preserving original image details compared to other algorithms.

4.5 Application evaluation

To ascertain the DBO-Otsu algorithm’s practical effectiveness developed in this research, we

conducted segmentation tests using images from each level of the dataset, as illustrated in Fig

22.

Fig 20. Detail analysis of original image 3.

https://doi.org/10.1371/journal.pone.0297284.g020

Fig 21. Comparison of detail analysis.

https://doi.org/10.1371/journal.pone.0297284.g021

Fig 19. Detail analysis of original image 2.

https://doi.org/10.1371/journal.pone.0297284.g019
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The segmentation of tapping cuts, excluding those in level 3 images, proved effective in the

remaining images, as evidenced in Fig 23. The level 3 images, characterized by blurred feature

boundaries, presented a challenge, where the automated segmentation approach may not have

been entirely suitable, resulting in less than optimal outcomes.

Furthermore, latex segmentation was executed on the original images, yielding the results

shown in Fig 24. These results demonstrate that the DBO-Otsu algorithm successfully seg-

ments images even at levels 4 and 5, where latex pixels are sparse, thus overcoming the tradi-

tional Otsu method’s limitations in handling areas with scant grayscale pixels. In the case of

level 1, 2, and 3 images, some missegmentation occurred. However, these inaccuracies were

addressed in the final statistical analysis, ensuring the overall results remained within an

acceptable margin.

Table 5. Fitness score table.

Algorithm A 3–8 B 3–7 C 1–3 Mean

SSA-Otsu -816 960 186 110

Otsu -414 1944 846 792

WOA-Otsu -816 972 234 130

WSO-Otsu -600 522 468 130

GWO-Otsu -822 1002 474 218

AHA-Otsu -840 1002 60 74

CSA-Otsu -750 858 102 70

DBO-Otsu 636 1248 2874 1586

https://doi.org/10.1371/journal.pone.0297284.t005

Fig 22. Application evaluation of the original image.

https://doi.org/10.1371/journal.pone.0297284.g022
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Fig 23. Application evaluation of the incision image.

https://doi.org/10.1371/journal.pone.0297284.g023

Fig 24. Application evaluation of the latex image.

https://doi.org/10.1371/journal.pone.0297284.g024
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As defined in the criteria for calculating TPD levels in the reference [86], the ratio of latex

to tapping cuts is designated as λ = S1/S2, where S1 represents the area of latex and S2 denotes

the area of tapping cuts. Post-segmentation, the black areas in the images represent the back-

ground, while the white areas signify the regions of interest. The ratio of λ can be approxi-

mated by calculating the proportion of pixels covering both the tapping cuts and the latex. The

criteria for classifying different levels of TPD in this study are detailed in Table 6.

Utilizing MATLAB software, we quantified the number of pixels pertaining to tapping cuts

and latex in Figs 23 and 24. This analysis enabled the determination of TPD levels based on

their ratio, as depicted in Table 7.

The algorithm demonstrated exceptional proficiency in segmenting both latex and tapping

cuts. It precisely identified the TPD levels through the calculated ratios, offering accuracy and

efficiency that surpass traditional manual identification methods, thereby significantly reduc-

ing labor costs.

Additionally, we conducted a random evaluation of images across different TPD levels

within the dataset, analyzing 15–20 images per level. The findings of this evaluation are sum-

marized in the Table 8:

These results reveal that the segmentation performance of this method in level 1–2 and 4–5

images is markedly superior to that in level 3 images, with an accuracy rate exceeding 80%.

The diminished accuracy observed in level 3 images is attributed to the nuances in segmenta-

tion accuracy. Higher-level image segmentation accuracy declines with an increasing area

Table 6. TPD grade determination table.

Latex/Incision Ratio (λ) Determination Grade

1%�λ� 10% Grade 5

10% <λ� 20% Grade 4

20% <λ� 35% Grade 3

35% <λ� 45% Grade 2

λ> 45% Grade 1

https://doi.org/10.1371/journal.pone.0297284.t006

Table 7. Level determination table.

levels Image Number Latex Pixel Count Scar Pixel Count Area Ratio Disease Level

level 1 13 7681 11099 0.692044328 1

14 13842 24797 0.558212687 1

15 11545 18598 0.620765674 1

level 2 4 41651 96132 0.433268839 2

10 182369 492541 0.370261562 2

26 263777 612148 0.430903964 2

level 3 10 175705 547090 0.32116288 3

11 173405 590372 0.293721586 3

12 147825 505293 0.292553034 3

level 4 11 15753 194899 0.080826479 5

12 60878 525198 0.115914379 4

16 19962 193855 0.102973872 4

level 5 16 126 12723 0.009903325 5

17 128 11821 0.010828187 5

18 189 399566 0.000473013 5

https://doi.org/10.1371/journal.pone.0297284.t007
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ratio, whereas for lower-level images, it decreases with a decreasing area ratio. This results in a

moderate latex-to-tapping cut ratio for level 3 images, posing a challenge for accurate segmen-

tation identification.

5 Conclusions

The primary aim of this study was to enhance image segmentation by refining the classic Otsu

thresholding method, with a specific focus on preserving intricate details. The motivation

behind this research was to address the challenge of exponential time complexity growth in

multi-level threshold computations. To achieve this, we introduced the innovative DBO algo-

rithm, which was integrated into the Otsu method to create the DBO-Otsu algorithm—a novel

image segmentation tool.

Our rigorous performance evaluation of the DBO-Otsu algorithm encompassed a compre-

hensive set of performance metrics, including PSNR, FSIM, and SSIM. The results demon-

strated that DBO-Otsu not only maintained computational efficiency but also significantly

reduced image distortion. In fact, DBO-Otsu surpassed the performance of six other compara-

tive methods in preserving image structural integrity.

In practical applications of image segmentation, we encountered variations in latex quanti-

ties across different rubber tree disease levels. It became evident that a direct application of

DBO-Otsu might not suffice for all scenarios. Therefore, we adopted a nuanced approach by

conducting morphological analyses post-initial segmentation and adapting strategies tailored

to images at various disease stages. While accuracy experienced a slight decline in images of

intermediate disease levels, the majority of judgments remained acceptably accurate, with min-

imal errors.

In conclusion, our findings underscore the importance of prioritizing the DBO-Otsu algo-

rithm in future research endeavors, especially in contexts where rapid and efficient TPD diag-

nosis is paramount. Notably, in instances with pronounced disease symptoms, the DBO-Otsu

algorithm has the potential to deliver even more remarkable results. This approach not only

expedites computation but also upholds high image quality, presenting a robust and efficient

solution in image segmentation. However, it is crucial to acknowledge the inherent limitations

within the algorithm, which excel in diagnosis based on relative proportions but may still face

challenges in isolating specific targets. Our future research will be dedicated to enhancing seg-

mentation accuracy, including the potential incorporation of edge detection algorithms to

eliminate irrelevant areas on the trunk.
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