
RESEARCH ARTICLE

Assessment of differentially private synthetic

data for utility and fairness in end-to-end

machine learning pipelines for tabular data

Mayana PereiraID
1,2*, Meghana Kshirsagar1, Sumit Mukherjee3, Rahul DodhiaID

1,

Juan Lavista Ferres1, Rafael de Sousa2

1 AI for Good Research Lab, Microsoft, Redmond, Washington, United States of America, 2 Department of

Electrical Engineering, University of Brasilia, Brasilia, Brazil, 3 INSITRO, San Francisco, CA, United States of

America

* mayana.wanderley@microsoft.com

Abstract

Differentially private (DP) synthetic datasets are a solution for sharing data while preserving

the privacy of individual data providers. Understanding the effects of utilizing DP synthetic

data in end-to-end machine learning pipelines impacts areas such as health care and

humanitarian action, where data is scarce and regulated by restrictive privacy laws. In this

work, we investigate the extent to which synthetic data can replace real, tabular data in

machine learning pipelines and identify the most effective synthetic data generation tech-

niques for training and evaluating machine learning models. We systematically investigate

the impacts of differentially private synthetic data on downstream classification tasks from

the point of view of utility as well as fairness. Our analysis is comprehensive and includes

representatives of the two main types of synthetic data generation algorithms: marginal-

based and GAN-based. To the best of our knowledge, our work is the first that: (i) proposes

a training and evaluation framework that does not assume that real data is available for test-

ing the utility and fairness of machine learning models trained on synthetic data; (ii) presents

the most extensive analysis of synthetic dataset generation algorithms in terms of utility and

fairness when used for training machine learning models; and (iii) encompasses several dif-

ferent definitions of fairness. Our findings demonstrate that marginal-based synthetic data

generators surpass GAN-based ones regarding model training utility for tabular data.

Indeed, we show that models trained using data generated by marginal-based algorithms

can exhibit similar utility to models trained using real data. Our analysis also reveals that the

marginal-based synthetic data generated using AIM and MWEM PGM algorithms can train

models that simultaneously achieve utility and fairness characteristics close to those

obtained by models trained with real data.

1. Introduction

Differential privacy (DP) is the standard for privacy-preserving statistical summaries [1].

Companies such as Microsoft [2], Google [3], Apple [4], and government organizations such
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as the US Census [5], have successfully applied DP in machine learning [6, 7] and data sharing

scenarios. The popularity of DP is due to its strong mathematical guarantees. Differential Pri-

vacy guarantees privacy by ensuring that the inclusion or exclusion of any particular individual

does not significantly change the output distribution of an algorithm.

In areas ranging from health care, humanitarian action, education, and socioeconomic

studies, the publication and sharing of data is crucial for informing society and scientific

collaboration. However, the disclosure of such datasets can often reveal private, sensitive

information. Privacy-preserving data publishing aims at enabling such collaborations

while preserving the privacy of individual entries in the dataset. Tabular/categorical data

about individuals are relevant in many applications, from health care to humanitarian

action. Privacy-preserving data publishing for such data can be done in the form of a syn-

thetic data table that has the same schema and similar distributional properties as the real

data. The aim here is to release a perturbed version of the original information, so that it

can still be used for statistical analysis, but the privacy of individuals in the database is

preserved.

The biggest advantage of synthetic datasets is that, once released, all data analysis and

machine learning tasks are performed in the same way it is done with real data. As noted by

[8], the switch between real and synthetic data in data analysis and machine learning pipelines

is seamless—the same analysis tools, libraries and algorithms are applied in the same manner

in both datasets. Other privacy-preserving technologies, such as federated learning, requires

expertise and appropriate tools to perform data analysis and model training.

Due to all the potential benefits of synthetic data, understanding the impacts of synthetic

data in downstream classification tasks have become of extreme importance. A trend

observed in recent studies is to evaluate performance of synthetic data generators of two

types: marginal-based synthesizers [9] and generative adversarial networks (GAN) based

synthesizers [8, 10, 11]. Marginal-based synthetic data generators are suitable for tabular

data only, and have gained increased popularity after the algorithm MST won the NIST com-

petition in 2018 [12]. Marginal-based synthesizers are named as such due to the fact that

they learn approximate data distributions by querying noisy marginals from the real data.

Notable marginal-based algorithms are MST [12], MWEM PGM [13], AIM [14] and Priv-

Bayes [15]. GAN-based synthesizers, on the other hand, are flexible algorithms, and are suit-

able for tabular, image and other data formats. GANs learn patterns and relationships from

the input data based on a game, in the sense of game theory, between two machine learning

models, a discriminator model and the generator model. Among popular differentially pri-

vate GAN architectures we list DP-GAN [16], DP-CTGAN [17], PATE-GAN [18] and

PATE-CTGAN [17].

One of the major applications of synthetic data is for training machine learning models.

Therefore, it is paramount to understand how exchanging real data for synthetic data impacts

the performance of the trained machine learning models. By performance, we mean not only

the utility of the model (its accuracy, for example) but also how well the model performs for

different subgroups of the dataset—the fairness of the model. The impact of machine learning

models on minorities subgroups is an active area of research, and several works have investi-

gated the trade-offs among model accuracy, bias, and privacy [19–22]. However, only recently

bias caused by the use of synthetic data in downstream classification received attention [9, 23,

24]. This problem becomes particularly relevant in the context of synthetic datasets generated

with differential privacy guarantees. It is known that differential privacy can affect fairness in

machine learning models [20]. Despite recent work investigating the impact of synthetic data

in downstream model fairness [10, 23], there are important questions that remain

unanswered:
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• There is no published work that systematically studies the utility and fairness of machine

learning models trained on several GAN based and marginal-based synthetic tabular dataset

generation algorithms;

• Previous studies have not evaluated machine learning models trained on synthetic dataset

generation algorithms for multiple definitions of fairness;

• In previous studies, it was always assumed that real data was available for evaluating the fair-

ness of models trained on synthetic data. Here, we propose and evaluate a pipeline where no

such assumption is necessary.

1.1 Contributions

In this work, we investigate the impacts of differentially private synthetic data on downstream

classification, where we focus on understanding the impacts on model utility and fairness. Our

investigation focus on two aspects of such impact:

• What is the impact in model utility when utilizing synthetic data for training machine learn-

ing models? Can synthetic data also be used to evaluate utility of machine learning models?

• What is the impact in model fairness when utilizing synthetic data for training machine

learning models? Can synthetic data be used to evaluate fairness of machine learning

models?

In our investigations we also evaluate if there are clear differences in performance between

marginal-based and GAN-based synthetic data, and if there is a synthesizer algorithm type

that produces data that clearly outperform others.

Our research work evaluates the impact of utilizing synthetic datasets for both training and

testing in machine learning pipelines. We empirically compare the performance of marginal-

based synthesizers and GAN-based synthesizers within the context of a machine learning pipe-

line for classification tasks. Our experiments yield a comprehensive analysis, encompassing

utility and fairness metrics. Our main contributions are:

• We propose a training and evaluation framework that does not assume that real data is avail-

able for testing the utility and fairness of machine learning models trained on synthetic data.

• We present an extensive analysis of synthetic dataset generation algorithms in terms of pri-

vacy-loss, utility and fairness when used for training machine learning models. In particular,

this is the first systematic comparison of several marginal-based and GAN-based algorithms

for fairness and utility of the resulting machine learning models.

• This is the first of such studies that includes several different definitions of fairness.

1.2 Main findings

1. Marginal-based synthetic data can accurately train machine learning models for tabular

data. Marginal-based synthetic data can train models with similar utility to models trained

on real data. Our experiments show that for a privacy-loss parameter � > 5.0, models

trained with AIM (AUC = 0.683), MWEM PGM (AUC = 0.684), MST (AUC = 0.662) and

Privbayes (AUC = 0.668) provides utility very similar to models trained on real data

(AUC = 0.684). Additionally, we evaluated models using synthetic data, and found that

marginal-based synthetic provides a good evaluation, with synthetic data providing an

AUC = 0.666 versus AUC = 0.684 (measured using real data).
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2. Synthetic datasets generated with AIM and MWEM PGM have the potential be used for

accurate model training and fairness evaluation in the case of tabular data. Our experi-

ments show that AIM and MWEM PGM synthetic data can train models that achieves very

similar utility and fairness characteristics of models trained with real data. Additionally, the

synthetic data generated by AIM algorithm, in our experiments, showed very similar behav-

ior to real data when used to evaluate utility and fairness of machine learning models. This

is the first study that presents evidence, from the perspective of utility and fairness, that syn-

thetic data can be a substitute for real datasets in end-to-end machine learning pipelines for

tabular data. It is interesting to investigate how these results generalize to larger data sets.

This work significantly extends and sub sums a previous version, presented at the Machine
Learning for Data: Automated Creation, Privacy, Bias Workshop at the International Confer-
ence on Machine Learning (ICML) (workshop without proceedings) [25].

2. Related work

Synthetic data generation is a promising practice for privacy-preserving data sharing and pub-

lishing, understanding the impacts of utilizing synthetic data in machine learning pipelines is

of significant importance. Although previous works have advised against using synthetic data

to train and evaluate any final tools deployed in the real world [26], in very sensitive scenarios,

such as human trafficking data [27], and electronic health records [28, 29], synthetic data is

seen as a way to drastically increase the availability of research data. Particularly in health care,

synthetic data can unlock research in areas like etiology of diseases, personalization of medi-

cine, and healthcare administration assessment.

The promises synthetic data brings generated an interest in understanding impacts of utiliz-

ing synthetic in data analysis and machine learning. Some of these works include analyzing the

utility of differentially private synthetic data in different tasks [30], investigating if training

models with differentially private synthetic images can increase subgroup disparities [10], the

impacts different types of synthetic data can have in model fairness [23], utility of synthetic

data in downstream health care classification systems [9], and whether feature importance can

be accurately analyzed using differentially private synthetic data [24]. The evaluation of

impacts of synthetic datasets in machine learning pipelines is made by comparing models

trained with real data with models trained on synthetic data. The comparison is performed by

testing both models on real data. The comparison can be performed using utility metrics

(AUC-ROC, F1-score, accuracy) and also fairness metrics (subgroup accuracy, statistical par-

ity, equality of odds). A complete survey of evaluation metrics for synthetic datasets can be

found in [28, 29].

Many of these works have made important findings in impacts of synthetic data in model

utility and algorithmic fairness. In [30] a comparison among different types of differentially

private synthetic data generation algorithms found that marginal-based algorithms outper-

form all other types of DP synthetic data generators when training machine learning classifiers,

with performance nearly matching the performance of a classifier trained on real data. The

paper [23] finds that marginal-based synthetic data (PrivBayes) impacts machine learning

pipelines by decreasing model bias, while GAN-based synthetic data increases model bias. All

these works are ultimately trying to answer the same question: to which extent can we substi-

tute real data with synthetic data, and which are the best synthetic data generation techniques

for model training?

However these works still left questions unanswered. First of all, there hasn’t been a system-

atic study of impacts of using synthetic datasets in end-to-end machine learning pipelines,

which means evaluating the use of synthetic data for model training and model evaluation.
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Additionally, there has been a lot of focus on image classification tasks [10, 23] where the dis-

parity in accuracy are largely attributable to the class imbalance in these datasets: i.e disadvan-

taged classes are also rare classes in the dataset thereby leading to worse performance on these.

In contrast, our work studies these issues in the context of tabular datasets and in settings

where the data has an intrinsic bias against sub-populations that are not necessarily rare in the

dataset. We summarize in Table 1 how previous works have evaluated the impacts of synthetic

tabular data in machine learning pipelines, and how our work differentiates from previous

analysis. Although several works have assessed the performance of machine learning models

trained with synthetic datasets [23, 30], this is the first study to analyze if synthetic datasets can

be used for model assessment, and how close to reality such assessment is from the point of

view of utility and fairness. Moreover, our work focus on comparing two types of data synthe-

sizing algorithm families: marginal-based and GAN-based data synthesizers. While, these two

type of data synthesizing algorithms have been previously compared for utility [30], no such

extensive comparative analysis exists for fairness.

We are the first to extensively study the differences of applying data generated by these two

families types of data synthesizing algorithms in end-to-end machine learning pipelines for

utility and multiple fairness metrics.

3. Preliminaries

In this section we introduce the concepts of differential privacy and algorithmic fairness. We

refer the reader to [1, 33, 34] for detailed explanation of these concepts. Additionally, we

describe the synthetic data generation techniques and the datasets used in our experiments.

3.1 Differential privacy

Differential privacy is a rigorous privacy notion used to protect an individual’s data in a dataset

disclosure. We present in this section notation and definitions that we will use to describe our

privatization approach. We refer the reader to [1, 35, 36] for detailed explanations of these def-

initions and theorems.

PURE DIFFERENTIAL PRIVACY. A randomized mechanism M : D! A with data base

domain D and output set A is �-differentially private if, for any output A � Y and neighboring

databases D;D0 2 D (i.e., D and D0 differ in at most one entry), we have

Pr½MðDÞ 2 A� � e�Pr½MðD0Þ 2 A�

Table 1. Previous works evaluating differentially private synthetic data generation in machine learning pipelines for tabular data. The works presented in this table

all focus on understanding the impact of utilizing differentially private synthetic datasets in machine learning pipelines either from a perspective of utility or from a per-

spective of algorithmic fairness.

PUBLICATION EVALUATION OF SYNTHETIC DATA EVALUATION OF ALGORITHMIC FAIRNESS

AS TRAINING DATA AS TESTING DATA

[30] yes no no

[23] yes no only subgroup accuracy

[9] yes yes no

[24] yes no no

[31] yes no no

[32] yes no no

Our work yes yes yes

https://doi.org/10.1371/journal.pone.0297271.t001
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APPROXIMATE DIFFERENTIAL PRIVACY. A randomized mechanism M : D! A
with data base domain D and output set A is (�, δ)-differentially private if, for any output

A � Y and neighboring databases D;D0 2 D (i.e., D and D0 differ in at most one entry), we

have

Pr½MðDÞ 2 A� � e�Pr½MðD0Þ 2 A� þ d

The privacy loss of the mechanism is defined by the parameter �� 0 in the case of pure dif-

ferential privacy and parameters �, δ� 0 in the case of approximate differential privacy.

The definition of neighboring databases used in this paper is user-level privacy. User-level

privacy defines neighboring to be the addition or deletion of a single user in the data and all

possible records of that user. Informally, the definition above states that the addition or

removal of a single individual in the database does not provoke significant changes in the

probability of any differentially private output. Therefore, differential privacy limits the

amount of information that the output reveals about any individual.

A function f (also called query) from a dataset D 2 D to a result set A � A can be made dif-

ferentially private by injecting random noise to its output. The amount of noise depends on

the sensitivity of the query [1].

3.2 Fairness metrics

In this section we present the definition of two different fairness metrics: Equal Opportunity

[33] and Statistical Disparity [34]. Given a dataset W = (X, Y0, C) with binary protected attri-

bute C (e.g. race, sex, religion, etc), remaining decision variables X and predicted outcome Y0,
we define Equal Opportunity and Statistical Disparity as follows.

EQUAL OPPORTUNITY/ EQUALITY OF ODDS requires equal True Positive Rate (TPR)

across subgroups:

PrðY 0 ¼ 1jY ¼ 1;C ¼ 0Þ ¼ PrðY 0 ¼ 1jY ¼ 1;C ¼ 1Þ

where Y’ is the model output.

STATISTICAL PARITY requires positive predictions to be unaffected by the value of the

protected attribute, regardless of true label

PrðY 0 ¼ 1jC ¼ 0Þ ¼ PrðY 0 ¼ 1jC ¼ 1Þ

We follow the approach of [37, 38] and utilize difference in Equal Oportunity (DEO) =

jPrðY 0 ¼ 1jY ¼ 1;C ¼ 0Þ � PrðY 0 ¼ 1jY ¼ 1;C ¼ 1Þj and difference in Statistical Parity

(DSP) = jPrðY 0 ¼ 1jC ¼ 0Þ � PrðY 0 ¼ 1jC ¼ 1Þj to measure model fairness.

3.3 Differentially private synthetic data generators

We use several differentially private (DP) synthetic data generators that have been specifi-

cally tailored for generating tabular data with the goal of enhancing their utility for learning

tasks. We consider two broad categories of approaches: i) marginal-based methods, ii) and

Generative Adversarial Network (GAN) based models. In this section we provide an over-

view of each differentially private synthetic data generation algorithm used in our experi-

ments. We refer the reader to [12–15, 17, 18, 39] for a detailed explanation of each one of

these algorithms.

3.3.1 Marginal-based methods. MWEM PGM [13]. Is a variation of the multiplicative

weights with exponential mechanism algorithm (MWEM), which is an algorithm that gen-

erated synthetic data based on linear queries. The algorithm aims to produce a data distri-

bution that produces query answers similar answers resulted when querying the real
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dataset. The MWEM PGM variation combines probabilistic graphical models (PGMs)

with the MWEM algorithm. The structure of the graphical model is determined by the mea-

surements, such that no information is lost relative to a full contingency table

representation.

MST [12]. Is a synthetic data generation algorithm that acts selecting 2- and 3-way margin-

als for measurement. It combines one principled step, which is to find the maximum spanning

tree (MST) on the graph where edge weights correspond to mutual information between two

attributes, with some additional heuristics to ensure that certain important attribute pairs are

selected, and a final step to select triples while keeping the graph tree-like.

AIM [14]. The Adaptive and interactive mechanism (AIM) for synthetic data generation is

a variation of the MWEM PGM algorithm that innovates in the way it selects the most useful

measurements. The ability to produce data with lower error, in comparison to MWEM PGM,

is because of the new proposed features in the select stage, which defines a quality score that

helps determine the private selection of the next best marginal to measure. The quality score

takes into account factors such as the current measure of the candidate marginal, expected

improvement, relevance to the workload, and available privacy budget. The algorithm also

includes other techniques like adaptive selection of rounds and budget-per-round, as well as

intelligent initialization.

PrivBayes [15]. In order to improve the utility of the generated synthetic data, [15] approxi-

mates the actual distribution of the data by constructing a Bayesian network using the correla-

tions between the data attributes. This allows them to factorize the joint distribution of the

data into marginal distributions. Next, to ensure differential privacy, noise is injected into each

of the marginal distributions and the simulated data is sampled from the approximate joint

distribution constructed from these noisy marginals.

3.3.2 GAN-based methods. Generative neural networks (GANs) are a type of artificial

neural network used in machine learning for generating new data samples similar to a given

training dataset. Generative adversarial networks are based on a game, in the sense of game

theory, between two machine learning models, a discriminator model D and the generator G
model. The goal of the generator is to learn realistic samples that can fool the discriminator,

while the goal of the discriminator is to be able to tell generator generated samples from real

ones [16].

Conditional Tabular GAN (CTGAN) [39] is an approach for generating tabular data.

CTGAN adapts GANs by addressing issues that are unique to tabular data that conventional

GANs cannot handle, such as the modeling of multivariate discrete and mixed discrete and

continuous distributions. It achieves these challenges by augmenting the training procedure

with mode-specific normalization, and by employing a conditional generator and training-by-

sampling that allows it to explore discrete values more evenly. When applying differentially

private SGD (DP-SGD) [40] in combination with CTGAN the result is a DP approach for gen-

erating tabular data.

The PATE (Private Aggregation of Teacher Ensembles) framework [41] protects the pri-

vacy of sensitive data during training, by transferring knowledge from an ensemble of teacher

models trained on partitions of the data to a student model. To achieve DP guarantees, only

the student model is published while keeping the teachers private. The framework adds Lapla-

cian noise to the aggregated answers from the teachers that are used to train the student mod-

els. CTGAN can provide differential privacy by applying the PATE framework. We call this

combination PATE-CTGAN, which is similar to PATE-GAN [18], for images. The original

dataset is partitioned into k subsets and a DP teacher discriminator is trained on each subset.

Further, instead of using one generator to generate samples, k conditional generators are used

for each subset of the data.
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3.4 Datasets

We now describe the datasets used in our work. These datasets are commonly used in the liter-

ature for benchmarking algorithmic fairness in classification tasks [21, 42, 43].

3.4.1 Adult dataset. In the Adult dataset (32561 instances), the features were categorized

as protected variable (C): gender (male, female); and response variable (Y): income (binary);

decision variables (X): the remaining variables in the dataset. We map into categorical vari-

ables all continuous variables.

3.4.2 Prison recidivism dataset. From the COMPAS dataset (7214 instances), we select

severity of charge, number of prior crimes, and age category to be the decision variables (X).

The outcome variable (Y) is a binary indicator of whether the individual recidivated (re-

offended), and race is set to be the protected variable (C). We utilize a reduced set of features

as proposed in [21].

3.4.3 Fair prison recidivism dataset. We construct a “fair” dataset based on the COMPAS

recidivism dataset by employing a data preprocessing technique for learning non-discriminat-

ing classifiers from [44], which involves changing the class labels in order to remove discrimi-

nation from the dataset. This approach selects examples close to the decision boundary to be

either ‘promoted’, i.e label flipped to the desirable class, or ‘demoted’, i.e label flipped to the

undesirable class (ex: the ‘recidivate’ label in the COMPAS dataset is the undesirable class). By

flipping an equal number of positive and negative class examples, the class skew in the dataset

is maintained.

4. Results

One potential outcome of synthetic data sharing is the utilization of synthetic data for training

and evaluating an ML model. The trained model could be deployed without assessing its per-

formance on real data, due to lack of data access. However, it is important to acknowledge that

these trained models are ultimately applied to real data. This scenario is illustrated in Fig 1. In

our experiments, we address the concern that there may be substantial disparities in perfor-

mance between the evaluation phase (employing synthetic data) and the deployment phase

(utilizing real data). We refer to the experiments emulating the evaluation phase as train on
synthetic, test on synthetic (TSTS), and the experiments emulating the deployment phase as

Fig 1. Pipeline for model training and evaluation using synthetic data (1) We generate Synthetic datasets for model

training and model testing utilizing differentially private synthesizers. (2) We train models utilizing differentially

private synthetic data and evaluate on a differentially private synthetic test data. Model selection is made during this

phase. (3) Based on the previous phase results, model is trained using synthetic data and deployed. Model is applied to

real (test) data in production phase.

https://doi.org/10.1371/journal.pone.0297271.g001
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train on synthetic, test on real (TSTR). We compare the performance of machine learning mod-

els trained with differentially private synthesizers, focusing on two performance dimensions:

utility and fairness. We follow the approach of [23] and use logistic regression for downstream

classification evaluation to avoid another layer of stochasticity. The utilization of a linear

model allows us to better focus on the effects of different synthetic data generators in algorith-

mic fairness and model utility and reduce the effect of randomness in the training algorithms.

To assess the utility performance, we employ the AUC-ROC metric, which quantifies

trade-off between the recall and false positive rate. We examine fairness performance through

three different perspectives. Previous research [20] has indicated that differentially private

machine learning models tend to perform worse on minority groups. To this point we evaluate

the decay in accuracy for the different subgroups in the protected attribute. We also measure

the difference in equality of odds (DEO) and the difference in statistical parity (DSP). These

metrics allow us to assess any disparities or bias in the model’s predictions across different

groups. Furthermore, we also investigate the extent to which one can accurately assess a model

utilizing synthetic datasets. Again, we evaluate two performance dimensions: utility and

fairness.

We utilized multiple differentially private marginal-based synthesizers (AIM, MST,

MWEM-PGM, and PrivBayes) as well as GAN-based synthesizers (DP-GAN, DP-CTGAN,

PATE-GAN, and PATE-CTGAN) to generate synthetic data. In our experiments, we gener-

ated datasets utilizing each synthetic data generation technique in combination with four dif-

ferent privacy-loss budgets � = {0.5, 1.0, 5.0, 10.0}. The privacy-loss budget quantifies the

privacy risk associated with the publication of the synthetic data set, as defined in section 3.1.

The choice of these budgets is based on previous research in synthetic data analysis and pub-

lished synthetic datasets [23, 27]. Previous studies showed that budgets at and lower than � =

0.1 [17, 23] result in synthetic data with very low utility, so our experiments focused on bud-

gets greater than 0.5. The selection of � = 10.0 as the maximum budget aligns with other works

in the literature on differentially private synthetic data generation [9, 11, 23]. We also observed

this magnitude of privacy-loss budget in published synthetic datasets, such as the Global vic-

tim-perpetrator synthetic data, which was generated with a privacy-loss budget of � = 12 [27].

We divide the real dataset into 10 random 80/20 data splits, separating the data into genera-

tor and test datasets. For the TSTR experiments, we run 10 rounds of synthetic DP data gener-

ation on the 80% splits (generator data), used to generate the synthetic train datasets. We use

the remainder 20% split as test data in the TSTR experiments. For the TSTS experiments, we

run 10 rounds of synthetic DP data generation on the 80% splits (generator data), where we

generate synthetic train datasets. We use the same generator data to generate the synthetic test

data used in the TSTs experiments. We utilize the SmartNoise Library [45] and DiffPrivLib

[46] implementations of the synthesizers, and approximate-DP approaches use the library’s

default value of δ.

We train Logistic Regression models using the generated DP synthetic train datasets. In

experiments where we test the trained models on real data, model performance is evaluated on

the real test data (the 20% test split from the real data). In experiments where we test the

trained models on synthetic data, models are evaluated using the synthetic test datasets.

We report, for each technique and each value of privacy loss parameter, the mean across 10

rounds. The mean across multiple rounds serve to capture the behavior of each synthesizer

and attenuate the effects of randomness. A similar approach was used in [23]. Our experiments

use three datasets: the UCI Adult dataset [47] and ProPublica’s COMPAS recidivism data [48],

and a fair COMPAS dataset as defined in Section 3.4. The fair COMPAS dataset provides a

way to evaluate synthetic data generation performance in fair and biased versions of the same

dataset.
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4.1 Utility analysis: Impacts of synthetic data in machine learning pipelines

We evaluate the quality of models trained with synthetic datasets by measuring AUC and accu-

racy of the protected class. We consider privacy-loss budgets of � = 0.5, 1.0, 5.0 and 10.0. We

compare the AUC obtained in our experiments with the AUC measured by training models

with the real (non-synthetic) Adult, COMPAS, and fair COMPAS datasets.

Fig 2 shows AUC for different privacy losses and different synthesizers. The plots show the

variation of AUC as a function of privacy-loss parameter � for marginal-based and GAN-based

synthesizers. The first row refers to marginal-based synthesizers in the TSTR mode.

Fig 2. Impact in utility caused by the use of differentially private synthetic data in model training and testing. In

the first two rows we show the decay in model utility when utilizing marginal-based and GAN-based synthetic datasets

for model training. In the third and fourth rows we show what is the measured model utility when the instrument for

measuring model performance is a synthetic dataset.

https://doi.org/10.1371/journal.pone.0297271.g002
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Experiments with COMPAS and fair COMPASS datasets showed that models trained on mar-

ginal-based synthetic data perform similarly to the baseline model (trained on real data). For

all four synthesizers, we see an increase in AUC as we increase �. Experiments with Adult data-

set showed that AIM synthesizer outperformed all other synthesizer in both experimental set-

tings: TSTR and TSTS. For COMPAS dataset (which has a small dimension) the performance

of marginal-based synthetic datasets as training data is very close to the performance of the

real data. The second row of Fig 2 presents the performance of GAN-based synthetic data.

Overall, the performance of GAN-based synthesizer is worse and the performance of the mar-

ginal-based synthesizer. The utility of data produced by GAN-based synthesizers fluctuated as

we increased privacy-loss budget. This phenomenon had been previously observed in [17].

With AUC mostly fluctuating around� 0.5, we can say that GAN-based synthetic data do not

do much better than random guessing (for various values of �). We attribute the fluctuations

to the fact that GAN-based synthesizers are known to be data hungry and not capture well the

intrinsic relationships between features when using small data sets for training data synthesiz-

ers [49]. The inferior performance of GAN-based synthesizers was also noted by [30], which

showed that models trained on GAN-based synthetic data perform worse than models trained

on marginal-based synthetic data.

In third and fourth rows of Fig 2 we present the plots of variation of AUC for different val-

ues of epsilon for TSTS models. The plots in the third row refer to performance of models

trained on marginal-based synthesizers, the the plots in the fourth row refer to GAN-based

synthesizers. By comparing the models trained with marginal-based synthetic data when eval-

uated in different modes—TSTR and TSTS, we see that the assessment is very similar in both

cases when the synthesizers are MST, AIM and MWEM PGM. When assessing with synthetic

data, we notice that PrivBayes present a large difference in assessment results when assessing

model trained on Adult and fair COMPAS synthetic data. GAN-based synthetic data, once

again, present inconsistent behavior when used for model assessment. When comparing the

assessments TSTR and TSTS, we notice that using DP-GAN sythetic data for model assess-

ment can over estimate model AUC. Overall, GAN-based synthetic data made assessments

that are as good as random guessing.

4.2 Fairness analysis: Impacts of synthetic data in machine learning

pipelines

4.2.1 Impacts on subgroup accuracy. In the previous section, we showed that adding pri-

vacy by utilizing synthetic datasets in machine learning pipelines results in a utility decrease in

most cases. We now proceed to perform a fairness analysis. In the first experiment, presented

in Table 2, we analyzed model accuracy for different groups in the protected class. The goal of

the experiment is to understand whether the addition of privacy to the data pipeline harms

model utility more for the minority class than it does for the privileged class. Results in Table 2

refer to the Adult, COMPAS and COMPAS (fair) datasets.

We first note that the model accuracy decay when training models with marginal-based

(AIM) Adult synthetic data is smaller for the minority subgroup (Female), which presented an

accuracy decay of 0.005, than it is for the privileged subgroup (Male), which presented an accu-

racy decay of 0.01. Models trained with marginal-based COMPAS synthetic data presented a

slightly larger accuracy decay for the minority subgroup (Black) when compared to the accu-

racy decay for the privileged subgroup (Caucasian). Models trained on synthetic COMPAS

fair dataset did not show accuracy decay in any of the subgroups. Overall, marginal-based syn-

thesizers do not further accentuate subgroup accuracy disparities.
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In the case of models trained with GAN-based synthetic datasets, no clear pattern of sub-

group accuracy disparity was observed. For models trained with GAN-based Adult synthetic

data, accuracy decay of the minority class (Female) was smaller than accuracy decay for the

privileged class (Male). In the case of models trained with GAN-based COMPAS and COM-

PAS (fair) synthetic data, accuracy of both subgroups were close to 0.5, confirming previous

results, that showed model trained with GAN-based data acting like random classifiers. What

we confirmed with this experiment is that this phenomenon happens for all subgroups.

4.2.2 Impacts on statistical parity. A model presents statistical parity if the percentage of

positive predictions are the same for all subgroups. The goal of the experiments in this section

is to measure whether models trained with synthetic data preserve the characteristics of models

trained on real data.

Our experiments measure the difference in statistical parity (DSP) of models. We measure

DSP of models using real data—DSP(R), and using synthetic data—DSP(S). We present a

Table 2. Accuracy comparison for different subgroups of the protected attribute. The comparison presented accounts for synthetic data generated with privacy-loss

parameter � = 5.0. We show a comparison of model accuracy for the different groups measured with real data (R), and model accuracy measured with synthetic data (S).

ACCURACY OF DIFFERENT SUBGROUPS

SYNTHESIZER minority (R) minority (S) privileged (R) privileged (S)

ADULT DATA

Real 0.924 – 0.804 –

AIM 0.919 0.916 0.794 0.807

MWEM PGM 0.909 0.898 0.779 0.770

MST 0.914 0.895 0.756 0.765

PrivBayes 0.892 0.713 0.709 0.648

DP-GAN 0.733 0.929 0.585 0.855

PATE-CTGAN 0.892 0.938 0.695 0.942

DP-CTGAN 0.889 0.999 0.693 0.999

PATE-GAN 0.892 0.874 0.695 0.854

COMPAS DATA

Real 0.632 – 0.644 –

AIM 0.630 0.610 0.645 0.633

MWEM PGM 0.630 0.627 0.644 0.598

MST 0.616 0.614 0.631 0.616

PrivBayes 0.619 0.598 0.639 0.622

DP-GAN 0.497 0.514 0.451 0.452

PATE-CTGAN 0.536 0.497 0.377 0.499

DP-CTGAN 0.499 0.463 0.527 0.450

PATE-GAN 0.466 0.370 0.624 0.422

COMPAS (FAIR) DATA

Real 0.690 – 0.679 –

AIM 0.690 0.693 0.679 0.701

MWEM PGM 0.690 0.678 0.679 0.707

MST 0.691 0.685 0.704 0.699

PrivBayes 0.674 0.632 0.672 0.656

DP-GAN 0.513 0.366 0.542 0.474

PATE-CTGAN 0.471 0.499 0.437 0.510

DP-CTGAN 0.491 0.524 0.489 0.528

PATE-GAN 0.528 0.389 0.562 0.442

https://doi.org/10.1371/journal.pone.0297271.t002
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detailed comparison of DSP for all three datasets and all synthesizers on Table 3. We notice

from our experiments that several models trained on synthetic data seem to be less biased than

the model trained on real data. In terms of training models that performs similarly to models

trained with real data, AIM synthesizer outperformed all other algorithms, followed by

MWEM PGM synthesizer. AIM presented the best results in preserving statistical parity, based

on experiments with all three datasets: Adult, COMPAS and COMPAS fair. GAN-based syn-

thesizers, overall presented an intriguing performance: in some cases it seems like it has

achieved perfect fairness.

To understand better what is behind this apparent fairness provided some GAN-based syn-

thetic datasets, we investigate the percentage of positive labelled samples in the training data,

evaluation data and predictions of models on TSTR and TSTS modes. We present percentages

for minority and privileged classes in Table 4.

As we investigate GAN-based synthetic data, we observe in Table 4 that synthetic data gen-

erated with PATE-GAN and PATE-CTGAN presents very similar percentages of samples with

positive labels for each subgroup that belongs to the protected attribute. At a first sight, this

seems like a dataset with promising fairness capabilities. However, when training models with

such data, in most cases there were no positive predictions resulting from the model scoring.

Table 3. Difference in statistical parity (DSP) of models trained with synthetic data. We measure the DSP of models using real test data—DSP(R) and synthetic test

data DSP(S). DEO delta quantifies the difference between DSP(R) and DSP(S). All synthetic data where generated using privacy-loss parameter � = 5.0.

DATA SYNTHESIZER DSP(R) DSP(S) DSP delta

Adult AIM 0.193 0.184 0.009

MST 0.083 0.072 0.011

MWEM PGM 0.168 0.159 0.009

PrivBayes 0.051 0.043 0.008

DP-CTGAN -0.001 0.000 -0.001

DP-GAN 0.346 0.253 -0.093

PATE-CTGAN 0.000 0.000 0.000

PATE-GAN 0.000 0.000 0.000

Real 0.189

COMPAS AIM -0.207 -0.204 -0.002

MST -0.182 -0.101 -0.082

MWEM PGM -0.218 -0.190 -0.028

PrivBaeys -0.211 -0.153 -0.058

DP-CTGAN -0.034 0.001 -0.034

DP-GAN 0.072 -0.089 0.161

PATE-CTGAN -0.008 -0.009 0.001

PATE-GAN 0.000 -0.001 0.001

Real -0.205

COMPAS (fair) AIM 0.009 0.020 -0.010

MST -0.185 -0.090 -0.095

MWEM PGM -0.018 0.015 -0.032

PrivBayes -0.065 0.005 -0.060

DP-CTGAN -0.034 -0.004 -0.030

DP-GAN 0.066 0.096 -0.030

PATE-CTGAN 0.000 0.000 0.000

PATE-GAN 0.000 0.000 0.000

Real -0.025

https://doi.org/10.1371/journal.pone.0297271.t003
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The model trained with PATE-GAN and PATE-CTGAN data acts like a majority baseline clas-

sifier for all groups. The datasets generated with DP-CTGAN presented an accentuated dispar-

ity in positive labels percentages between minority and privileged classes. In the real Adult

data 30% of privileged class contains positive labels, while only 10% of minority class contains

positive labels. Although DP-GAN synthesizer generates data where 31% of privileged class

with positive labels (a value similar to the one presented in the real data—30%), there is a sig-

nificant decrease in the percentage of positive class in the minority class, which is�6%. This

imbalance is even further accentuated by the models trained with DP-GAN synthetic data.

Table 4. Ratio of samples with positive labels for each subgroup in the protect class in the Adult, COMPAS and COMPAS (fair) datasets. We compare percentages

present in the true labels of the real data and the predicted labels. Analogously, we measure the ratio of samples with positive label present in the synthetic generated data

and predicted labels for datasets generated using distinct synthesizer techniques. Predictions(R) represents ratio of positive prediction labels of an experiment where model

trained on synthetic data was evaluated on real data, and Predictions(S) ratio of positive prediction labels of an experiment where model trained on synthetic data was eval-

uated on synthetic data.

RATIO OF POSITIVE LABELS

SYNTHESIZER GENERATED DATA PREDICTIONS(R) PREDICTIONS(S)

ADULT DATA

Female Male Female Male Female Male

Real 0.109 0.303 0.055 0.244

AIM 0.110 0.303 0.049 0.242 0.056 0.239

MWEM PGM 0.120 0.307 0.042 0.209 0.043 0.202

MST 0.123 0.297 0.032 0.115 0.031 0.102

PrivBayes 0.259 0.342 0.004 0.060 0.102 0.143

PATE-GAN 0.125 0.144 � 0 � 0 � 0 � 0

PATE-CTGAN 0.056 0.058 � 0 � 0 � 0 � 0

DP-GAN 0.061 0.307 0.199 0.545 0.016 0.269

DP-CTGAN � 0 0.002 0.227 0.130 � 0 � 0

COMPAS DATA

Black Caucasian Black Caucasian Black Caucasian

Real 0.504 0.402 0.499 0.294

AIM 0.503 0.405 0.504 0.297 0.500 0.297

MWEM PGM 0.504 0.403 0.514 0.294 0.498 0.302

MST 0.477 0.443 0.567 0.384 0.538 0.433

PrivBayes 0.489 0.436 0.566 0.352 0.550 0.387

PATE-GAN 0.231 0.196 0.397 � 0 � 0 � 0

PATE-CTGAN 0.548 0.541 0.715 0.975 0.981 0.949

DP-GAN 0.745 0.583 0.442 0.908 0.004 � 0

DP-CTGAN 0.471 0.455 0.302 0.218 0.217 0.179

COMPAS (FAIR) DATA

Black Caucasian Black Caucasian Black Caucasian

Real 0.454 0.493 0.488 0.463

AIM 0.453 0.493 0.487 0.487 0.478 0.492

MWEM PGM 0.454 0.491 0.480 0.463 0.466 0.478

MST 0.485 0.446 0.495 0.310 0.478 0.393

PrivBayes 0.450 0.497 0.561 0.491 0.530 0.520

PATE-GAN 0.232 0.194 0.397 � 0 � 0 � 0

PATE-CTGAN 0.606 0.598 0.397 � 0 � 0 � 0

DP-GAN 0.593 0.664 0.560 0.836 0.865 0.744

DP-CTGAN 0.581 0.576 0.492 0.398 0.421 0.401

https://doi.org/10.1371/journal.pone.0297271.t004
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Model predictions resulted in over half of samples from the privileged class being classified

with positive labels (versus 20% of minority class). For models trained with COMPAS and

COMPAS fair synthetic datasets, similar behavior was observed.

AIM once again was the best overall performing model, as it preserves similar percentages

of positive labels for all groups, 11% and 30% (compared to 11% and 30% in real data). Models

trained with AIM also presented similar metric to models trained with real data, and even pre-

senting slightly improvement in fairness. The runner-up synthetic data generator in preserving

the ratio of positive labels was the MWEM algorithm.

The DSP delta presented in Table 3 quantifies the difference in DSP observed during model

evalution with real data and model evaluation with synthetic data. For Adult dataset, a positive

DSP delta means that evaluation with synthetic data observed fairer results than evaluation

with real data. For COMPAS and fair COMPAS data, a negative DSP delta means that evalua-

tion with synthetic data observed fairer results than evaluation with real data.

Across all datasets, models trained with AIM and MWEM PGM presented DSP metrics

very similar to models trained with real data, this is captured by the DSP(R) metric.

4.2.3 Impacts on equal opportunity. Equal Opportunity requires equal True Positive

Rate (TPR) across subgroups. Difference in equal opportunity (DEO) measures the difference

of privileged group TPR and minority group TPR.

We perform a thorough analysis to understand two points related to equal opportunity.

First, what is the DEO of models trained with synthetic datasets, and how does it compare

with models trained with real data? Second, given that true positive rate is the foundation for

understanding equal opportunity, we investigate whether synthetic data preserves true positive

rates across all subgroups.

We present in Table 5 experiment results comparing DEO of models trained with differen-

tially private synthetic datasets (� = 5.0). These experiment are similar to the statistical parity

experiments, we use real data—DEO(R)—to measure DEO of models trained on synthetic

data, as well as synthetic data—DEO(S).

Model trained with AIM and MWEM PGM synthetic data were the only ones that pre-

sented a similar DEO to the baseline model, outperforming all other models trained with syn-

thetic data. Note that our comparison, as in the DSP case, focus on understanding which

synthetic datasets can train models that behave as close as possible to models trained with real

data. Models trained with MST, which presented promising utility metrics and subgroup accu-

racy, did not capture as well the difference in equality on odds in experiments with the Adult

data. For experiments with COMPAS and fair COMPAS data, MST performs better, but still

worse than AIM and MWEM PGM, as we can see on Table 5.

As we investigate the details of variation in TPR it becomes clear AIM algorithm is the the

best technique for training models that preserve fairness characteristics of models trained with

real data, followed by MWEM PGM algorithm. Experiments with Adult data (Fig 3) show that

the difference between the privileged group TPR and the minority group TPR of models

trained with AIM data is very similar to the difference between subgroups TPR of models

trained with real data, for all values of privacy-loss parameter �. Similar conclusion is achieved

by observing experiments with COMPAS and COMPAS fair data (Figs 4 and 5). Not only the

difference between the subgroup TPR of the model trained with AIM and MWEM PGM syn-

thetic data is close to that of the model trained with real data, but the true positive rates of the

subgroups are also very similar to the TPR of the model trained with real data. Figs 3–5 show

that models trained with marginal-based synthetic data outperforms models trained with

GAN-based synthetic data for our tested datasets.

We make a similar analysis when evaluating how good synthetic datasets are for assessing

TPRs. Figs 3–5 also present plots of TPR when synthetic data is used during model assessment.
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Models trained with AIM and MWEM PGM data present very similar assessment when using

both real and synthetic data as test data. Models trained on MST and PrivBayes present greater

discrepancies. Models trained on GAN-based data present even greater discrepancies between

assessments made with real and synthetic data as test data.

5. Discussion

5.1 Marginal-based synthetic data does better at training and assessing

utility of models

The results in section 4.1, showed that models trained marginal-based synthetic data can have

similar performance to models trained on real data. We observed the AIM synthetic data gen-

eration algorithm generated data that performed very closely to real data when training and

evaluating machine learning models. The AIM data synthesizer presented a consistent perfor-

mance across all datasets and for all values of privacy-loss parameter �. To showcase a clear

comparison between marginal-based and GAN-based synthesizers, we ranked the utility per-

formance of all synthesizers taking based on two criteria: ability to generate synthetic data for

model training and ability to generate synthetic data for model assessment. We ranked the

Table 5. Difference in equal opportunity (DEO) of models trained with synthetic data. We measure the DEO of models using real test data—DEO(R) and synthetic test

data DEO(S). DEO delta quantifies the difference between DEO(R) and DEO(S). All synthetic data where generated using privacy-loss parameter � = 5.0.

DATA SYNTHESIZER DEO (R) DEO (S) DEO delta

Adult AIM 0.209 0.200 0.009

MST 0.038 0.076 -0.037

MWEM PGM 0.206 0.200 0.006

PrivBayes 0.094 0.026 0.067

DP-CTGAN -0.002 �0.00 -0.002

DP-GAN 0.527 0.641 -0.116

PATE-CTGAN 0.000 0.000 0.000

PATE-GAN 0.000 0.000 0.000

Real 0.173

COMPAS AIM -0.201 -0.195 -0.006

MST -0.150 -0.089 -0.061

MWEM PGM -0.215 -0.224 0.009

PrivBayes -0.177 -0.127 -0.051

DP-CTGAN -0.031 -0.000 -0.031

DP-GAN -0.075 0.020 0.055

PATE-CTGAN -0.011 -0.009 -0.002

PATE-GAN 0.000 -0.001 0.001

Real -0.204

COMPAS (fair) AIM 0.007 0.013 -0.006

MST -0.181 -0.073 -0.107

MWEM PGM -0.019 0.037 -0.056

PrivBayes -0.057 0.005 -0.062

DP-CTGAN -0.030 -0.005 -0.026

DP-GAN 0.097 0.087 0.010

PATE-CTGAN 0.000 0.000 0.000

PATE-GAN 0.000 -0.001 -0.000

Real -0.027

https://doi.org/10.1371/journal.pone.0297271.t005
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synthesizers for each dataset used in our experiments. Table 6 shows the ranking of synthesiz-

ers when generating training and assessment data for the Adult data, COMPAS data and

COMPAS (fair) data. The table also shows a comparison of model AUC measured in TSTR

mode—AUC(R), and model AUC measured in TSTS mode—AUC(S). All table results

accounts for synthetic data generated with privacy-loss parameter � = 5.0.

Synthetic data generated with the AIM algorithm outperforms (or tie with) all other syn-

thetic data for both tasks: utility as training data for machine learning models and utility as

evaluation data for machine learning models. The performance of synthetic datasets generated

with AIM was very similar to real data, both when using the synthetic data for model training

and model assessment. For model training, when comparing the AUC achieved by model

trained with the real Adult dataset (AUC = 0.892) to the metrics achieved by models trained

with AIM Adult synthetic data (AUC = 0.886) and MWEM PGM Adult synthetic data

(AUC = 0.850), the decrease in performance is small. The synthetic datasets also present a

Fig 3. True positive rate (TPR) variation of different subgroups of the protected attribute of the Adult data. The

top three rows shows TPR variation for different values of privacy-loss parameter �, TSTR mode. The bottom three

rows shows TPR variation for different values of privacy-loss parameter �, TSTS mode.

https://doi.org/10.1371/journal.pone.0297271.g003
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good performance as assessment data. The model assessment with AIM generated data showed

good results, with an assessment of AUC = 0.882. Assessment with other marginal-based syn-

thesizers, MST data (AUC = 0.804) and MWEM PGM data (AUC = 0.820), also presented

consistent results, with a small decay. Although PrivBayes data presents good performance in

model training (AUC = 0.846), there is a significant discrepancy between assessment utilizing

real data and assessment utilizing synthetic data. We reached similar conclusions when analys-

ing results for COMPAS and COMPAS (fair) data. Overall, our experiments using GAN-based

data as training data resulted in models with utility very close to random guess. DP-GAN syn-

thetic data performed slightly better than the rest of GAN-based datasets. We believe that the

fact that the datasets used in our experiments are relatively small (less than 50k rows), GAN-

based synthesizers do not have enough data samples to capture correctly the relationships

between features. Although experiments with larger datasets can be useful to uderstand

whether GAN-based synthesizers could do better with more data, the datasets used in our

Fig 4. True positive rate (TPR) variation of different subgroups of the protected attribute of the COMPAS data.

The top three rows shows TPR variation for different values of privacy-loss parameter �, TSTR mode. The bottom

three rows shows TPR variation for different values of privacy-loss parameter �, TSTS mode.

https://doi.org/10.1371/journal.pone.0297271.g004
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Fig 5. True positive rate (TPR) variation of different subgroups of the protected attribute of the COMPAS (fair)

data. The top three rows shows TPR variation for different values of privacy-loss parameter �, TSTR mode. The

bottom three rows shows TPR variation for different values of privacy-loss parameter �, TSTS mode.

https://doi.org/10.1371/journal.pone.0297271.g005

Table 6. Synthesizer utility comparison. We compare and rank all synthesizers by their ability to generate quality training data and evaluation data for machine learning

pipelines. The comparison presented accounts for synthetic data generated with privacy-loss parameter � = 5.0. In addition to present a performance ranking for Adult,

COMPAS data and COMPAS (fair) data, we show a comparison of model AUC measured in TSTR mode—AUC(R), and model AUC measured in TSTS mode—AUC(S).

ADULT COMPAS COMPAS FAIR

SYNTHESIZER RANK AUC (R/S) RANK AUC (R/S) RANK AUC (R/S)

AIM 1st 0.886/0.882 2nd 0.683/ 0.666 2nd 0.761/0.771

MWEM PGM 2st 0.850/0.820 1st 0.684/ 0.666 1st 0.762/0.762

MST 3rd 0.836/0.804 4th 0.662/0.647 3rd 0.763/0.756

PrivBayes 4th 0.846/0.650 3rd 0.668/0.645 4th 0.738/0.710

DP-GAN 5th 0.667/0.880 7th 0.503/0.568 5th 0.557/0.546

PATE-CTGAN 6th 0.343/0.504 5th 0.552/0.492 6th 0.556/0.502

DP-CTGAN 7th 0.284/0.485 6th 0.504/0.502 7th 0.515/0.501

PATE-GAN 8th 0.210/0.597 8th 0.362/0.587 8th 0.283/0.588

https://doi.org/10.1371/journal.pone.0297271.t006
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experiments are great representations of datasets found in the real world. Such datasets are

rarely larger than a couple of thousand rows.

5.2 Marginal-based synthetic data preserves and better assess model fairness. We eval-

uated the performance of the synthetic datasets based on two key model fairness tasks: the abil-

ity to mirror the behavior of actual data in downstream model fairness, and the ability to

produce synthetic data for assessing model fairness. Our analysis includes a rigorous assess-

ment of model fairness, which includes measuring subgroup accuracy, the difference in statis-

tical parity(DSP) and the difference in equal opportunity (DEO). Beyond measuring the

classical fairness metrics, we also assess the Positive Predictive Value (PPV) and True Positive

Rate (TPR) for each subgroup within the protected class. The significance of evaluating PPV

and TPR lies in understanding if the model upholds fairness because it accurately represents

PPV and TPR for all subgroups, or if it does so merely by acting as a random classifier.

Table 7 shows the best synthesizers in end-to-end machine learning pipelines when evaluat-

ing for fairness metrics. All table results accounts for synthetic data generated with privacy-

loss parameter � = 5.0.

Throughout fairness experiments we observed that marginal-based synthetic datasets per-

formed better than GAN-based synthetic dataset across all algorithmic fairness metrics. AIM

and MWEM PGM synthetic data generation algorithms not only outperformed all other syn-

thetic data generation algorithms, but these synthesizers generated data that performed simi-

larly to real data in the three fairness metrics, and in our deeper investigations on PPV an

TPR. This advantage was observed for multiple values of privacy-loss parameter �, when syn-

thetic data was used as a training dataset as well as when used as a testing dataset.

The investigation of subgroup PPV and TPR metrics clarified our observations regarding

model fairness performances. We note that AIM and MWEM PGM synthetic data presents a

ratio of positive labels comparable to that obtained with real data (Table 4), for all subgroups.

When evaluating the ratio of positive labels in prediction for all subgroups in the Adult data

(female and male) and in the COMPAS and COMPAS (fair) data (black and caucasian) in

Table 4, we see that AIM and MWEM PGM also results is metrics that are the closest to real

data.

The evaluation of true positive rate provides more insights into the bias introduced by syn-

thetic dataset in end-to-end machine learning pipelines. Figs 3–5 shows the variation of TPR

for different values of �, in experiments with Adult, COMPAS and fair COMPAS, respectively.

For COMPAS dataset, AIM provides the best performance, comparable the real dataset in an

end-to-end analysis. For Adult data, � > 1 provides comparable metrics. Other algorithms,

such as PrivBayes, that presented utility results (AUC metric) comparable to real data, showed

low performance in terms of TPR. Finally, marginal-based synthesizers presented similar per-

formance from the point of view of utility and fairness for both biased and fair versions of the

COMPAS dataset.

Table 7. Best synthesizers for each fairness metric evaluated in the experiments: Subgroup accuracy, difference in

statistical parity and difference in equality of odds. We also present the synthesizers that best preserve PPV and TPR

accross subgroups. We present the two best synthetic data generator for each task. We selected best synthesizer and

runner up based on experiments with privacy-loss budget � = 5.0.

METRIC BEST SYNTHESIZER RUNNER UP

Subgroup accuracy AIM MWEM PGM

Difference in statistical parity AIM MWEM PGM

Difference in equality of odds AIM MWEM PGM

PPV accross subgroups AIM MWEM PGM

TPR accross subgroups AIM MWEM PGM

https://doi.org/10.1371/journal.pone.0297271.t007
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5.3 Limitations and future work

Although the datasets utilized in our analysis are commonly employed in fairness literature,

extending the validity of our findings to larger-scale datasets would provide a more compre-

hensive understanding of the generalizability and robustness of marginal-based synthetic data

approaches. Future research should focus on exploring the performance of these frameworks

in real-world scenarios with diverse and extensive datasets, such experiments would clarify

whether synthesizers behave differently in the presence of different types of dataset. This

would contribute to the broader applicability and reliability of synthetic data methods in vari-

ous domains and facilitate a more nuanced understanding of their limitations and capabilities.

Finally, our work focuses solely on classification tasks. Extending our analysis to regression

tasks, and evaluating fairness metrics [50] in regression tasks when in presence of differentially

private synthetic data hasn’t been studied yet and would be an interesting sequel to this work.

6. Conclusion

Our research comprehensively evaluates the impact of differentially synthetic datasets for

training and testing machine learning pipelines in the case of tabular datasets. Specifically, we

compare the performance of marginal-based and GAN-based synthesizers within a machine-

learning pipeline and analyze various utility and fairness metrics for tabular datasets, across

multiple values privacy-loss parameter �.

Our main findings are as follows: Marginal-based synthetic data demonstrated comparable

utility to real data in end-to-end machine-learning pipelines. AIM and MWEM PGM synthetic

data generators provided the best utility across experiments, for various values of �. AIM syn-

thetic data, in particular, performed provided utility very close to models trained on real data,

for multiple values of epsilon, for all datasets: Adult (AUC(R) = 0.892 vs AUC(S) = 0.886),

COMPAS (AUC(R) = 0.684 vs AUC(S) = 0.683) and COMPAS fair (AUC(R) = 0.762 vs AUC

(S) = 0.761). Furthermore, we show that model evaluation using synthetic data also provides

similar results to evaluation using real data, for tabular data. The metrics obtained when utiliz-

ing AIM marginal-based synthetic data are comparable to real data, across all datasets and for

multiple values of epsilon. Synthetic datasets trained with AIM and MWEM PGM synthetic

data do not increase model bias and can provide a realistic fairness evaluation. Our study

reveals that AIM and MWEM PGM synthetic data can train models that achieve similar utility

and fairness characteristics as models trained with real data. Additionally, when used to evalu-

ate the utility and fairness of machine learning models, our experiments showed that the syn-

thetic datasets generated by the AIM algorithm exhibits behavior very similar to real data, for

various values of �.

One important point to raise is that, across all datasets used in our experiments (Adult,

COMPAS and COMPAS fair) marginal-based algorithms (AIM and MWEM PGM specifi-

cally) were the best performing algorithms in terms of utility and fairness. From our experi-

ments we gained evidence about an important fact: that synthesizer performance is

independent from fairness characteristics of the original dataset.

These findings highlight synthetic data’s potential reliability and viability as a substitute for

real datasets in end-to-end machine learning pipelines for tabular data. Furthermore, our

research sheds light on the implications of model fairness when utilizing differentially private

synthetic data for model training.

One crucial observation is that synthetic data that does well in model training might per-

form differently when used as evaluation data. This was the case with Privbayes and most of

the GAN-based synthetic data generators. This observation is important as synthetic data
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techniques gain acceptance as a data publishing approach in domains such as healthcare,

humanitarian action, education, and population studies.
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