
RESEARCH ARTICLE

Epigenetic repression of antiviral genes by

SARS-CoV-2 NSP1

Dimitrios G. AnastasakisID
1☯*, Daniel BenhalevyID
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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the innate

immune machinery through multiple viral proteins, including nonstructural protein 1 (NSP1).

While NSP1 is known to suppress translation of host mRNAs, the mechanisms underlying

its immune evasion properties remain elusive. By integrating RNA-seq, ribosome footprint-

ing, and ChIP-seq in A549 cells we found that NSP1 predominantly represses transcription

of immune-related genes by favoring Histone 3 Lysine 9 dimethylation (H3K9me2). G9a/

GLP H3K9 methyltransferase inhibitor UNC0638 restored expression of antiviral genes and

restricted SARS-CoV-2 replication. Our multi-omics study unravels an epigenetic mecha-

nism underlying host immune evasion by SARS-CoV-2 NSP1. Elucidating the factors

involved in this phenomenon, may have implications for understanding and treating viral

infections and other immunomodulatory diseases.

Introduction

The recent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus

(SARS-CoV-2) further intensified the study of host-pathogen interactions and the mechanisms

through which viruses suppress cellular antiviral responses [1–4]. SARS-CoV-2 evolved elabo-

rate ways to evade the innate immune machinery through the independent action of several of

the 29 proteins it encodes. Here, we focused on the multifunctional SARS-CoV-2 nonstruc-

tural protein 1 (NSP1), which may contribute to the exceptional pathogenesis of SARS-CoV in

humans [5, 6].

Multiple molecular mechanisms for NSP1 function were proposed. Early studies showed

that NSP1 selectively suppresses transcription of genes driven by various promotors simian

virus 40 (SV40), cytomegalovirus (CMV), interferon (IFN)-b), without affecting actin and

rRNA levels [7]. Other reports demonstrate direct suppression of cellular mRNAs by NSP1,
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either through endonucleolytic cleavage or binding to the 40S scanning ribosomal subunit

causing a stall in the mRNA 5’ untranslated regions (UTR) and subsequent mRNA cleavage [4,

8–10]. Recently, NSP1 was shown to globally shut down host mRNA translation [4, 11–13]

and compete for binding on the 40S ribosomal subunit [14], further supported by the previous

observation that the Transmissible Gastroenteritis Coronavirus (TGEV) NSP1 homolog is

directly responsible for host translation shutdown [15].

Of note, SARS-CoV NSP1 selectively suppresses host innate immune functions, including

type I IFN expression, and in combination with other viral proteins it inhibits both IFN-β
induction and signaling [4, 16]. Compared with SARS-CoV-2 NSP1, SARS-CoV, or MERS-

CoV NSP1 homologues have a significantly weaker inhibitory activity towards IFN-α signal-

ing. Given its potent immunomodulatory functions, SARS-CoV2 NSP1 may serve as a promis-

ing target for therapeutic intervention.

Here, we combined several high-throughput approaches to probe NSP1 function. Our

results suggest that NSP1 is a multifunctional protein that, in addition to affecting the host

translational machinery, promotes innate antiviral immune evasion by epigenetic reprogram-

ming. We show that transfection of NSP1 when compared to either transfection of GFP,

mutant NSP1 expressing plasmids or empty vectors in A549 cells favored Histone 3 Lysine 9

dimethylation (H3K9me2). Consequently, epigenetic modulation by NSP1 resulted in repres-

sion of immune-related genes. Furthermore, treatment with the specific H3K9 methyltransfer-

ase inhibitor UNC0638 attenuated the repression of antiviral genes by NSP1. In addition, we

show that UNC0638 treatment restored antiviral gene expression and blocked viral replication

during SARS-CoV-2 infection of human lung epithelial cells, highlighting the therapeutic

potential of epigenetic modulation.

Materials and methods

Cell culture

A549 cells (ATCC CCL-185) were cultured in DMEM medium (Gibco) supplemented with

10% (v/v) fetal bovine serum (FBS), 100 μg/ml zeocin, and 10 μg/ml blasticidin (Gibco). pEXP

(FLAG/HA-NSP-WT) and pEXP(FLAG/HA-NSP K164A/H165A), (Addgene IDs 188781, and

188782, respectively) were generated using the Gateway system (Invitrogen) as described

before [17]. For transient transfection plasmids were transfected into cells using Lipofectamine

3000 (Invitrogen) according to manufacturer’s instructions, expression quantification by

immunofluorescence was performed as previously described [18]. Poly(I:C) was transfected

with the plasmid at 1/10 of the plasmid (500 ng plasmid per 300,000 cells). RNA from trans-

fected cells was isolated using the Direct-zol RNA Miniprep Kit (Zymo Research, Cat# R2050)

according to the manufacturer’s instructions.

SARS-CoV2 infection

A549 cells stably expressing Angiotensin Converting Enzyme 2 (ACE2) were plated at 50,000

cells/well in a 24 well culture dish [19]. Twenty-four hours later either UNC0638 (1uM final

concentration) or DMSO was added to each well. Cells were placed in 37˚C, 5% CO2 incubator

for 1 hour. Subsequently, either 1uL of SARS-CoV2-D614G (4.7e5 TCID50/mL) or 1uL of

media was added to each well. Cells were placed back in 37˚C, 5% CO2 incubator. After 4

hours, virus and drug were washed off the cells and media were replaced. UNC0638 at 1uM

concentration or DMSO was added back to wells and cells placed in 37˚C, 5% CO2 incubator

for another 20 hours. At 24 hours post infection cells were lysed in Trizol Ls and RNA lysates

processed for qPCR and RNA Sequencing.

PLOS ONE Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1

PLOS ONE | https://doi.org/10.1371/journal.pone.0297262 January 26, 2024 2 / 17

https://doi.org/10.1371/journal.pone.0297262


Cytokine measurements

The LEGENDplex Human Anti-Virus Response Panel (biolegend) was used for quantification

of 13 human proteins, including IL-1β, IL-6, IL-8, IL-10, IL-12p70, IFN-α2, IFN-β, IFN-λ1,

IFN-λ2/3, IFN-γ, TNF-α, IP-10 and GM-CSF directly from cell culture medium.

Ribosome footprinting

Ribosome footprinting was performed as previously described [20], and quality control analy-

sis was performed using ribosomeProfilingQC [21]: A549 cells were seeded on a 10 cm plate at

60% confluence and after 24 hours transfected with 12.5 μg plasmid as described above for

expression of NSP1 or GFP. Twelve hours post tr2ansfection cells were supplemented with

100 μg/ml Cycloheximide (CHX) and immediately placed on ice. Media was aspirated, cells

were washed with ice-cold PBS, then overlaid with 400 μl of ribosome footprinting buffer (20

mM Tris pH 7.4, 150 mM NaCl, 4 mM MgCl2, 1 mM DTT, 100 μg/ml CHX) supplemented

with 1% (v/v) NP40 and 25 U/ml Turbo DNaseI, and collected using a rubber policeman into

prechilled 1.5 ml microcentrifuge tubes. Extracts were incubated on ice for 10 min, triturated

by passing 10 times through a 26-G needle, and cleared of debris by centrifugation at 4˚C and

20,000 g for 10 min. Then, 7.5 μl of RNase I (100 U/μl, 2.5 U/μl final concentration) were

added to 300 μl of the recovered cell extracts and incubated for 45 min, at room temperature

with gentle mixing. Next, 10 μl of SUPERaseIn (20 U/μl) was added in order to stop RNaseI,

and the extracts were ultracentrifuged for 4 hours (TLA 100.3 rotor at 70,000 RPM) through a

900 μl sucrose cushion (footprinting buffer with 20 U/ml SUPERasIN and 1 M sucrose). The

ultracentrifugation supernatant was discarded, and the ribosome- and footprint-containing

pellets were resuspended in 150 μl of footprinting buffer supplemented with 20 U/ml SUPERa-

sIN. RNA was purified by phenol-chloroform extraction, followed by ethanol precipitation.

The precipitated RNA was washed twice with 75% ethanol, air dried, resuspended in 15 μl

DEPC-treated water and used for construction of NGS sequencing libraries based on previous

procedures [22–26] with minor modification described below.

Ribo-seq NGS library preparation

Five microliters of RNA comprising ribosomes and mRNA footprints were dephosphorylated

using quick CIP (NEB) in a 15 μl reaction volume for 15 minutes at 37˚C, followed by isolation

with Purlink miRNA isolation columns according to manufacturer instruction, with a 1:1 ratio

of binding buffer and Ethanol, and concentration to 13 μl volume with the Oligo Clean & Con-

centrator kit (Zymo Research). Then the dephosphorylated RNA was subjected to 3’ adapter

ligation as described in [26]. Essentially, 10 μl of footprints RNA was mixed with 1 μl of 10 μM

5’-adenylated DNA adapter (5’-rAppNNTAGCGATGGAATTCTCGGGTGCCAAGG-L, index

sequence underlined and can be varied), 2 μl of 10x RNA ligase buffer without ATP (NEB) and

6 μl of 50% PEG-8000; denatured at 90˚C for 1 min, chilled on ice and added with 1 μl of Rnl2

(1–249)K227Q RNA ligase (NEB) and 0.5 μl of SUPERaseIN (Thermo Fisher Scientific), and

incubated overnight at 4˚C.

Ligated RNA was purified using oligo clean and concentrate kit (Zymo) and triple eluted

each with 23 μl volume of nuclease-free water. Then 68 μl of the purified ligated RNA was

added to 8 ul 10x T4 polynucleotide kinase (PNK), 0.8 μl of 100 mM ATP, and 4 μl of 10 U/μl

T4 PNK (NEB) and subjected to 5’ phosphorylation for 30 minutes at 37˚C. The 5’-phophori-

lated 3’-ligated RNA was purified using the Oligo Clean & Concentrator kit (Zymo Research)

using 160 μl binding buffer mixed with 320 μl Ethanol, eluted with 25 μl nuclease free water,

and subjected to 5’ adapter ligation by addition of 1.25 μl of 50 μM 5’ chimeric DNA-RNA

adapter (5’aminolinker-GTTCAGAGTTCTACAGTCCGACGATCrNrNrNrN), 5 μl od 10x
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RNA ligase buffer with ATP (Thermo) and 15 μl of 50% PEG-8000, denaturation at 90˚C for 1

minute followed by immediate cooling on ice, addition of 5 μl of T4 Rnl1 RNA ligase (Thermo

Fisher Scientific) and 1 μl of SUPERaseIN (Thermo Fisher Scientific), and incubation at 37˚C

for 1 hour.

The 3’- 5’- ligated RNA was purified using oligo clean and concentrate kit (Zymo) using

100 μl binding buffer mixed with 200 μl Ethanol, and eluted with 35 μl nuclease-free water,

and split into three 0.2 ml tubes of 11 μl each for reverse transcription: Each tube was added

with 1 μl of 50 μM RT primer (GCCTTGGCACCCGAGAATTCCA) and 1 μl of 10 mM (each)

dNTPs mix, heated to 65˚C for 5 minutes and chilled on ice for 1 minute, then added with a

mix containing 4 μl of 5X SSIV reaction buffer (Thermo Fisher Scientific), 1 μl of 100 mM

DTT, 1 μl of SUPERaseIN, and 1 μl of SuperScript1 IV Reverse Transcriptase (200 U/μl,

Thermo Fisher Scientific), and incubated at 56˚C for 30 minutes, followed by inactivation at

80˚C for 10 minutes. The three cDNA-containing reactions were pooled and added with

120 μl nuclease-free water.

The cDNA (120 μl of it) was amplified as described in [24] by addition of 30 μl of 10 mM

(each) dNTPs, 36 μl of 50 mM MgCl2, 120 μl of 10x PCR reaction buffer, 6 μl of 100 μM 5’-

short PCR primer (CTTCAGAGTTCTACAGTCCGACGA), 6 μl of 100 μM RT primer

(GCCTTGGCACCCGAGAATTCCA), 4.8 μl of Taq DNA polymerase, and 877.2 μl of nuclease-

free water. The reaction was thermo-cycled for a total of five cycles (94˚C, 30 s; 60˚C, 30 s;

72˚C, 15 sec) with a preliminary 2-minute hot start at 94˚C and followed by 1 minute at 72˚C.

Then the PCR product was purified using the DNA Clean & Concentrator™-5 kit (Zymo),

eluted with 32 μl of nuclease free water, and size selected (74–88 bp) using 3% agarose Pippin

Prep (Sage Science).

A 10 μl sample of the size selected short PCR product was used to assemble a pilot PCR

reaction for calibration of the required number of cycles for further amplification. The reac-

tion mix added included 2.5 μl of 10 mM (each) dNTPs mix, 3 μl of 50 mM MgCl2, 10 μl of

10x PCR reaction buffer and 0.5 μl of 100 μM 5’-long PCR primer:

(AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA),

0.5 μl of 100 μM 3’ indexed primer:

(CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAA
TTCCA, index is underlined), 0.2 μl of Taq DNA polymerase and 72 μl of nuclease-free water,

and the reaction was split to 8 0.2 ml tubes and cycled 6/8/10/12/14/16/18/20 times (94˚C, 30

s; 60˚C, 30 s; 72˚C, 15 sec) with a preliminary 2 minute hot start at 94˚C and followed by 1

minute at 72˚C. The products were loaded onto a 2.5% agarose gel, size separated by electro-

phoresis and imaged to select the minimal number of cycles enabling visual representation of

the required product. Then 60 μl of the size selected short PCR product were used to assemble

an identical reaction mix at larger volume thermo-cycled for the optimal number of times. To

the 60 μl of size selected product– 15 μl of 10 mM (each) dNTPs mix, 18 μl of 50 mM MgCl2,

60 μl of 10x PCR reaction buffer, 3 μl 0f 100 μM 5’-long PCR primer:

(AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA),

3 μl of 100 μM 3’ indexed primer:

(CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAA
TTCCA, variable index is underlined), 2.4 μl of Taq DNA polymerase and 438 μl of nuclease

free water were added and the reaction was thermo-cycled, followed by DNA Clean & Concen-

trator™-5 kit purification (Zymo Research) purification and elution with 80 μl of nuclease free

water. A 1 μl sample of pure libraries was analyzed for size distribution and concentration

using TapeStation (Agilent), and if a secondary product of empty library was apparent the

libraries were subjected to additional size selection by addition of 84 μl of AMpure XP beads

(Beckman Coulter), followed by elution into 20 μl of nuclease free water. Libraries were
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sequenced on a Illumina HiSeq X Ten. Bcl files were converted to fastq files using bcl2fastq.

Adapters were trimmed using cutadapt v 2.4. and reads were mapped to the known transcrip-

tome using tophat2 [27].

RNA sequencing and qPCR

100 ng total RNA was Ribosomal RNA depleted using the NEBNext1 rRNA Depletion Kit

and cDNA libraries were prepared using the NEBNext1 Ultra™ Directional RNA Library

Prep Kit for Illumina1 (NEB) according to manufacturer’s instructions. cDNA libraries were

sequenced on the Illumina HiSeq 3000, or NovaSeq 6000 platform. Reads were aligned to

human genome version hg38 using STAR (star/2.7.2b) [28]. Cufflinks was used for differential

expression [27]. cDNA for Real-Time PCR was synthesized using the Real-Time PCR High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems 4368814). Real-Time PCR was

performed using the Fast SYBR Green Master Mix (Applied Biosystems 4385610). The follow-

ing primers were used. IFNB1F: AGTAGGCGACACTGTTCGTG, IFNB1R2: AGCCTCCCATT
CAATTGCCA, IFNL1F: GAGGCCCCCAAAAAGGAGTC, IFNL1R5: AGGTTCCCATCGGCCACAT
A, IFNL2F: TCACGCGAGACCTGAATTGT, IFNL2R: TCTCAGGTTGCATGACTGGT, GAPDHF:

CCATGGGGAAGGTGAAGGTC, GAPDHR1: TGATGACCCTTTTGGCTCCC, ACTBF: GTTGT
CGACGACGAGCG, ACTBR: GCACAGAGCCTCGCCTT, NSP1F: ATGGAGAGCCTTGTCCCTGG
and NSP1R: CCCTCCGTTAAGCTCACGC (NSP1 primers were also used for estimating SARS-

CoV2 RNA levels after infection).

Chromatin immunoprecipitation and sequencing

Two 15 cm plates of transfected A549 were crosslinked by adding paraformaldehyde at a

final concentration of 0.75% (Alfa Aesar 43368) for 10 min. Crosslinking was quenched

with 125 mM glycine (final) for 5 min. Cells were washed and collected with PBS and lysed

with 0.5 ml of lysis buffer (50 mM HEPES-KOH pH7.5, 140 mM NaCl, 1 mM EDTA pH

8.0, 1% Triton X-100, 0.1% Sodium Deoxycholate, 0.1% SDS and protease inhibitor cocktail

[cOmplete, Roche]). After sonication using a bath sonicator (Bioruptor, diagenode) for 14

min (medium amplitude, 30 s on, 30 s off) at 4˚C. 0.25 ml of lysate was diluted in RIPA

buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM EDTA pH 8, 1% NP-40, 0.5% Sodium

Deoxycholate, 0.1% SDS, protease inhibitor cocktail) to a volume of 2 ml and IP was per-

formed using 5 μg of anti-H3K9me2 (Abcam, ab32521) or anti-PolII CTD repeat YSPTSPS

(phospho S2) (Abcam, ab5095) for 1 hour at 4˚C. 30 μl of Protein G Dynabeads were equili-

brated in the same buffer and added to the samples for 16 hours at 4˚C under rotation.

Beads were washed once with the following buffers. Low Salt Wash Buffer (0.1% SDS, 1%

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 150 mM NaCl), High Salt Wash Buffer

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 500 mM NaCl), LiCl

Wash Buffer (0.25 M LiCl, 1% NP-40, 1% Sodium Deoxycholate, 1 mM EDTA, 10 mM Tris-

HCl pH 8.0). Elution was performed with 120 μl elution buffer at 30˚C for 15 min with elu-

tion buffer (1% SDS, 100mM NaHCO3). Next, 4.8 μL of 5 M NaCl and 2 μL RNase A/T1

(Thermo EN0551) were added to the eluent and incubated while shaking at 65˚C overnight.

2 μL proteinase K (20 mg/mL) and incubate while shaking at 60˚C for 1 h. Phenol/chloro-

form extraction was performed and the sample was cleaned and concentrated using the

DNA Clean & Concentrator-5 kit Zymo Research, D013). DNA was prepared for sequenc-

ing using the NEBNext Ultra™ II DNA Library Prep Kit for Illumina. Reads were aligned to

human genome version hg38 using STAR (star/2.7.2b) [28] and coverage was calculated

using bedtools [29].
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Mass spectrometry

Silencing of PRRC2B was confirmed by protein mass spectrometry following the PEPPI-MS

protocol [30]. separating lysed cells by SDS/PAGE and used and extracting the proteins from a

relatively broad section of the lane expected to include PRRC2B. Using high sensitivity data

dependent analysis LC/MS/MS mass spectrometry we analyzed the samples and identified

PRRPC2A, PRRPC2B and PRRPC2C in the controlled silenced samples but only PRRPC2A

and PRRPC2C in the silenced. Although this was consistent with our expectations only two

peptides were detected for PRRPC2B in the single sample and the signals were weak. Due to

the sampling problem in data-dependent analysis we were concerned that under sampling

might have led to these peptides being missed in the silenced/deleted sample, so we examined

the raw MS1 data. We were able to align the two samples using the elution times of shared sig-

nals and so examine the spectral features present in the silenced sample and were able to con-

firm that, even with spectral summing, there was no recognizable isotope cluster for the

peptides detected for PRRPC2B in the silenced sample while prominent clusters were present

in the control.

Immunofluorescence

Cells grown in 24 well plates containing Poly-L-Lysin coated coverslips we fixed in 4% parafor-

maldehyde. After permeabilization using 0.15% Triton X-100 cells were incubated overnight

at 4˚C with the Anti-PRRC2B Antibody (1:250 dilution, Atlas Antibodies, HPA064301) fol-

lowed by incubation with secondary antibody (1:500 dilution) conjugated with Alexa Fluor

488 (Thermo Fisher Scientific, Cat# A-11034) and Hoechst 33342 (Invitrogen) labeling. All

samples were imaged by confocal microscopy on a Leica SP5 NLO Confocal Microscope (40x

oil objective) at room temperature using the same settings.

Results

Previous studies indicated that NSP1 globally suppresses host cell mRNA translation by stoi-

chiometrically forming complexes with the mammalian translation machinery [2, 4, 7, 8, 10–

12, 14, 31]. Nevertheless, we and others observed that transgenic expression of some NSP1

constructs resulted in cellular toxicity already at low expression levels [31–33], far from match-

ing ribosome stoichiometry. It proved impossible to generate HEK293 and A549 stable cell

lines expressing untagged NSP1 or NSP1 fused to a short, unfolded FLAG-HA tag (FH, 1.3

kDa). Even in transiently transfected cells using pFRT-TO-DEST plasmid as backbone the

expressed FH-NSP1 transgene remained undetectable by standard Western blotting (Fig 1A).

We were only able to detect NSP1 N-terminally fused to the large, globular GFP tag (~17 kDa),

in the cytoplasm of A549 cells (consistent with the NSP1-ribosome interaction, Fig 1A and

1B). To confirm that our expression construct produced some levels of FH-NSP1, we therefore

concentrated FH-NSP1 by FLAG immunoprecipitation (Fig 1A). We used the same approach

to concentrate any FH-NSP1 from the growth media, which ruled out the possibility NSP1 is

not detected in cell extracts due to secretion (Fig 1A).

The striking difference of expression levels of untagged or FH-tagged NSP1 compared to

NSP1 tagged with a large globular tag leads us to speculate that GFP-tagged NSP1 is either

fully or partially non-functional, as often observed for proteins fused to large tags. Considering

all the above, we restricted our following cell-based assays to a limited time window of 16–24

hours after transient transfection. Taken together, we find that NSP1 function can be strongly

impacted by the choice of affinity tag in cell-based assays. The findings we described in the fol-

lowing suggest a novel role for NSP1 function, manifested at low protein levels that resemble
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NSP1 levels shortly after SARS-CoV2 cell entry when the protein’s copy number is still far

from ribosomal stoichiometry.

To gain insights into the consequences of NSP1 expression on the host cell, we used RNA

sequencing (RNA-seq) and compared mRNA profiles of A549 cells expressing FH-NSP1 with

cells expressing either a GFP control or a previously reported NSP1 mutant (FH-NSP1

K164A/H165A) [16]. Principal Component Analysis (PCA) of mRNA expression profiles

clearly differentiates the transcriptome of NSP1-expressing cells from that of cells expressing

GFP or the NSP1 mutant, regardless of whether rRNA depleted RNA (Fig 1C) or poly-A

Fig 1. NSP1 downregulates steady-state levels of mRNAs encoded by immune-related genes. A.) A549 cells and

their growth medium were collected 16 hours after mock, NSP1-GFP or FH-NSP1 transfection. Growth media and cell

extracts were analyzed by western blot, and samples from FH-NSP1 cells were also used for immunoprecipitation with

anti-FLAG antibodies prior to Western blot analysis using an anti-NSP1 antibody. B.) Confocal fluorescence

microscopy of A549 cells transfected with NSP1-GFP or mock (same transfection and processing in the absence of

DNA). C,D) Principal Component Analysis (PCA) of mRNA profiles after transient transfection of NSP1 and control

GFP or the K164A/H165A NSP1 mutant, obtained by RNA-seq following rRNA depletion (C) or poly-A selection (D).

E.) Gene ontology analysis of transcripts downregulated (�2-fold) upon expression of NSP1. Size of bubble reflects the

number of downregulated genes of the respective categories. F.) Venn diagram of genes downregulated by� 2-fold

upon NSP1 expression compared to expression of the GFP control, using either rRNA depletion or poly-A selection

for mRNA enrichment. Genes shared by the two groups are listed below.

https://doi.org/10.1371/journal.pone.0297262.g001
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selected RNA (Fig 1D) was used as template for RNA-seq. Gene ontology analysis of differen-

tially expressed mRNAs (�2-fold relative to GFP expression, after rRNA depletion) showed

that NSP1 reduced the steady-state mRNA levels of genes implicated in antiviral defense, anti-

gen processing and presentation (MHC-I, TAP independent), cytokine receptor interaction,

and apoptosis (Fig 1E). Sixty-two genes, almost exclusively related to innate immunity were

downregulated by more than 2-fold in both poly-A selected, as well as rRNA depleted RNA-

seq experiments (Fig 1F). To rule out any bias caused by tagging of NSP we also performed

RNA-seq after transfection of untagged NSP1 and observed downregulation of the same 62

genes when compared to either transfection of the nonfunctional untagged NSP1 K164A/

H165A or GFP (S1A Fig). These results clearly link a limited amount of NSP1 with a specific

suppression of host antiviral response in uninfected cells suggesting a role for NSP1 in reduc-

ing antiviral surveillance early during infection (Fig 1E and 1F).

Considering that NSP1 was previously implicated in regulation of translation, we next

assessed the effect of NSP1 expression on translational activity using ribosome footprinting

(Ribo-seq) [20, 34] in A549 cells expressing FH-NSP1 or the GFP control. As expected for

Ribo-seq experiments, typical Ribosome-Protected Fragments (RPFs) were ~29 nt long,

mapped predominantly to mRNA coding sequences (CDS) Fig 2A–2C), and showed the

three-nucleotide periodicity characteristic of translating ribosomes (S1B Fig) PCA indicated

differential clustering of ribosome-protected mRNA footprints in the presence of NSP1 rela-

tive to control expression of GFP (Fig 2D). We noticed that the same mRNAs that were down-

regulated at the abundance level also showed decreased translation after NSP1 expression and

we needed to test whether there was any direct effect of NSP1 on translation, beyond the

already significant changes in mRNA abundance level. Therefore, we next approximated trans-

lation efficiency per mRNA by normalizing the number of ribosome-protected footprints

(RPF) on a given mRNA with its expression level determined by RNA-seq (Fig 2E). We found

no change in the translational efficiency of specific genes after NSP1 expression, indicating

that—at least 24 hours post transfection—NSP1 has a specific effect on the mRNA abundance

of antiviral genes, likely either at the level of transcription or turnover (Fig 2E and 2F).

Initially, we favored the hypothesis that NSP1 selectively degrades antiviral gene mRNAs,

considering previous reports suggested nucleolytic activity of NSP1. Nevertheless, to rule out a

direct effect of NSP1 on transcription we performed RNA Polymerase 2 (PolII) Chromatin

Immunoprecipitation and sequencing (ChIP-seq) in cells expressing FH-NSP1 and used the

inactive FH-NSP1 K164A/H165A mutant [16] as control. Our PolII ChIP-seq experiments

showed the typical chromatin occupancy patterns of actively transcribing PolII, with the

expected peaks of signal close to the transcription start sites (TSS) and continuous PolII signal

across the gene body (Fig 3A). Next, we integrated PolII occupancy and mRNA abundance

changes upon FH-NSP1 expression using Gene Set Enrichment Analysis (GSEA). We found

that PolII occupancy changes correlated well with changes in mRNA levels (Fig 3B), strongly

suggesting that NSP1 modulates transcription itself, rather than affecting downstream pro-

cesses, such as RNA stability or translational efficiency.

We hypothesized that with its low expression 24 hours post transfection, NSP1 likely

exerted its considerable effect on transcription by epigenetically silencing specific genes. A

recent study showed NSP1 interacting with PRRC2B [32], a poorly characterized protein that

has been proposed to regulate translation, and also has been found to interact with EHMT2/

G9a [35–37]. G9a is a Histone H3 Lysine 9 (H3K9) mono- and di- methyl transferase setting

repressive H3K9me and H3K9me2 marks that are known to regulate multiple inflammatory

pathways [38–42]. Most importantly, PRRC2B along with the translation initiation factors

eIF3a/eIF3G and Ribosomal Proteins RPS10/RPS10 are the only proteins among the strong

interactants that lose affinity with the K164A/H165A in both C-terminal and N-terminal
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NSP1 tagging systems (S2A Fig). This implies that any comparison of the WT vs K164A/

H165A may include a PRRC2B-mediatied effect. To assess whether PRRC2B is indeed related

to gene regulation by NSP1, we depleted it using siRNAs and confirmed knockdown by immu-

nofluorescence (S2B and S2C Fig) and label-free quantitative mass spectrometry (S1 Table), as

PRRC2B could not be detected by immunoblot using commercially available antibodies.

PRRC2B knockdown indeed abrogated the NSP1 effect on immune-related mRNAs, com-

pared to control knockdown with scrambled siRNA (Fig 3C), suggesting the possibility that

NSP1 may affect histone methylation by G9a through its interaction with PRRC2B. One impli-

cation of such indirect effect on G9a is that it dispenses the necessity of NSP1 nuclear entry.

Fig 2. Ribosome footprints follow steady state mRNA abundance. A.) Ribo-seq Ribosome-Protected Fragments

(RPFs) are as expected aligned predominantly to protein-coding sequences in a sense-strand specific manner. B.)

Metagene plot showing distribution of ribosome-protected mRNA footprints (RPF) relative to mRNA functional

elements. C.) RPFs length distribution centers on 29 nucleotides (nt). D.) PCA of indicated Ribo-seq experiments. E.)

Comparison of ribosome density (RPFs versus RPKM) after transient transfection of NSP1 and GFP. Ribo-seq

experiments were performed in biological triplicates. F.) Gene set enrichment analysis (GSEA) showing that

NSP1-mediated changes in RPFs correlate to changes in mRNA abundance.

https://doi.org/10.1371/journal.pone.0297262.g002
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As previously mentioned, H3K9 methylation regulates multiple inflammatory pathways

and therefore, we next tested directly whether NSP1 expression influenced H3K9 dimethyla-

tion [38, 39]. ChIP-seq with specific anti-H3K9me2 antibodies yielded the expected pattern of

chromatin modifications at genic loci (S2D Fig). Genes downregulated by NSP1 show higher

levels of the inhibitory H3K9me2 mark after NSP1 transfection (Fig 3D), further supporting

that NSP1 might affect host-cell transcription by epigenetic silencing of immune-related loci.

While it is unclear whether the effect is mediated fully or in part through PRRC2B, our obser-

vations clearly indicate that the effect of NSP1 on gene expression regulation on a global scale

is exerted at the level of transcription.

Given that NSP1 expression alone, in the absence of viral infection, induced H3K9 methyla-

tion and specific downregulation of antiviral mRNAs, we expected that preventing histone

methylation of target genes by the methyltransferase G9a would reverse the NSP1-mediated

suppression of immune-related genes. To test this, we opted for pharmacological inhibition of

G9a by a specific small molecule inhibitor, UNC0638 [43] in the presence of NSP1. RNA-seq

analysis showed that UNC0638 completely abrogated NSP1-mediated downregulation of

immune related genes (Fig 4A). Furthermore, UNC0638 restored the secretion of antiviral

cytokines after stimulation of the interferon pathway by Poly(I:C), which is suppressed by

NSP1 (Fig 4B). These findings support a model for histone methylation playing a major role in

NSP1-mediated immune evasion. To confirm the effect of UNC0638 on the genes regulated

epigenetically by NSP1 we performed CHIP-Seq after treatment. UNC0638 abrogated

Fig 3. NSP1 affects host-cell transcription of immune-related genes via H3K9me2. A.) Meta-analysis of the

distribution of PolII associated chromatin (obtained by PolII ChIP-seq) relative to genomic coordinates of protein-

coding genes (TSS, Transcription Start Site; TES, Transcription End Site). B.) GSEA showing that transcriptionally

downregulated genes (PolII ChIP-seq, orange dots) show decreased transcript levels by RNA-seq after NSP1

expression. C.) Bar graph of log2Fold change values in RNA-Seq data of WT versus NSP1 K164A/H165A transfected

A459 cells after scramble or PRRC2B silencing showing restoration of IFNB1 IFNL1 IFNL2 and IFNL3 expression. D.)

GSEA showing that genes with increased H3K9me2 mark (blue dots) show decreased transcript levels by RNA-seq

after NSP1 expression.

https://doi.org/10.1371/journal.pone.0297262.g003
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deposition of H3K9me2 and not of H3K9me3 marks (Fig 4C). The same set of genes showed

increased transcription after treatment (Fig 4C).

With NSP1 promoting the deposition of repressive histone methylation marks on immune-

related genes, we thought that inhibition of H3K9 methylation could interfere with the life

cycle of SARS-CoV-2. Therefore, we tested UNC0638 in a model of SARS-CoV-2 viral infec-

tion of cultured A549-ACE2 cells. We found that treatment with UNC0638 increased expres-

sion of innate immune genes and reduced the viral load by ~10 fold, measured by RNA-seq

(Fig 5A and 5B) or reverse transcription and quantitative PCR (qPCR) (Fig 5C). Attenuation

of immune evasion was confirmed by qPCR showing an increase in IFNB1 and IFNL3 expres-

sion (Fig 5C). Finally, GSEA showed that UNC0638 treatment in SARS-CoV-2 infected cells

rescued expression of the same transcripts that were downregulated by transient expression of

NSP1 in non-infected cells (Fig 5D). In agreement to our results, UNC0638 mediated inhibi-

tion of EHMT2 has been shown to induce antiviral response against Foot-and-Mouth disease

and Vesicular Stomatitis Virus Infections in bovine cells [44]. Here we provide for the first-

time evidence of viral protein-induced host gene suppression via H3K9 dimethylation.

Discussion

Our results indicate that like many other viral proteins, SARS-CoV-2 NSP1 is multifunctional.

In addition to previously reported functions, including its well-documented role in

Fig 4. UNC0638 abrogates NSP1-mediated downregulation of immune related. A.) Volcano plots showing

suppression of type I and III interferon genes by NSP1 (left panel) and attenuation of the suppression following

UNC0638 treatment. RNA-seq experiments in each condition are biological triplicates. B.) Profiling of secreted

cytokines showing restoration of antiviral genes suppressed by NSP1. C.) Cumulative distribution frequency plots

showing the effect of UNC0638 on H3K9me2 marks (-0.26; p value<0.0001), H3K9me3 marks (-0.06; p value = 0.075)

and PolII occupancy (+0.09; p value< 0.001) on the top genes H3K9me2-enriched after NSP1 expression.

https://doi.org/10.1371/journal.pone.0297262.g004
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translational repression [3–5, 7–16, 31, 45, 46], SARS-CoV-2 NSP1 may suppress host innate

immune genes by epigenetic reprogramming. We propose that early in infection, while still at

low copy number, NSP1 induces G9a-mediated H3K9 methylation of specific host gene loci,

resulting in downregulated transcription of immune-related genes and reduced antiviral sur-

veillance. Epigenetic silencing of antiviral genes early upon infection may cause the discrep-

ancy between the levels of type I/III interferons and proinflammatory cytokines observed in

COVID-19 patients. Compared to influenza patients, induction of both IFN-λ and type I IFNs

is both impaired and delayed in patients with COVID-19 while pro-inflammatory cytokines

are detected at similar levels [47]. This imbalance is the main reason SARS-CoV-2 can delay

antiviral response and persist for a long period of time. Because severe symptoms are caused

by high levels of pro-inflammatory cytokines and tissue damage, it is highly unlikely that inhi-

bition of histone methylation can be used for therapy. However, aerosol-delivered H3K9

methyltransferase inhibitors could potentially have a beneficial effect prior or early after viral

exposure and act as preventive drugs for frontline health-care workers combating an outbreak.

Although UNC0638 has poor pharmacokinetic properties, the related UNC0642 has improved

in vivo characteristics [48].

Conclusions

The fact that expression of a single viral protein alone induced a viral infection specific pheno-

type in the absence of viral infection provides confidence in our conclusions. It is unlikely that

with the low copy numbers we have in our expression system, NSP1 is able to stoichiometri-

cally interact and inhibit the ribosome. The observed changes in translational output measured

by Ribo-seq and RNA-seq can be completely attributed to changes in mRNA levels. We do not

contradict that global translational shutdown occurs at a later point of infection. Nevertheless,

we propose that at the global scale immune-related genes are downregulated at the transcrip-

tional level by NSP1. H3K9me2 marks are associated with heterochromatin and are involved

in chromatin organization unlike transcription factors that can be directly involved in gene

promoter activity [49, 50]. In this study, we show that NSP1 favors H3K9me2 marks either by

Fig 5. The methyltransferase inhibitor UNC0638 inhibits SARS-CoV2 proliferation in A549 cells. A.) IGV plots of SARS-CoV-2 aligned reads from

biological replicates of RNA-seq experiments from SARS-CoV-2 infected cells treated with DMSO or UNC0638. B.) Absolute numbers of RNA-seq reads

aligned to the SARS-CoV-2 (left panel) or the human genome (right panel). C.) qPCR showing reduction of viral RNA and induction of IFNB1 and IFNL3

(n = 3 for each condition). D.) Gene set enrichment analysis (GSEA) showing that transcripts downregulated by FH-NSP1 transfection are induced upon

treatment of SARS-CoV-2 infected A549 cells with UNC0638.

https://doi.org/10.1371/journal.pone.0297262.g005
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inducing dimethylation or by preventing dynamic demethylation during antiviral response.

Consequently, the expression of genes within epigenetically modulated genomic loci are

repressed by NSP1. Antiviral response involves chromatin regulation directly and indirectly by

production of IFNs and thus, further studies are needed to shed light on which of the genes are

primary targets for epigenetic regulation by NSP1 [51]. In addition, during viral infection a

multitude of additional processes alter the cell environment and may reduce the physiological

relevance of our hypothesis. Nevertheless, we show that inhibition of H3K9 methyltransferase

activity using UNC0638 restores antiviral response and inhibits SARS-CoV-2 replication in

A549-ACE2. Similarly, it can induce antiviral response against foot-and-mouth disease and

vesicular stomatitis virus [44]. In addition, H3K9 dimethylation safeguards cancer cells against

activation of the interferon pathway, altogether highlighting the importance of H3K9me2 in

immunomodulatory phenomena [52].
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