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Abstract

Background

The triple negative breast cancer (TNBC) is the most malignant subtype of breast cancer

with high aggressiveness. Although paclitaxel-based chemotherapy scenario present the

mainstay in TNBC treatment, paclitaxel resistance is still a striking obstacle for cancer cure.

So it is imperative to probe new therapeutic targets through illustrating the mechanisms

underlying paclitaxel chemoresistance.

Methods

The Single cell RNA sequencing (scRNA-seq) data of TNBC cells treated with paclitaxel at

different points were downloaded from the Gene Expression Omnibus (GEO) database.

The Seurat R package was used to filter and integrate the scRNA-seq expression matrix.

Cells were further clustered by the FindClusters function, and the gene marker of each sub-

set was defined by FindAllMarkers function. Then, the hallmark score of each cell was calcu-

lated by AUCell R package, the biological function of the highly expressed interest genes

was analyzed by the DAVID database. Subsequently, we performed pseudotime analysis to

explore the change patterns of drug resistance genes and SCENIC analysis to identify the

key transcription factors (TFs). Finally, the inhibitors of which were also analyzed by the

CTD database.

Results

We finally obtained 6 cell subsets from 2798 cells, which were marked as AKR1C3+,

WNT7A+, FAM72B+, RERG+, IDO1+ and HEY1+HCC1143 cell subsets, among which the

AKR1C3+, IDO1+ and HEY1+ cell subsets proportions increased with increasing treatment

time, and then were regarded as paclitaxel resistance subsets. Hallmark score and pseudo-

time analysis showed that these paclitaxel resistance subsets were associated with the

inflammatory response, virus and interferon response activation. In addition, the gene regu-

latory networks (GRNs) indicated that 3 key TFs (STAT1, CEBPB and IRF7) played vital
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role in promoting resistance development, and five common inhibitors targeted these TFs

as potential combination therapies of paclitaxel were identified.

Conclusion

In this study, we identified 3 paclitaxel resistance relevant IFs and their inhibitors, which

offers essential molecular basis for paclitaxel resistance and beneficial guidance for the

combination of paclitaxel in clinical TNBC therapy.

Introduction

Breast cancer is regarded as the most common malignancy diagnosed in women worldwide [1,

2], accounting for approximately 25% of all cancer cases [3]. Immunohistochemical analysis

defined five major intrinsic or molecular subtypes of breast cancer based on the expression of

estrogen and progesterone receptors (ER/PR) status [4], including the Luminal A (40%),

Luminal B (20%), HER2-enriched (10–15%), Normal-like (2–8%) and Triple Negative (15–

20%) [2, 5]. Among which, the triple negative breast cancer (TNBC) was characterized by the

highest mortality and proliferative rate [6], higher early recurrences rate, distant metastases

and poor outcomes [7], accompanied with lacked expressions of ER, PR and human epidermal

growth factor receptor-2 (HER2) [8]. TNBC posed a greatly threat to women’s health due to

the enormous heterogeneity and the absence of available molecular targets [9]. Due to this het-

erogeneity, large tumors may contain multiple cells with different molecular characteristics

and displaying different sensitivity to treatment [10], which has been demonstrated to be the

main reason for drug resistance in breast cancer therapy [11]. Clinically, TNBC tumor presents

most commonly biological aggressive ductal carcinoma [12] and tend to be larger size, higher

grade at diagnosis and involves lymph node [13]. Although the TNBC with aggressive feature,

about 20% patients exhibited a pathologic complete response (pCR) after pre-operative che-

motherapy [14]. However, TNBC patients without pCR suffering from early recurrence and

metastatic death were several times of these non-TNBC patients [15]. Overall, TNBC patients

had better PCR rate and a distinctly inferior overall survival compared with these non-TNBC

patients, termed as “triple negative paradox” [15], which could be due to the majority TNBC

patients become resistant during treatment. Thus, it is crucial to discover novel molecular tar-

gets and develop new therapeutic strategies by enlightening the mechanisms of

chemoresistance.

Chemotherapy remains currently the chief systemic treatment option for TNBC patients

[16, 17], under the fact that many TNBC patients miss the surgical window at the time of late

diagnosis [18] as well as display resistance to immunotherapy with no appropriate responsive

predictor [19]. However, chemotherapy resistance also represents a tremendous hurdle for

successful cancer cure [20], especially in the metastatic setting, which is responsible for 90%

therapy failure [21]. The intrinsic drug resistance usually exists prior to drug application, the

sensitive cells were selectively eliminated, promoting the growth and proliferation of resistant

cells [22]. However, the acquired resistance referred to that a subset of cells occurred the

genetic or epigenetic events of no response to drug exposure, leading to their survival and

expansion [23]. For instance, the T790M acquired mutations in Epidermal Growth Factor

Receptor (EGFR) were associated with resistance to the tyrosine kinase inhibitors inhibitor

(afatinib, erlotinib and gefitinib) in lung cancer [24]. In another way, the non-genomic “adap-

tive resistance” is usually associated with tumor relapse and involved the rewiring of the
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signaling or transcriptional networks to escape drugs inhibition [25]. The signaling rewiring of

adaptive resistance was caused by the perturbation of cross-talk and feedback regulatory loops,

eventually leading to bypass the drug inhibition and rapidly induce chemotherapy resistance

[26].

The diverse resistance mechanisms to targeted therapies robustly indicated that monother-

peutic agents may not have good effect, while the combination therapies of two or more drugs

is promising in improving the effectiveness of treatment and prevent the drug resistance [27].

The progress in seeking specific drugs for TNBC is slow, and paclitaxel-based therapeutic

schedule is still the first-line for TNBC treatment [28, 29]. Paclitaxel is a microtubule stabilizer

that inhibits cell mitosis [30]. However, a significant number of patients develop resistance

after a period of paclitaxel treatment [31] because of aforemented resistance mechanisms. For

example, PPP1R14B could facilitate paclitaxel resistance in TNBC patients [32]. Therefore,

exploring novel therapeutic targets that drive progression and paclitaxel chemoresistance and

combination of paclitaxel with target inhibitors have potential clinical application value.

In this study, we conducted a comprehensive analysis of scRNA-seq data of TNBC cells

treated with paclitaxel at different points (24 and 72h) to explore the potential resistance mech-

anisms to paclitaxel. Firstly, the paclitaxel resistance subsets were identified. Secondly, pathway

analysis and pseudotime analysis were conducted on these paclitaxel resistance subsets. Then,

the genes regulatory networks (GRNs) analysis was performed to identify crucial regulons that

promoted paclitaxel resistance. Finally, five drugs were identified via Comparative Toxicoge-

nomics Database (CTD) and could be used as combination therapies of paclitaxel to improve

the survival outcome of patients with TNBC.

Material and methods

Data acquisition

The dataset of GSE139129 was downloaded from the Gene Expression Omnibus database

(GEO, https://www.ncbi.nlm.nih.gov/gds/) [33, 34], including the TNBC cell lines (HCC1143)

treated with paclitaxel for 24 and 72 hours respectively were set as experimental groups. Cells

treated with dimethyl sulfoxide (DMSO) for 24 and 72 hours respectively were set as control

group. Then the samples were performed the single-cell RNA-sequencing (scRNA-seq) using

the Illumina NextSeq 500. The informed consent was not required because this article does

not contain any studies with human participants. And all data from publicly available

databases.

Data preprocessing

The Seurat R package was used to read the scRNA-seq expression matrix [35], removing cells

with a mitochondrial ratio > = 10%. SCTransform function was used to normalize the data

[35], the harmony R package was used to remove batch effects between samples [36] after prin-

cipal component analysis (PCA) dimensionality reduction. Then the top 20 principal compo-

nents were used for Uniform Manifold Approximation and Projection for Dimension

Reduction (UMAP) [37], the FindNeighbors and FindClusters function (resulotion = 0.04)

was further performed for the unsupervised clustering [38].

Identification of marker genes among cell subsets

To explore the heterogeneity of each cell subsets, the FindAllMarkers function was used to cal-

culate the differentially expressed genes (DEGs) among cell subsets (setting min.pct = 0.25,
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only.pos = T and logfc.threshold = 0.25) [39], and annotated the gene markers of each subset

via CellMarker databse based on the specially highly expressed genes.

Gene function enrichment analysis

We uploaded these highly expressed differential genes to the Database for Annotation, Visuali-

zation and Integrated Discovery (DAVID, https://david.ncifcrf.gov/) website [40] and explored

the biological function of these cell subsets.

Hallmark enrichment score

We downloaded the hallmark gene set“h.all.v2023.1.Hs.symbols.gmt” from the Molecular Sig-

natures Database (MSigDB) database [41], and calculated the hallmark enrichment score of

each cell through the AUCell R package [42].

Pseudotime analysis

We performed the monocle2 R package to read the counts expression matrix, and incorpo-

rated the cell phenotypic information [43]. Then the newCellDataSet function was used to

construct the CellDataSet (cds) object, which includes the expression matrix, phenoData (cell

phenotype) and featureData (gene annotation), the genes expressed in fewer than 10 cells were

removed [43]. Subsequently, the FindAllmarkers function was used to identify the DEGs

between the Control (24h), Treated (24h) and Treated (72h) groups (filter criteria:

log2FC>0.25 and p_adj<0.01) [39], these DEGs were incorporated into the cds object through

the setOrderingFilter function for trajectory construction [43]. The reduceDimension function

was used for the dimensionality reduction of cds object (setting max_components = 2 and

method = “DDRTree”), the orderCells function was used to complete ordering the cells and

trajectory construction in pseudotime (setting Control(24h) as the trajectory start point) [43].

Lastly, we used the differentialGeneTest function to find the differential genes that change as a

function of pseudotime (setting fullModelFormulaStr = “~sm.ns(Pseudotime)” and qval

<0.01) [44], the plot_pseudotime_heatmap function was used to visualize these pseudotime-

dependent genes, in which the interest genes were further used for scatter plot visualization

through the plot_genes_branched_pseudotime function [44].

SCENIC analysis

The cellular heterogeneity is caused by the specific transcriptional state, which is determined

and maintained by transcription factors (TFs)-dominated gene regulatory networks (GRNs)

[45]. Therefore, analyzing of single-cell GRNs is helpful to understand the biological signifi-

cance behind cell heterogeneity. The Single-cell regulatory network inference and clustering

(SCENIC) analysis is an GRNs algorithm, which introduced the motif sequence of transcrip-

tional factor and co-expression analysis to establish the GRNs model [46]. The GENIE3 R

package was used to screen genes co-expressed with TFs [47], RcisTarget R package was used

for TFs motif analysis to identify the regulons (TF and target genes pair) [48], the top5perTar-

get was used to construct the TFs regulatory network and the AUCell function was used to

assess the regulons activity score [49], which reflected the intensity of TFs regulation on its tar-

get genes.
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Identification of transcription factor inhibitor

Comparative Toxicogenomics Database (CTD, http://ctdbase.org/) is a useful tool of exploring

disease-drugs-genes relationship [50]. We searched for and downloaded compounds that tar-

geted paclitaxel resistance-related TFs, and identified the common inhibitors of these TFs.

Statistical analysis

All statistical analysis and visualization were completed by using R software (version 4.3.1).

The Pearson method was used to perform the correlation analysis between the hallmark score

and pserudotime. Sangerbox (http://sangerbox.com/home.html) also provided some necessary

auxiliary analyses in our study. For statistical data, a p value < 0.05 was considered as statisti-

cally significant.

Results

Single cell profile and paclitaxel-resistant subsets analysis

A total of 6 cell subsets (including 2798 cells) were identified after that scRNA-seq data were

filtered, normalized, integrated, clustered and annotated (Fig 1A). Based on the highlight

expression genes (Fig 1B), they were defined as the AKR1C3+, WNT7A+, FAM72B+, RERG+,

IDO1+ and HEY1+ HCC1143 cell subsets. We counted the proportion of each cell subset in

control group and experimental group and found that the proportion of AKR1C3+, IDO1

+ and HEY1+ cell subsets was higher in 72h treated group than that in 24h treated group (Fig

1C). Specially, the proportion of AKR1C3+HCC1143 cells increased markedly as the extension

of paclitaxel treatment time (Fig 1D). Thus, the AKR1C3+, IDO1+ and HEY1+ HCC1143 cells

were selected as paclitaxel-resistant subsets, and their dynamic changes of gene expression pat-

terns were further analyzed.

Pathway difference and function enrichment among paclitaxel-resistant

subsets

To elucidate the cancer-related pathways enrichment difference of these paclitaxel-resistant

subsets, we calculated the hallmark enrichment score (median) of each cell subset and found

that the apoptosis, bile acid metabolism, interferon response, heme metabolism and reactive

oxygen species (ROS) pathways in AKR1C3+ cell subset was significantly activated (Fig 2A).

The hormone response, cholesterol homeostasis, IL2-STAT5 signaling, KRAS signaling up,

epithelial mesenchymal transition pathways in IDO1+ cell subset were significantly activated

(Fig 2A). The mTORC1 signaling, hypoxia, UV response up and TGF-β signaling pathways in

HEY1+ cell subset was significantly activated (Fig 2A). In addition, we found that 692 highly

expressed differential genes in AKR1C3+ cell subset were enriched in inflammatory response,

interferon-γ signaling and ROS pathways (Fig 2B). 851highly expressed differential genes in

the IDO1+ cell subset were enriched in cell migration, angiogenesis, stem cell proliferation,

estrogen response pathways (Fig 2C). 1906 highly expressed differential genes in the HEY1

+ cell subset were enriched in cell division, cell cycle, DNA damage stimulation, epidermal

growth factor stimulation of cellular responses pathway (Fig 2D). The detailed pathway analy-

sis results could be seen in S1 Table.

Pseudotime analysis of AKR1C3+ HCC1143 cells

In order to further explore the dynamic change of gene expression pattern of AKR1C3

+HCC1143 cells with the extension of paclitaxel treatment time, we performed the pseudotime
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analysis. The control(72h) group was excluded from the data to eliminate the influence of cul-

ture time on the expression pattern of tumor cells, and the Control(24h) cells acted as the tra-

jectory start point (Fig 3A). The results showed that the cells treated with paclitaxel (24h) had

an obvious trend of differentiation towards 72h paclitaxel treatment (Fig 3A). With the pro-

longation of pseudotime, the expression levels of defense to virus, response to interferon-

alpha, response to interferon-gamma and other inflammatory response-related genes

Fig 1. Single cell profile and paclitaxel-resistant subsets analysis. (A) UMAP dimensionality reduction map of HCC1143 cell clusters. (B) Violin plot of

marker gene expression level in each cell subset. (C) The proportion of each cell subset in different samples. (D) The proportion of each cell subset in

control, 24h treated, and 72h treated groups.

https://doi.org/10.1371/journal.pone.0297260.g001
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increased gradually (Fig 3B). On the contrary, the expression levels of genes related to cell

cycle, DNA repair, DNA biosynthesis, and vascular endothelial cell migration gradually

decreased (Fig 3B). In addition, we performed the Pearson correlation analysis between the

hallmark enrichment score and pseudotime, and found parallel results. The hallmark score of

response to interferon-gamma and other inflammatory response-related pathway displayed a

significantly positive correlation with pseudotime (Fig 3C). Significantly different interest

genes, such as chemokine CXCL8 [51], interferon induced protein IFIT2 [52], and oxidative

stress protein SOD2 expression gradually increased with pseudotime, while the expression of

translation factor EIF5A [53] and marker of proliferation Ki-67 (MKI67) [54] showed a down-

ward trend with pseudotime (Fig 3D), this may be correlated with their biological function.

Fig 2. Function enrichment among paclitaxel-resistant subsets. (A) Heatmap of the median hallmark enrichment score for each cell subset. (B) The

biological process of highly expressed differential genes in AKR1C3+ HCC1143 cells. (C) The biological process of highly expressed differential genes in

IDO1+ HCC1143 cells. (D) The biological process of highly expressed differential genes in HEY1+ HCC1143 cells.

https://doi.org/10.1371/journal.pone.0297260.g002
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Fig 3. Pseudotime analysis of AKR1C3+ HCC1143 cells. (A) Differentiation trajectory of AKR1C3+HCC1143 cells from 24h control to 24h treatment

to 72h treatment. (B) Heatmap of pseudotime related gene expression. (C) The Pearson correlation between the Hallmark score and pseudotime pathway.

(D) Scatter plot of Pseudotime-related gene expression at different treatment groups.

https://doi.org/10.1371/journal.pone.0297260.g003
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The results implied that paclitaxel may activate the inflammatory response and reduce the pro-

liferation ability of AKR1C3+HCC1143 cell lines, which was an interesting phenomenon and

needed further validation in other cell subsets.

Pseudotime analysis of IDO1+HCC1143 cells

The same method was used to construct the differentiation trajectory of IDO1+HCC1143 cells

(Fig 4A), the control cells had a trend of diverges into two directions (24h and 72h paclitaxel

treatment). In particular, with pseudotime prolongation, the expression levels of defense to

virus, response to interferon-gamma, inflammatory response to interferon-gamma, inflamma-

tory response and MAPK cascade -related genes increased gradually (Fig 4B), the expression

levels of genes related to cell division, DNA repair and DNA replication were gradually

decreased (Fig 4B). In the correlation analysis, the hallmark score of interferon, apoptosis, and

inflammatory response showed significantly positive correlation with pseudotime (Fig 4C).

The key interest genes, such as the chemokine CXCL8, inflammatory regulatory factor

NFKBIA and MAP3K8 expression were gradually increased with pseudotime, while the cell

cycle-regulated kinase AURKA [55] and MKI67 were gradually decreased with pseudotime

(Fig 4D).

Pseudotime analysis of HEY1+HCC1143 cells

We constructed the differentiation trajectory of HEY1+HCC1143 cells to explore the dynamic

change of gene expression pattern (Fig 5A), the results showed the control cell had an obvious

differentiation trend of 72h paclitaxel treatment. Specially, we found that the expression levels

of genes enriched in defense to virus, immune response, type I interferon signaling pathway

expression levels were gradually raised (Fig 5B). However, the expression level of positive regu-

lation of double-strand break repair related genes in chromatin organization were gradually

decreased (Fig 5B). The hallmark score of TNFA signaling via NFKB, P53 pathway, interferon

gamma response exhibited distinctly positive correlation with pseudotime (Fig 5C), while the

hallmark score of DNA repair, E2F targets, oxidative phosphorylation displayed markedly neg-

ative correlation with pseudotime (Fig 5C). The key interest genes, such as histocompatibility

complex protein B2M [56], chemokine CXCR4 and interferon induced protein IFIH1 were

gradually increased with pseudotime, while the cell cycle-regulated kinase AKT1 [57] and

MKI67 expression were gradually decreased with pseudotime (Fig 5D)

Identifying of transcription factor among paclitaxel-resistant subsets

To identify the paclitaxel-resistant TFs, we conducted the SCENIC analysis to find the poten-

tial regulons and calculated the AUCell activity score of each regulon in the AKR1C3+-

HCC1143 cells, IDO1+HCC1143 cells and HEY1+HCC1143 cells. Then, we analyzed the

Pearson correlation between the regulon and pseudotime and found that TFs such as STAT1,

IRF7, CEBPB, STAT2 and ATF4 in these cell subsets were significantly positively correlated

(Fig 6A–6C). We focused on the top 2 TFs with the highest correlation in each cell subset, the

results showed that STAT1 and its target genes involved in the defense response to virus,

response to interferon-gamma and type I interferon signaling process (Fig 6D). CEBPB and its

target genes involved in regulation of cell proliferation, inflammatory response and apoptotic

process (Fig 6E). IRF7 regulation network was involved in defense response to virus, response

to interferon-gamma, type I interferon and positive regulation of NF-kappaB signaling process

(Fig 6F).
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Fig 4. Pseudotime analysis of IDO1+ HCC1143 cells. (A) Differentiation trajectory of IDO1+HCC1143 cells from 24h control to 24h treatment to 72h

treatment. (B) Heatmap of pseudotime related gene expression. (C) The Pearson correlation between the Hallmark score and pseudotime pathway. (D)

Scatter plot of Pseudotime-related gene expression at different treatment groups.

https://doi.org/10.1371/journal.pone.0297260.g004
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Fig 5. Pseudotime analysis of HEY1+ HCC1143 cells. (A) Differentiation trajectory of HEY1+HCC1143 cells from 24h control to 24h treatment to 72h

treatment. (B) Heatmap of pseudotime related gene expression. (C) The Pearson correlation between the Hallmark score and pseudotime pathway. (D)

Scatter plot of Pseudotime-related gene expression at different treatment groups.

https://doi.org/10.1371/journal.pone.0297260.g005
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Identifying inhibitor of paclitaxel resistance-related TFs

Finally, we uploaded these genes STAT1, CEBPB and IRF7 to the CTD database, and found

five drugs: Genistein, bisphenol A, Benzopyrene, Tetrachlorodibenzodioxin and monomethy-

larsonous acid as inhibitors targeting these TFs (Fig 7). These five drugs may further expand

the strategy of combining paclitaxel with other drugs to treat triple-negative breast cancer.

Discussion

TNBC is the most malignant subtype of breast cancer with high degree of aggressiveness [58].

In this study, we conducted a comprehensive analysis of scRNA-seq data of TNBC cells treated

Fig 6. Identifying of transcription factor among paclitaxel-resistant subsets. (A) The Pearson correlation between regulon score and pseudotime

pathway in the AKR1C3+HCC1143 cells. (B) The Pearson correlation between regulon score and pseudotime pathway in the IDO1+HCC1143 cells. (C)

The Pearson correlation between regulon score and pseudotime pathway in the HEY1+HCC1143 cells. (D) The regulatory network of STAT1. (E) The

regulatory network of CEBPB. (F) The regulatory network of IRF7.

https://doi.org/10.1371/journal.pone.0297260.g006
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with paclitaxel at different points (24 and 72h) to explore the potential resistance mechanisms

of TNBC cells to paclitaxel. Firstly, 6 cell subsets AKR1C3+, WNT7A+, FAM72B+, RERG+,

IDO1+ and HEY1+HCC1143 cells were annotated, among which AKR1C3+, IDO1+ and

HEY1+ cells were regarded as paclitaxel resistance subsets. Finally, we identified STAT1,

CEBPB and IRF7 as key TFs for paclitaxel resistance in TNBC therapy. And their inhibitors

such as bisphenol A and Benzopyrene could be used as combination therapies of paclitaxel to

improve the survival outcomes of patients with TNBC.

In three paclitaxel resistance subsets, their marker genes conferred the cells to paclitaxel

resistance through different signaling pathways. AKR1C3 is known as an aldo-keto reductase

[59], which could be used the Nicotinamide Adenine Dinucleotide Phosphate (NADP) as a

coenzyme to reduce anthracyclines to hydroxyl metabolites, causing tumors to develop resis-

tance to carbonyl-containing drugs such as doxorubicin and daunorubicin [60]. The

Fig 7. Identifying of transcription factor inhibitors. Venn plot of transcription factor inhibitors.

https://doi.org/10.1371/journal.pone.0297260.g007
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anthracycline induced the tumor apoptosis through reactive oxygen species (ROS) activation,

while the malignant cells become drug-resistant by upregulating the AKR1C3 to reduce ROS

activity [61]. In addition, the overexpression of AKR1C3 may lead to the loss of tumor sup-

pressor genes PTEN and activate the PI3K/AKT pathway, which eventually induces cell prolif-

eration and avoids apoptosis [62]. Interestingly, these functions were also well predicted in

AKR1C3+ HCC1143 cell pathway analysis. IDO1 is a tryptophan metabolizing enzyme and

mediates the tryptophan depletion to escape cytotoxic T cell killing, as a core element in

tumor-promoting inflammation [63], the IDO inhibitor therapy have confirmed that IDO1

reduces the role of tumor immune response [64]. Additionally, newly published papers

revealed that IDO1 also could facilitate tumor neovascularization by disturbing local innate

immunity [65]. HEY1 as a transcriptional suppressor associated with cell division is involved

in the epithelial-mesenchymal transition (EMT), which benefits the migration, invasion and

anti-apoptosis of tumor cells [66]. Moreover, the HEY1 as the signaling downstream target of

Notch also activates the PI3K/AKT pathway to promote migration and invasion [67]. Based

on above studies, these cell subgroups may play different role in paclitaxel resistance. The

AKR1C3+ cells could catalyze the paclitaxel to the non-toxic hydroxyl metabolites, accompa-

nied with activated ROS and inflammation; the IDO1+ cells may inhibit T cell function by

consuming tyrosine and HEY1+ cells enhanced the cell proliferation to promote tumor sur-

vival. Collectively, they contributed to paclitaxel resistance in tumor cells through complex sig-

naling rewiring and interaction.

We calculated the hallmark score of these paclitaxel resistance subsets, the AKR1C3+ and

HEY1+ cell subsets had the similar enrichment pathway, in which the hormone, interferon

and inflammatory response, apoptosis, P53 pathway and the fatty acid metabolism pathway

were significantly activated. As we all known that inflammation is a host’s protective response

to infection and tissue damage, however, the inflammation is also an important hallmark of

cancer progression. In the context of cancer, in contrast to wound healing where immune cell

recruitment and epithelial cell proliferation subside, DNA is destroyed by the tumor microen-

vironment and the growing tumor is in a state of constant stress [68]. The stress response pro-

moted the activation of bypass and alternative signaling pathways [69], leading to the pro-

tumor signaling pathways TNFA signaling via NFKB, IL6-JAK-STAT3 signaling and

IL2-STAT5 signaling were strongly activated, this mechanism of promoting paclitaxel resis-

tance also appears in vitro.

Common drug resistance refers to the initial sensitivity of tumor cells to chemotherapy

drugs. After a period of time, due to chemotherapy drugs inducing the body to produce some

resistance genes, tumor cells evolving, or gene mutations occurrence, leading to resistance to

chemotherapy drugs [70]. Researches have disclosed that the progression of TNBC chemore-

sistance is complex, involving in interactions among tumor microenvironment, drug efflux,

tumor stem cells [71], and bulk tumor cells, which are manipulated by kinds of signals. Fur-

thermore, TNBC’s high heterogeneity is a major brake to successful therapy [72, 73]. Through

scRNA-seq analysis, we identified three paclitaxel-resistant IFs STAT1, CEBPB, and IRF7. Sig-

nal transducer and activator of transcription 1 (STAT1) is a cancer associated gene, which is

involved in the cytokines (interferon-α/γ and interleukin-6) and growth factor response [74].

When external stimulation signals were transmitted into the cytoplasm, the STAT1 is phos-

phorylated and dimerized, and as an activating transcription factor, it entered the nucleus to

enhance targeted genes transcription. Some studies reported that activation of STAT1 could

promote the apoptosis of tumor cells [75], while another studies reported that high levels of

ROS promote JAK2 phosphorylation, leading to the pJAK2-STAT1 signaling mediated anti-

apoptosis of tumor cells [76], this may explain why high levels of inflammation promote drug

resistance in tumor cells. Additionally, Fludarabine, a well-known STAT1 inhibitor has been
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adopted for clinical lymphodepleting chemotherapy asiatance [77, 78]. CEBPB is an important

cytokines response transcription factor, the chemokines CXCL12 induced recruitment of

Tregs via CEBPB/NF-κB signaling to promote drug resistance [79], thus the inhibition of

CEBPB benefited the tumor treatment. Homoharringtonine, a kind of alkaloid, could be

regarded as the inhibitor of CEBPA, because it could repress the synthesis of CEBPA and

decrease CEBPA protein levels, which may possibly be the mechanism of Homoharringtonine

in CEBPA-double-mutant acute myeloid leukemia [80]. Interferon regulator factor 7 (IRF7)

stimulates the transcription of interferon genes, which ultimately triggers an interferon

response [81], while the high production of interferon will increase the degree of inflammatory

response and promote paclitaxel resistance in TNBC. MyD88 [82] and TARBP2 [83] are two

newly found inhibitors for IRF7, which are worth further research in the future. Collectively,

these three genes could be the resistance genes for paclitaxel in TNBC treatment, and their

mutation need deep research in the future. The limitations of this study lies in lack of web

experiment to validate the functions of paclitaxel resistance related TFs. In the future, we plan

to preliminarily conduct cell experiment to detect the expression levels of these TFs in TNBC

cells. Then we silence highly expressed TFs, and treat cells with different concentrations of pac-

litaxel to assess cell cytotoxicity by calculating half maximal inhibitory concentration. Overall,

these three key TFs could be the potential therapeutic targets, and their practical role will be

further confirmed in clinical treatment.

Conclusion

Collectively, three paclitaxel resistance relevantTFs STAT1, CEBPB and IRF7 were identified,

and they shared 5 common inhibitors (Genistein, bisphenol A, Benzopyrene, Tetrachlorodi-

benzodioxin and monomethylarsonous acid). Our study provides fundamental molecular

clues for the mechanism of paclitaxel resistance and helpful instrument for the combination of

paclitaxel therapy to improve chemotherapy efficacy of TNBC patients.
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