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Abstract

Fuzzy graphs are very important when we are trying to understand and study complex sys-

tems with uncertain and not exact information. Among different types of fuzzy graphs, cubic

fuzzy graphs are special due to their ability to represent the membership degree of both ver-

tices and edges using intervals and fuzzy numbers, respectively. To figure out how things

are connected in cubic fuzzy graphs, we need to know about cubic α−strong, cubic β−strong

and cubic δ−weak edges. These concepts better help in making decisions, solving problems

and analyzing things like transportation, social networks and communication systems. The

applicability of connectivity and comprehension of cubic fuzzy graphs have urged us to dis-

cuss connectivity in the domain of cubic fuzzy graphs. In this paper, the terms partial cubic α
−strong and partial cubic δ−weak edges are introduced for cubic fuzzy graphs. The bounds

and exact expression of connectivity index for several cubic fuzzy graphs are estimated.

The average connectivity index for cubic fuzzy graphs is also defined and some results per-

taining to these concepts are proved in this paper. The results demonstrate that removing

some vertices or edges may cause a change in the value of connectivity index or average

connectivity index, but the change will not necessarily be related to both values. This paper

also defines the concepts of partial cubic connectivity enhancing node and partial cubic con-

nectivity reducing node and some related results are proved. Furthermore, the concepts of

cubic α−strong, cubic β− strong, cubic δ−weak edge, partial cubic α−strong and partial cubic

δ−weak edges are utilized to identify areas most affected by a tsunami resulting from an

earthquake. Finally, the research findings are compared with the existing methods to dem-

onstrate their suitability and creativity.

1 Introduction

Graph theory is a vital field in various domains including mathematics, engineering, physics,

social sciences, biology, computer science and linguistics, etc. The notion of a fuzzy graph

arises from the idea that networks can sometimes be unclear or uncertain. This is an important

field of research. Traditional graphs are limited when it comes to capturing the uncertain

nature of network measurements, like strong connections, accomplished individuals and
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influential figures in social networks. Fuzzy graphs, on the other hand, provide a better repre-

sentation of these less clear aspects. The existence of uncertainty in certain aspects of graph

theory problems has led to the development of fuzzy theory. In 1965, Zadeh [1] introduced the

concept of fuzzy set (FS) theory as an extension of the classical notion of a set which provided

a mathematical approach for decision-making problems using fuzzy descriptions. Building on

this idea, Rosenfeld [2], Yeh and Bang [3] introduced fuzzy graph (FG) theory in 1975, utiliz-

ing the concept of FS and graph theory. Fuzzy graphs (FGs) have found numerous applications

in various fields including broadcast communications, artificial reasoning, data hypothesis,

neural systems, etc. Nawaz and Akram [4] introduced information system for a Pythagorean

fuzzy soft set. Nawaz and Akram [5] gave the idea of competition graph and economic compe-

tition graph in fuzzy soft theory. Rashmanlou et al. [6] discussed the types of isomoprhism for

irregular bipolar fuzzy graphs. Akram et al. [7] introduced innovative idea of complex Pythag-

orean fuzzy threshold graphs. Zeng et al. [8] discussed the concept of maximal product on two

strong-(SVNGS) and maximal product of connected-SVNG. Broumi et al. [9] introduced the

concept of Fermatean neutrosophic graphs and presented some operations on Fermatean neu-

trosophic graphs. Broumi et al. [10] determined the shortest path using an ant colony optimi-

zation algorithm with single value triangular neutrosophic numbers as arc weights. FG theory

is a broad and significant concept in today’s research landscape. The fundamental and crucial

aspect within this field revolves around connectivity. Connectivity is a fundamental and criti-

cal concept in the field of fuzzy graph theory. It plays an important role in our life problems

e.g., potential flow problems, network routing etc. Mathew and Sunitha [11, 12] analyzed the

concepts of edge, vertex and cycle connectivity. Banerjee [13], Tong and Zheng [14] also pro-

vided several algorithms for determining the connectivity of a FG. Different connectivity mea-

sures including connectivity index, Wiener index, domination number, topological indices,

etc. are discussed in [15–18]. Measures of connectivity in rough fuzzy network models were

studied by Akram and Zafar [19]. Hameed et al. [20] presented a new model of complex fuzzy

threshold graph. Binu et al. [21] studied the connectivity index (CI1) of FGs and its applica-

tion in human trafficking. Akram et al. [22] discussed the connectivity indices of m-polar

fuzzy network model. They utilized these indices in a product manufacturing problem. In

2009, Mathew and Sunitha proposed the concept of different types of arcs including α-strong,

β-strong and δ-edges in FG [23]. After that, in 2011, Karunambigai et al. [24] introduced dif-

ferent types of arcs in intuitionistic fuzzy graphs (IFGs). In 2021, Akram et al. [25] presented

the concept of strong edges for m-polar FGs. Rao et al. [26] introduced the concept of different

types of arcs in intuitionistic fuzzy graph. The connectivity index (CI1) for IFGs was studied

by Naeem et al. [27], in 2021. Interval-valued fuzzy set (IVFS) an extension (the concept of

fuzzy set by allowing membership degree to be expressed as interval instead of single point)

was introduced by Zadeh [28]. In 2011, Akram and Dudek [29] defined different fuzzy graph

operation on IVFGs. In 2020, Talebi et al. [30] also introduced new concepts of interval-valued

intuitionistic fuzzy graphs (IVIFG). Rashmanlou and Jun [31] discussed complete IVFG.

Talebi et al. [32] discussed interval-valued intuitionistic fuzzy competition graph of an inter-

val-valued intuitionistic fuzzy digraph. Self centered IVFGs were discussed in [33]. Broumi

et al. [34] introduced the interval-valued fermatean neutrosophic set, which deals with partial

ignorance in true, false or uncertain regions independently for multi-decision processe.

In 2012, the concept of cubic fuzzy sets (CFSs) which combines IVFS and FS to provide a

more general way of handling uncertainty, was introduced by Jun et al. [35]. They also defined

some basic properties and operations enabling the use of CFSs in decision making to solve

problems involving uncertain data. Cubic fuzzy sets offer distinct advantages over other types

of fuzzy sets, like interval-valued or general fuzzy sets. Their unique shape and parameters pro-

vide exceptional flexibility in modeling uncertainty. They enable a more precise representation
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of intricate relationships within a specific domain. By enhancing decision-making and reason-

ing abilities, cubic fuzzy sets become invaluable tools in various fields that rely on accurately

modeling uncertainty. The notion of cubic fuzzy graphs (CFGs) (by applying the CFS on

graph) was presented by Rashid et al. [36] and Muhiuddin et al. [37]. Muhiuddin et al. [38]

worked on cubic Pythagorean fuzzy graphs (CPFGs) and introduced certain fundamental oper-

ations such as semi-strong product, lexicographical product and symmetric difference of two

CPFGs. Cubic planar graphs were investigated bu Muhiuddin et al. [39]. They utilized it in

road network problem. Krishna et al. [40] worked on properties of an edge in regular CFG.

Senapati et al. [41] presented the idea of of cubic sets in UP-subalgebras and consider the UP-

ideals of a UP-algebra and investigated the Relationships between cubic UP-subalgebras and

the cubic UP-ideals of a UP-algebra. In 2022, Shi et al. [42] presented the concept of CI1 in

CFGs. In real-world situations, we can effectively use fuzzy graph ideas to describe some phe-

nomena and interval-valued graph concepts work better for others. However, for more com-

plex phenomena that can’t be adequately represented by either of these approaches alone, we

can turn to a combination of both, which we call cubic fuzzy graphs. An example of where this

combined modeling approach is useful is in understanding tsunami threat problem. When we

need to make decisions that involve considering the past, present and future all at once, cubic

fuzzy graphs are quite handy. They provide a valuable tool for visually representing informa-

tion that spans multiple time dimensions, giving us a comprehensive view of the situation at

hand. In comparative view of neutrosophic fuzzy graphs and cubic fuzzy graphs, neutrosophic

fuzzy graphs and cubic fuzzy graphs are distinct extensions of fuzzy graph theory. Neutrosophic

fuzzy graphs introduce the concept of neutrosophic sets, allowing for a more nuanced repre-

sentation of uncertainty through the inclusion of truth-membership, indeterminacy-member-

ship, and falsity-membership degrees. On the other hand, cubic fuzzy graphs extend traditional

fuzzy graphs by incorporating three membership degrees (lower interval-valued fuzzy member-

ship, upper interval-valued fuzzy membership and fuzzy membership) for each pair of vertices.

While neutrosophic fuzzy graphs emphasize the trichotomy of truth, indeterminacy and falsity,

cubic fuzzy graphs focus on the triple-membership structure, enabling a richer characterization

of relationships in uncertain environments. Cubic fuzzy graphs are well-suited for scenarios

where a higher level of granularity in membership assignment is needed to reflect the complex-

ity of uncertain information. Both models contribute valuable tools for modeling uncertainty

and the choice between them depends on the specific nature of uncertainty being addressed

and the desired level of detail in the representation of relationships.

1.1 Motivation and contribution

Cubic fuzzy graphs have more advantageous representation as compared to interval-valued

fuzzy graphs and fuzzy graphs because they depict the membership degree of vertices and

edges in both interval and fuzzy number forms. This improved representation enables a deeper

and more detailed comprehension of the connections and uncertainties present within the

structure of the graph. The following features of strong and weak edges in CFG theory moti-

vate us to present this paper:

• In practical situations, some problems can be solved by using either FG or IVFG concepts,

while more complex problems may require a combination of both. CFGs provide a useful

tool to tackle such problems. For example, traffic flow modeling and earthquake modeling

problems can be addressed with the help of CFGs.

• Given the extensive applications of strong and weak edges in crisp and fuzzy graphs across

various fields, it is worthwhile to investigate their relevance to CFGs as well.
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• It is observed that the definitions of cubic α−strong and cubic δ−weak edges for cubic graphs

[42] are very strict. It may happen that a connected network may not have any such edges. In

this situation, the decision making can be difficult in these connectivity problems. To over-

come this problem, a more general model for strong edges has to be defined.

• It is also observed that concept of CI1 and average connectivity index (ACI1) are well-doc-

umented in the literature for crisp and fuzzy graphs, but their counterparts for CFGs are not

widely known. These concepts are essential for conducting a thorough investigation of con-

nectivity in CFGs.

• The study of strong, weak edges and connectivity index can be implemented in variety of

decision-making problems.

Given the extensive importance and broad applications of cubic α−strong, cubic β−strong

and cubic δ−weak edges within fuzzy networks, we have introduced the notion of partial cubic

α−strong and partial cubic δ−weak edges for CFGs. These partial edges prove beneficial in

addressing practical issues where the concept of cubic α−strong, cubic β−strong and cubic δ
−weak edges may not be applicable. Specifically, these concepts come into play when the IVF
− connectivity strictly exceeds or falls below the IVF−membership value of an edge, while the

F− connectivity equates to the F−membership value of that edge and vice versa. In scenarios

where we have information about the past, future and current conditions of a model or prob-

lem, we can represent the past condition as a lower interval-valued fuzzy membership, the

future condition as an upper interval-valued fuzzy membership and the present condition as a

fuzzy membership value. Our objective is to scrutinize the problem by deducing lower inter-

val-valued fuzzy connectivity, upper interval-valued fuzzy connectivity and fuzzy connectivity.

Furthermore, we aim to make new predictions based on this analysis. In these situations, the

IVF− connectivity strictly exceeding or falling below the IVF−membership value of an edge

occurs, while the F− connectivity aligns with the F−membership value of that edge and vice

versa. To tackle this issue effectively, we can employ the concept of partial cubic α−strong and

partial cubic δ−weak edges. Such problems frequently arise in the analysis of transportation

networks, decision-making under uncertainty and optimization scenarios. Utilizing these par-

tial cubic edges allows for a more accurate and detailed depiction of the connections between

nodes or edges, enabling better modeling and evaluation of uncertain or imprecise relation-

ships. It’s important to note that throughout this study, we specifically focused on simple con-

nected CFGs. The primary contributions of this paper are outlined below.

• Given the significant importance and numerous applications of strong and weak edges in

fuzzy networks, the objective of this research paper is to investigate the concept of strong

and weak edges in CFG.

• To propose the concept of partial cubic α− strong and partial cubic δ− weak edges for CFG.

• To study the connectivity index in CFG and to establish their bounds or exact expression for

several families of CFG, e.g., for complete CFG, a CFG with underlying crisp tree and cubic

fuzzy cycle.

• To determine the effect on connectivity index of CFG on removal of an edge.

• To define average connectivity index, partial cubic connectivity enhancing node (PCCEN)

and partial cubic connectivity reducing node (PCCRN) for CFG.

• To provide a more comprehensive understanding of the behavior of complex systems mod-

eled by CFGs and to develop better strategies for addressing real-world problems such as
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earthquakes in certain areas by using cubic α− strong edges, cubic β−strong edges, cubic δ
−weak edges, partial cubic α−strong edges and partial cubic δ−weak edges.

• To demonstrate the novelty of our model, we compare our results with existing models.

This research work is structured as follows: Section 2 comprises necessary definitions and

results for the production of the concept. In Section 3, we examine the partially strong and

weak edges. In Section 4, we introduce the concept of bounds for the CI1 of CFGs and present

related results. Section 5 covers the ACI1 of CFGs along with relevant findings. In Section 6,

we discuss various kinds of edges which can be helpful to examine the areas affected by tsu-

nami due to an earthquake. Section 7 presents a comprehensive analysis of our research work.

Finally, in Section 8, we conclude our investigations. Throughout the paper, we use the abbre-

viations given in the Table 1.

2 Preliminaries

Definition 1 [35] A CFS X on a non-empty set V is described as

X ¼ fh½s� ðtwÞ; s
þðtwÞ�; s

FðtwÞ ijtw 2 Vg;

where [σ−(tw), σ+(tw)] is named as IVF-membership value and sFðtwÞ is named as F-member-

ship value of tw. The CFS X is referred as internal CFS if sFðtwÞ 2 ½s� ðtwÞ; sþðtwÞ� for tw 2 V,

otherwise it is called external CFS.

Definition 2 [37] A CFG over the set V is a pair T ¼ ðA;BÞ, where A is a CFS in V and B is

a CFS in V × V, so that for all (tw−1, tw) 2 A

m� ðtw� 1; twÞ � ^fs� ðtw� 1Þ; s
� ðtwÞg;

mþðtw� 1; twÞ � ^fsþðtw� 1Þ; s
þðtwÞg;

mFðtw� 1; twÞ � ^fsFðtw� 1Þ; s
FðtwÞg;

A CFG T ¼ ðA;BÞ is said to be complete if

m� ðtw� 1; twÞ ¼ ^fs� ðtw� 1Þ; s
� ðtwÞg;

mþðtw� 1; twÞ ¼ ^fsþðtw� 1Þ; s
þðtwÞg;

mFðtw� 1; twÞ ¼ ^fsFðtw� 1Þ; s
FðtwÞg

for all tw−1, tw 2 A.

Table 1. Abbreviations.

Description Abbreviation Description Abbreviation

Fuzzy sets FSs Fuzzy set FS

Fuzzy Graphs FGs Fuzzy Graph FG

Interval-valued fuzzy set IVFS Intuitionistic fuzzy graph IFG

Interval-valued intuitionistic fuzzy graphs IVIFG Cubic fuzzy sets CFSs

Cubic fuzzy set CFS Cubic fuzzy graph CFG

Cubic Pythagorean fuzzy graphs CPFGs Connectivity index CI1

Strength of path SðPÞ Strength of connectedness CONN1T

Average connectivity index ACI1 Partial cubic connectivity reducing node PCCRN

Partial cubic connectivity enhancing node PCCEN Partial cubic connectivity enhancing graph PCCEG

Partial cubic connectivity reducing graph PCCRG

https://doi.org/10.1371/journal.pone.0297197.t001
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Definition 3 [37] A cubic fuzzy pathP of length n is a sequence of distinct vertices

t0; t1; t2; _. . .; tn with μ+(tw−1, tw)> 0, μ−(tw−1, tw)>0 and mFðtw� 1; twÞ > 0 for w ¼ 1; 2; 3; _. . .; n.

A cubic fuzzy pathP is called cycle if t0 = tn.

The strength of cubic fuzzy pathP ¼ t1; t2; t3; _. . .; tn is defined as

SðPÞ ¼ h½L� ðPÞ;LþðPÞ�;LFðPÞi;

where

LþðPÞ ¼ ^n
w¼1
mþðtw� 1; twÞ;L

�
ðPÞ ¼ ^n

w¼1
m� ðtw� 1; twÞ;

LFðPÞ ¼ ^n
w¼1
mFðtw� 1; twÞ:

The Strength of connectedness ðCONN1T Þ among the vertices tw−1 and tw is defined as:

CONN1T ðtw� 1; twÞ

¼ h½CONN�Tðtw� 1; twÞ;CONN
þ

Tðtw� 1; twÞ�;CONN
F

Tðtw� 1; twÞi

where

CONNþTðtw� 1; twÞ

¼ _fLþðPÞ : P is a path between tw� 1 and twg;

CONN�Tðtw� 1; twÞ

¼ _fL� ðPÞ : P is a path between tw� 1 and twg;

CONNF

Tðtw� 1; twÞ

¼ _fLFðPÞ : P is a path between tw� 1 and twg:

The pathP between tw−1 and tw with

LþðPÞ ¼ CONNþTðtw� 1; twÞ

is referred as Lþ-stronger path. Similarly L� -stronger and LF-stronger paths are defined. The

Lþ-stronger, L� -stronger and LF-stronger paths are denoted byPþ;P� andPF
, respectively.

Definition 4 [42] Let T ¼ ðA;BÞ be a CFG and (tw−1, tw) 2 B.

1. If mþðtw� 1twÞ > CONN
þ

T� tw� 1tw
ðtw� 1; twÞ;

m� ðtw� 1twÞ > CONN
�

T� tw� 1tw
ðtw� 1; twÞ;

mFðtw� 1twÞ > CONN
F

T� tw� 1tw
ðtw� 1; twÞ;

then tw−1tw is called cubic α-strong.
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2. If mþðtw� 1twÞ ¼ CONN
þ

T� tw� 1tw
ðtw� 1; twÞ,

m� ðtw� 1twÞ ¼ CONN
�

T� tw� 1tw
ðtw� 1; twÞ;

mFðtw� 1twÞ ¼ CONN
F

T� tw� 1tw
ðtw� 1; twÞ;

then tw−1tw is called cubic β-strong.

3. If mþðtw� 1twÞ < CONN
þ

T� tw� 1tw
ðtw� 1; twÞ;

m� ðtw� 1twÞ < CONN
�

T� tw� 1tw
ðtw� 1; twÞ

and

mFðtw� 1twÞ < CONN
F

T� tw� 1tw
ðtw� 1; twÞ

then tw−1tw is called cubic δ- weak edge.

Definition 5 [40] The order of a CFG T ¼ ðA;BÞ is defined by

OðTÞ ¼ h½
X

i2V

s� ðiÞ;
X

i2V

sþðiÞ�;
X

i2V

sFðiÞi;

and size of CFG is defined by

SðTÞ ¼ h½
X

ij2E

s� ðijÞ;
X

ij2E

sþðijÞ�;
X

ij2E

sFðijÞi:

Definition 6 [42] A CFG T is referred to be

• α−saturated if at each node of σ*, there are incident n� 1 α− strong edges to it.

• β-saturated if at each node of σ*, there are incident n� 1 β strong edges to it.

• Saturated if it is α− as well as β−saturated.

• Unsaturated if it is neither α nor β saturated.

Definition 7 [42] The connectivity index ðCI1Þ of CFG T ¼ ðA;BÞ is defined as:

CI1ðTÞ ¼ h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi;

where

CIþðTÞ ¼
X

ðs;tÞ2A

sþðsÞsþðtÞCONNþTðs; tÞ;

CI� ðTÞ ¼
X

ðs;tÞ2A

s� ðsÞs� ðtÞCONN�Tðs; tÞ;

CIFðTÞ ¼
X

ðs;tÞ2A

sFðsÞsFðtÞCONNF

Tðs; tÞ:

3 Partial cubic α− Strong and δ−Weak edges

The CF α− strong and CF δ− week edges are defined in [42]. But we note that there are CFGs

which contain edges which are either IVF− α− strong and F−β− strong or IVF− β− strong and

F− α− strong but not CF α− strong. These type of edges seem very close to CF α− strong edges
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and may be more useful in different CF connectivity problems. The following examples are

helpful to understand this situation:

Example 1 Consider a CFG T ¼ ðE; SÞ given in a Fig 1.

The connectivity for the pair f, n is computed as

½CONN� T� ðf ;nÞðf ; nÞ;CONN
þ

T� ðf ;nÞðf ; nÞ� ¼ ½0:1; 0:5�;CONN
F

T� ðf ;nÞðf ; nÞ ¼ 0:5;

½m� ðfnÞ;mþðfnÞ� ¼ ½0:4; 0:7�; mFðfnÞ ¼ 0:5:

It is clear that the edge fn is IVF− α− strong edge but F− β− strong edge. We can see that If

we slightly increase the value of F-membership of edge fn, then it becomes CF α− strong edge.

So we can say that it is very close to CF α− strong edge.

Example 2 Consider a CFG T ¼ ðE; SÞ given in a Fig 2.

The connectivity of pair n, w is calculated as

½CONN� T� ðn;wÞðn;wÞ;CONN
þ

T� ðn;wÞðn;wÞ� ¼ ½0:2; 0:5�;CONN
F

T� ðn;wÞðn;wÞ ¼ 0:2;

½m� ðnwÞ; mþðnwÞ� ¼ ½0:1; 0:2�; mFðnwÞ ¼ 0:2:

It is clear that the edge nw is IVF− δ− weak and F− β− strong edge. Here if we slightly

decrease the value of F-membership, then it becomes CF δ−weak edge. Above examples moti-

vate to define the concept of partial cubic α− strong and partial cubic δ− weak edges.

Definition 8 For a CF edge tw−1tw in CFG, if one of the following holds, then tw−1tw is called

partial cubic α− strong edge.

1. ½m�Tðtw� 1; twÞ; mþTðtw� 1; twÞ� � ½CONN
�

T� tw� 1tw
ðtw� 1; twÞ;CONN

þ

T� tw� 1tw
ðtw� 1; twÞ� and

mFTðtw� 1twÞ > CONN
F

T� tw� 1tw
ðtw� 1; twÞ

2. ½m�Tðtw� 1twÞ; mþTðtw� 1twÞ� > ½CONN
�

T� tw� 1tw
ðtw� 1; twÞ;CONN

þ

T� tw� 1tw
ðtw� 1; twÞ� and

mFTðtw� 1twÞ � CONN
F

T� tw� 1tw
ðtw� 1; twÞ

Fig 1. T ¼ ðE; SÞ.

https://doi.org/10.1371/journal.pone.0297197.g001
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In Example 1, the edge fn satisfies condition 2 of above definition, so the edge fn is partial

cubic α− strong edge.

Definition 9 For a CF edge tw−1tw in CFG, if one of the following holds, then tw−1tw is called

partial cubic δ− weak edge.

1. ½m�Tðtw� 1twÞ; mþTðtw� 1twÞ� � ½CONN
�

T� tw� 1tw
ðtw� 1; twÞ;CONN

þ

T� tw� 1tw
ðtw� 1; twÞ� and

mFTðtw� 1twÞ < CONN
F

T� tw� 1tw
ðtw� 1; twÞ

2. ½m�Tðtw� 1twÞ; mþTðtw� 1twÞ� < ½CONN
�

T� tw� 1tw
ðtw� 1; twÞ;CONN

þ

T� tw� 1tw
ðtw� 1; twÞ� and

mFðtw� 1twÞ � CONN
F

T� tw� 1tw
ðtw� 1; twÞ.

In Example 2, the edge nw satisfies condition 2 of above definition, so the edge nw is a par-

tial cubic δ− weak edge.

Definition 10 A CFG T is referred to be

• Partial α−saturated if at each node of σ*, there are incident n� 1 partial α− strong edges to

it.

• β-saturated if at each node of σ*, there are incident n� 1 β strong edges to it.

• Partial saturated if it is partial α−saturated as well as β−saturated.

4 Bounds for connectivity index of cubic fuzzy graph

In this section, we discuss bounds for the CI1 of different families of CFGs.

Theorem 1 Consider a complete CFG T ¼ ðs;mÞ with

d ¼ h½d� ; dþ; dFi ¼ h½mina2s∗s
� ðvÞ;mina2s∗s

þðvÞ;mina2s∗s
FðvÞi. Then

nðn � 1Þ

2
d3 � CI1ðTÞ � OðTÞðOðTÞ � dÞ:

Fig 2. T ¼ ðE; SÞ.

https://doi.org/10.1371/journal.pone.0297197.g002
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Proof Let ft�
1
; t�

2
; . . . ; t�n g, ft

þ
1
; tþ

2
; . . . ; tþn g, and ftF1 ; t

F
2 ; . . . ; tFng be increasing sequences

such that t�i ¼ s
� ðviÞ, tþi ¼ s

þðwiÞ and tFi ¼ sFðuiÞ, respectively for wi, vi, ui 2 σ*. We note that

for an edge v1x, CONNþðv1; xÞ ¼ t�
1

and for an edge v2y, CONNþðv2; yÞ ¼ t�
2

such that y 6¼
v1. Similarly in this way, for edge vit, CONNþðvi; tÞ ¼ t�i , where t 6¼ vj, j< i. Thus we can write

CI� ðTÞ ¼
Xn� 1

i¼1

Xn

j¼iþ1

s� ðviÞs
� ðvjÞCONN

�
ðvi; vjÞ

¼
Xn� 1

i¼1

ðt�i Þ
2
Xn

j¼iþ1

t�j

�
Xn� 1

i¼1

ðt�i Þ
2
Xn

j¼iþ1

t�
1
�
Xn� 1

i¼1

ðt�i Þ
2t�

1
ðn � iÞ

� ðd� Þ3
Xn� 1

i¼1

ðn � iÞ �
ðd� Þ3nðn � 1Þ

2
:

Similarly, we have CI� ðTÞ � ðdþÞ3nðn� 1Þ

2
and CI� ðTÞ � ðdFÞ3nðn� 1Þ

2
.

Now for upper bound,

CI� ðTÞ ¼
Xn� 1

i¼1

Xn

j¼iþ1

s� ðviÞs
� ðvjÞCONN

�
ðvi; vjÞ

¼
Xn� 1

i¼1

ðt�i Þ
2
Xn

j¼iþ1

t�j �
Xn� 1

i¼1

ðt�i Þ
2
Xn

j¼2

t�j

�
Xn� 1

i¼1

ðt�i Þ
2
ð
Xn

j¼1

t�j � t�
1
Þ �

Xn� 1

i¼1

ðt�i ÞðO
� ðTÞ � d� Þ

� O� ðTÞðO� ðTÞ � d� Þ:

Similarly, we have CIþðTÞ � OþðTÞðOþðTÞ � dþÞ and CIFðTÞ � OFðTÞðOFðTÞ � dFÞ: This

completes the proof.

Theorem 2 Consider a CFG T ¼ ðs; mÞ with |σ*| = n. Then

0 � h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi � h½CI� ðT0Þ;CIþðT0Þ�;CIFðT0Þi;

where the vertex set of T spans T0 ¼ ðs0; m0Þ and T0 ¼ ðs0; m0Þ is complete CFG.

Proof Suppose T ¼ ðs;mÞ be a CFG. If |σ*| = 0, then h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi ¼ 0.

Take a complete CFG T0 ¼ ðs0; m0Þ and order of σ* be n with

h½s0� ðiÞ; s0þðiÞ�; s0FðiÞi ¼ h½s� ðiÞ; sþðiÞ�; sFðiÞi. Then

h½m� ðijÞ; mþðijÞ�;mFðijÞi � h½m0� ðijÞ; m0þðijÞ�; m0FðijÞi: ð1Þ

This implies that,

h½CONN�Tði; jÞ;CONN
þ

Tði; jÞ�;CONN
F

Tði; jÞi � h½CONN
�

T0 ði; jÞ;CONN
þ

T0 ði; jÞ�;

CONNF

T0
ði; jÞi;

for all i, j 2 σ*. This further shows that

0 � h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi � h½CI� ðT0Þ;CIþðT0Þ�;CIFðT0Þi:
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The subgraphs of a CFG obtained by vertex deletion or edge deletion reduce the values of

many parameters related to connectivity. But in case of CI1, these subgraphs depended on the

type of the vertex and edge which is deleted from the graph.

Proposition 1 Consider a CFG T ¼ ðs;mÞ and edge ij 2 μ*, then

h½CI� ðT � ijÞ;CIþðT � ijÞ�;CIFðT � ijÞi � h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi.
Theorem 3 Consider a CFG T ¼ ðs; mÞ and ij 2 μ*. Then

h½CI� ðT � ijÞ;CIþðT � ijÞ�;CIFðT � ijÞi < h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi

iff ij is α− strong.

Proof Assume that ij is α− strong. Then by definition,

CONN�T� ijði; jÞ < m� ðijÞ;CONNþT� ijði; jÞ < mþðijÞ;CONNF

T� ijði; jÞ < mFðijÞ:

This implies that

h½CI� ðT � ijÞ;CIþðT � ijÞ�;CIFðT � ijÞi < h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi:

For converse, assume that

h½CI� ðT � ijÞ;CIþðT � ijÞ�;CIFðT � ijÞi < h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi: ð2Þ

suppose on contrary, ij is not α− strong, then either CONN� T� ijði; jÞ � m
� ðijÞ or

CONNþT� ijði; jÞ � m
þðijÞ or CONNF

T� ijði; jÞ � m
FðijÞ:

This further shows that either CONN� T� ijði; jÞ ¼ CONN
�

Tði; jÞ or CONNþT� ijði; jÞ ¼
CONNþTði; jÞ or CONNF

T� ijði; jÞ ¼ CONN
F

Tði; jÞ, respectively. In any case, this contradicts

(2).

Corollary 1 Let T ¼ ðs;mÞ be a CFG. Then h½CI� ðT � ijÞ;CIþðT � ijÞ�;CIFðT � ijÞi ¼
h½CI� ðTÞ;CIþðTÞ�;CIFðTÞi iff ij satisfies one of the followings:

• ij is β-strong.

• ij is partially δ- weak.

Theorem 4 Let T ¼ ðs; mÞ be a CFG on n vertices and m edges such that T?
is a tree. Let

d ¼ h½d� ; dþ�; dFi ¼ h½mina2s∗s
� ðvÞ;mina2s∗s

þðvÞ�;mina2s∗s
FðvÞi and p ¼ h½p� ; pþ�; pFi =

h[maxa 2 σ*σ−(v), maxa 2 σ*σ+(v)], maxa2s∗s
FðvÞi. Then

d2ðSðTÞ þm1dÞ � CI
1
ðTÞ � p2ðSðTÞ þm1pÞ;

where m1 ¼
nðn� 1Þ

2
� m:

Proof By definition, we have

CI� ðTÞ ¼
X

vi ;vj2s∗
s� ðviÞs

� ðvjÞCONN
�

Tðvi; vjÞ

¼
X

vivj2m∗
s� ðviÞs

� ðvjÞCONN
�

Tðvi; vjÞþ

X

vi ;vj=2m∗
s� ðviÞs

� ðvjÞCONN
�

Tðvi; vjÞ:

It is easy to see that for uv 2 μ, CONN1ðu; vÞ ¼ mðuyÞ and for uv =2 μ, CONN1ðu; vÞ � d.
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Therefore we have

X

vivj2m∗
ðd� Þ2ðm� ðuvÞÞ þ

X

vi ;vj=2m∗
ðd� Þ3 � CI� ðTÞ �

X

vivj2m∗
ðp� Þ2ðm� ðuvÞÞþ

X

vi ;vj=2m∗
ðp� Þ3

ðd� Þ2
X

vivj2m∗
ðm� ðuvÞÞ þ ðd� Þ3

X

vi ;vj=2m∗
1 � CI� ðTÞ �

ðp� Þ2
X

vivj2m∗
ðm� ðuvÞÞ þ ðp� Þ3

X

vi ;vj=2m∗
1:

As d−� σ+(i)� p− for all i 2 σ* and
P

vivj2m∗
ðm� ðuvÞÞ ¼ S� ðTÞ, therefore, we can write

ðd� Þ2S� ðTÞ þ ðd� Þ3ð
nðn � 1Þ

2
� mÞ � CI� ðTÞ � ðp� Þ2SþðTÞ þ ðp� Þ3ð

nðn � 1Þ

2
� mÞ

ðd� Þ2ðS� ðTÞ þ d� ð
nðn � 1Þ

2
� mÞÞ � CI� ðTÞ � ðp� Þ2ðS� ðTÞ þ p� ð

nðn � 1Þ

2
� mÞÞ: ð3Þ

Similarly,

ðdþÞ2ðSþðTÞ þ dþð
nðn � 1Þ

2
� mÞÞ � CIþðTÞ � ðpþÞ2ðSþðTÞ þ pþð

nðn � 1Þ

2
� mÞÞ: ð4Þ

and

ðdFÞ2ðSFðTÞ þ dFð
nðn � 1Þ

2
� mÞÞ � CIFðTÞleqðpFÞ2ðSFðTÞ þ pFð

nðn � 1Þ

2
� mÞÞ: ð5Þ

Let m1 ¼
nðn� 1Þ

2
� m, then from Eqs (3), (4) and (5), we have

h½ðd� Þ2ðS� ðTÞ þ ðd� Þ3m1Þ; ðdþÞ
2
ðSþðTÞ þ dþm1Þ�; ðdFÞ

2
ðSFðTÞ þ dFm1Þi

� CI1ðTÞ � h½ðp� Þ2ðS� ðTÞ þ ðp� Þ3m1Þ; ðpþÞ
2
ðSþðTÞ þ d� m1Þ�; ðpFÞ

2
ðSFðTÞ þ pFm1Þi

h½ðd� Þ2; ðdþÞ2�; ðdFÞ2iðh½S� ðTÞ; SþðTÞ�; SFðTÞi þm1h½d� ; dþ�; dFiÞ

� CI1ðTÞ � h½ðp� Þ2; ðpþÞ2�; pFÞ2iðh½S� ðTÞ; SþðTÞ�; SFðTÞi þm1h½p� ; pþ�; ðpFiÞ ð6Þ

Hence, we get d2ðSðTÞ þm1dÞ � CI
1
ðTÞ � p2ðSðTÞ þm1pÞ.

Definition 11 A CFG graph T is referred as CF cycle if its crisp graph T?
is a cycle and T

contains no partial δ− weak edge.

Theorem 5 Let T ¼ ðs; mÞ be a partial saturated CFC with n vertices and m edges such that

every partial α− strong edge is equal to h½a� ; aþ�; aFi and every β− edge is equal to

h½b� ; bþ�; bFi. Moreover h½s� ðxÞ; sþðxÞ�; sFðxÞi ¼ h½c� ; cþ�; cFi ¼ c. Then

CI1ðTÞ ¼
nc
2
ðaþ ðn � 2ÞbÞ:

Proof Since T is partial saturated, every vertex must be incident with one or more partial α
− strong and one or more β− strong edges. As each vertex is incident with exactly two vertices,
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so each partial α− strong edge is adjacent to a β− edge. This is only possible if n is even. Now

by definition, we have

CI� ðTÞ ¼
X

vi ;vj2s∗
s� ðviÞs

� ðvjÞCONN
�

Tðvi; vjÞ ð7Þ

¼
X

vivj2m∗
s� ðviÞs

� ðvjÞCONN
�

Tðvi; vjÞ ð8Þ

þ
X

vi ;vj=2m∗
s� ðviÞs

� ðvjÞCONN
�

Tðvi; vjÞ: ð9Þ

It is easy to see that for uv 2 μ*, CONN1ðu; vÞ ¼ mðuyÞ. Now for uv =2 μ, each path must con-

tain one or more partial α− strong and one or more β− strong edges. Thus

CONN1ðu; vÞ ¼ h½a� ; aþ�; aFi ^ h½b� ; bþ�; bFi ¼ h½b� ; bþ�; bFi. Therefore Eq (8) becomes

CI� ðTÞ ¼
X

vivj2m∗
ðc� Þ2m� ðvivjÞ þ

X

vi ;vj=2m∗
ðc� Þ2b� :

ð10Þ

Now μ−(vivj) = a− or μ−(vivj) = b− and as n is even so half of the edges have membership a− and

other have membership b−. Thus from (8), we get

CI� ðTÞ ¼
n
2
ðc� Þ2ða� þ b� Þ þ ðc� Þ2b� ð

nðn � 1Þ

2
� nÞ

¼
n
2
ðc� Þ2ða� þ b� Þ þ ðc� Þ2b� ð

nðn � 3Þ

2
Þ

¼
ðc� Þ2n

2
ða� þ b� þ b� ðn � 3ÞÞ

¼
ðc� Þ2n

2
ða� þ b� ðn � 2ÞÞ:

ð11Þ

Similarly, we can write

CIþðTÞ ¼
ðcþÞ2n

2
ðaþ þ bþðn � 2Þ: ð12Þ

and

CIFðTÞ ¼
ðcFÞ2n

2
ðaF þ bFðn � 2Þ: ð13Þ

Combining Eqs (11), (12) and (13), we get

CI1ðTÞ ¼
n
2
h½ðc� Þ2; ðcþÞ2�; ðcFÞ2iðh½ða� Þ2; ðaþÞ2�; ðaFÞ2iÞ

þðn � 2Þh½ðb� Þ2; ðbþÞ2�; ðbFÞ2i ¼
nc
2
ðaþ ðn � 2ÞbÞ:

This completes the proof.
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5 Average connectivity index of a cubic fuzzy graph

Definition 12 Average connectivity index ðACI1Þ of T ¼ ðs;mÞ is denoted byACI1ðTÞ and

defined as

ACI1ðTÞ ¼ h½ACI� ðTÞ;ACIþðTÞ�;ACIFðTÞi;

where

ACIþðTÞ ¼
1
n
2

� �
X

ði;jÞ2s∗
sþðiÞsþðjÞCONNþTði; jÞ;

ACI� ðTÞ ¼
1
n
2

� �
X

ði;jÞ2s∗
s� ðiÞs� ðjÞCONN�Tði; jÞ;

ACIFðTÞ ¼
1
n
2

� �
X

ðj;jÞ2s∗
sFðiÞsFðjÞCONNF

Tði; jÞ:

Definition 13 A PCCRN (partial cubic connectivity reducing node) of a CFG T ¼ ðs;mÞ is

a node i 2 σ* if one of the following hold:

1. ½ACI� ðTÞ;ACIþðTÞ� > ½ACI� ðT � iÞ;ACIþðT � iÞ� and ACIFðTÞ � ACIFðT � iÞ

2. ½ACI� ðTÞ;ACIþðTÞ� � ½ACI� ðT � iÞ;ACIþðT � iÞ� and ACIFðTÞ > ACIFðT � iÞ

If (1) holds, then i is referred as IVF− connectivity reducing node, whereas if (2) is satisfied,

then it is referred as F− connectivity reducing node. If both (1) and (2) are satisfied, then it is

referred as connectivity reducing node.

Definition 14 A PCCEN (partial cubic connectivity enhancing node) of a CFG T ¼ ðs; mÞ

is a node i 2 σ* if one of the following hold

1. ½ACI� ðTÞ;ACIþðTÞ� < ½ACI� ðT � iÞ;ACIþðT � iÞ� and ACIFðTÞ � ACIFðT � iÞ

2. ½ACI� ðTÞ;ACIþðTÞ� � ½ACI� ðT � iÞ;ACIþðT � iÞ� and ACIFðTÞ < ACIFðT � iÞ

If (1) holds, then i is referred as IVF− connectivity enhancing node, whereas if (2) is satis-

fied, then it is referred as F− connectivity enhancing node. If both (1) and (2) are satisfied,

then it is referred as connectivity enhancing node.

Definition 15 A neutral node of a CFG T ¼ ðs; mÞ is a node i 2 σ* if it satisfies:

ACI� ðT � iÞ ¼ ACI� ðTÞ;ACIþðT � iÞ ¼ ACIþðTÞ and ACIFðT � iÞ ¼ ACIFðTÞ.
Definition 16 A PCCEG (partial cubic connectivity enhancing graph) is CFG T ¼ ðs; mÞ if

there are one or more PCCENs in T ¼ ðs; mÞ. Whereas, A PCCRG (partial cubic connectivity

reducing graph) is CFG T ¼ ðs; mÞ if it has no PCCENs and there are one or more PCCRNs in

T ¼ ðs; mÞ. If all the vertices of T are neutral, then it is referred as neutral graph.

Proposition 2 Let T ¼ ðs; mÞ be a CFG and i 2 σ* with n = |σ*|� 3. Let

h½r� ; rþ�; rFi ¼ r ¼ h½ CI
� ðTÞ

CI� ðT� iÞ ;
CIþðTÞ

CIþðT� iÞ�;
CIFðTÞ

CIFðT� iÞi, then i is PCCEN if and only if ½r� ; rþ� <
n

n� 2
½1; 1� and rF � n

n� 2
or ½r� ; rþ� � n

n� 2
½1; 1� and rF < n

n� 2
. The vertex i is PCCRN if and only if

½r� ; rþ� > n
n� 2
½1; 1� and rF � n

n� 2
or ½r� ; rþ� � n

n� 2
½1; 1� and rF > n

n� 2
and i is neutral if and only

if h½r� ; rþ�; rFi ¼ r ¼ n
n� 2
h½1; 1�; 1i.

Proof By definition the node i is a neutral node if and only if ACI� ðTÞ ¼ ACI� ðT �

iÞ;ACIþðTÞ ¼ ACIþðT � iÞ; and ACIFðTÞ ¼ ACIFðT � iÞ: Now again by definition, we
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know that ACI� ðTÞ ¼ 1
n
2ð Þ
ðCI� ðTÞÞ, ACIþðTÞ ¼ 1

n
2ð Þ
ðCIþðTÞÞ, ACIFðTÞ ¼ 1

n
2ð Þ
ðCIFðTÞÞ and

ACI� ðT � iÞ ¼ 1
n� 1

2ð Þ
ðCI� ðT � iÞÞ, ACIþðT � iÞ ¼ 1

n� 1
2ð Þ
ðCIþðT � iÞÞ,

ACIFðT � iÞ ¼ 1
n� 1

2ð Þ
ðCIFðT � iÞÞ. Therefore, forACI� ðTÞ, we have

ACI� ðTÞ ¼ ACI� ðT � iÞ
1
n
2

� � ðCI� ðTÞÞ ¼
1
n� 1

2

� � ðCI� ðT � iÞÞ

CI� ðTÞ

CI� ðT � iÞ
¼

n
2

� �

n� 1

2

� �

CI� ðTÞ

CI� ðT � iÞ
¼

n
n � 2

Thus r� ¼ n
n� 2

Similarly

rþ ¼
CIþðTÞ

CIþðT � iÞ
¼

n
2

� �

n� 1

2

� � ;

and

rF ¼
CIFðTÞ

CIFðT � iÞ
¼

n
n � 2

:

Hence i is neutral node if and only if

r ¼ h½r� ; rþ�; rFi

¼ h½
CI� ðTÞ

CI� ðT � iÞ
;
CIþðTÞ

CIþðT � iÞ
�;

CIFðTÞ

CIFðT � iÞ
i

¼ h½
n

n � 2
;

n
n � 2

�;
n

n � 2
i

¼
n

n � 2
h½1; 1�; 1i

The proofs for PCCRN and PCCEN are similar.

6 Application to determine danger zone of tsunami threat

Natural disasters are events that are caused by natural phenomena and can have devastating

consequences for the environment, human populations and infrastructure. They can take

many different forms, including floods, hurricanes, earthquakes, tsunamis, tornadoes, wild-

fires and volcanic eruptions. One of the defining characteristics of natural disasters is their

unpredictability. When natural disasters strike, they can cause widespread destruction and loss

of life. They can also disrupt entire economies, causing significant financial losses and exacer-

bating social and political tensions.

Earthquakes are one of the most destructive and unpredictable natural disasters. An earth-

quake is a sudden rapid shaking of the ground caused by the movement of tectonic plates. It

can cause significant damage to buildings and infrastructure, as well as trigger secondary haz-

ards such as tsunamis, landslides and fires. The impact of earthquakes can widespread damage

to buildings, roads, bridges and ports, as well as disruptions to essential services such as
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electricity and water. Secondary hazards such as tsunamis, landslides and fires can also exacer-

bate the impact of the disaster.

Earthquakes are a major natural hazard that can have a significant impact on communities

and economies. To reduce the impact of earthquakes, it is important to invest in disaster risk

reduction measures and emergency response planning, as well as to build infrastructure that is

able to withstand earthquakes and other natural hazards.

Therefore, here we discuss the impact of earthquakes in certain areas by using cubic α−-

strong edges, cubic β−strong edges, cubic δ−weak edges, partial cubic α−strong edges and par-

tial cubic δ−weak edges.

For this purpose, consider the problem in which an earthquake take place in deep ocean. A

team from Pacific Tsunami Warning Center (PTWC) has to decide to find the region which is

in danger zone of tsunami threat.

6.1 Tsunami threat model

With the help of CFG, a tsunami threat model is developed. In this tsunami threat model, ver-

tices correspond to different areas with lower IVF-membership values indicating past tsunami

threat values, upper IVF-membership values indicating future tsunami threat values and F-

membership values indicating current tsunami threat values. The edges in this system repre-

sent the possibility of a danger zone arising due to a tsunami threat. By analyzing the strength

of the connectedness between different areas, we can classify the types of danger zones into

five categories: cubic α−strong zone, cubic β−strong zone, cubic δ−weak zone, partial cubic α
−strong zone and partial cubic δ−weak zone. A cubic α−strong zone represents area with no

tsunami threat, a partial cubic α−strong zone represents area with a very low tsunami threat, a

cubic β−strong zone represents area with a low tsunami threat, a partial cubic δ−weak zone

represents areas with a high tsunami threat and a cubic δ−weak zone represents area with a

very high tsunami threat.

FGs are two-dimensional models that represent the relationships between elements and

their degree of membership using nodes and edges. Dealing with ambiguous data and discuss-

ing the nature of each edge in a FG can be complex when utilizing fuzzy theory. On the other

hand, CFGs are an improved approach to FGs. The membership values of vertices and edges

in a fuzzy graph are between 0 and 1, whereas CFGs are more significant because vertices and

edges have both lower and upper IVF-membership values and F-membership values. These

membership values can be any real number in the interval [0, 1]. CFGs are an effective

approach to deal with inadequate information of relationships among areas and controlling

information loss within a given system. An algorithm to identify the affecting areas due to tsu-

nami threat is shown in Table 2. Consider the set X consisting of the areas a1, a2, a3, a4, a5 and

a6, in the vicinity of an ocean where an earthquake takes place and these areas can be affected

by tsunami. A tsunami threat model is developed with the help of CFG T ¼ ðI; JÞ shown in Fig

3. The IVF-memberships and F-memberships of the vertices of T ¼ ðI; JÞ and edges of T ¼

ðI; JÞ are given in Tables 3 and 4, respectively.

List of all possible paths including the strengths and the strengths of their connections

between a1 and a2 in a CFG are given in Table 5. Here, the edge (a1, a2) in CFG is cubic α
−strong. Likewise, it would be worthwhile to investigate the nature of other edges between

areas. Analyzing the characteristics of each edge in the CFG would further underscore the sig-

nificance and efficacy of our research. Based on Fig 3 and conventional computations, the
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Table 2. Algorithm.

Algorithm: To Identify the affecting Area

Step 1. Consider a cubic fuzzy tsunami network.

Step 2. Insert the areas set X = {a1, a2, . . ., an} as the vertex set of CFG.

Step 3. Insert the value of membership of each edges in CFG.

Step 4. Calculate the strength of each pair of vertices by using formula,

SðPÞ ¼ h½L� ðPÞ;LþðPÞ�;LFðPÞi;

where

LþðPÞ ¼ ^n
i¼1
mþðai� 1; aiÞ;

L� ðPÞ ¼ ^n
i¼1
m� ðai� 1; aiÞ;

LFðPÞ ¼ ^n
i¼1
mFðai� 1;wiÞ:

Step 5. Calculate the strength of connectivity of each pair of vertices by

using formula

CONN1T ðai� 1; aiÞ ¼ h½CONN
�

T ðai� 1; aiÞ;CONN
þ

T ðai� 1; aiÞ�;CONN
F

Tðai� 1; aiÞi;

where

CONNþT ðai� 1; aiÞ ¼ _PfL
þ
ðPÞ : P is a path between ai� 1 and aig;

CONN�T ðai� 1; aiÞ ¼ _fL
�
ðPÞ : P is a path between ai� 1 and aig;

CONNF

Tðai� 1; aiÞ ¼ _fL
F
ðPÞ : P is a path between ai� 1 and aig:

Step 6.(i):If mþðai� 1aiÞ > CONN
þ

T� ai� 1ai
ðai� 1; aiÞ;

m� ðai� 1aiÞ > CONN
�

T� ai� 1ai
ðai� 1; aiÞ;

mFðai� 1aiÞ > CONN
F

T� ai� 1ai
ðai� 1; aiÞ;

then the edge ai−1ai is cubic α−strong zone

(ii):If

½m�T ðai� 1; aiÞ;m
þ
T� ai� 1ai

ðai� 1; aiÞ� � ½CONN
�

T� ai� 1ai
ðai� 1; aiÞ;CONN

þ

T� ai� 1ai
ðai� 1; aiÞ�;

mFTðai� 1aiÞ > CONN
F

T� ai� 1ai
ðai� 1; aiÞ

OR

If ½m�T ðai� 1aiÞ; m
þ
T ðai� 1aiÞ� > ½CONN

�

T� ai� 1ai
ðai� 1; aiÞ;CONN

þ

T� ai� 1ai
ðai� 1; aiÞ�;

mFTðai� 1aiÞ � CONN
F

T� ai� 1ai
ðai� 1; aiÞ;

then ai−1ai is partial cubic α−strong zone

(iii):If mþðai� 1aiÞ ¼ CONN
þ

T� ai� 1ai
ðai� 1; aiÞ;

m� ðai� 1aiÞ ¼ CONN
�

T� ai� 1ai
ðai� 1; aiÞ;

mFðai� 1aiÞ ¼ CONN
F

T� ai� 1ai
ðai� 1; aiÞ

then ai−1ai, then ai−1ai is cubic β−strong zone.

(iv):If mþðai� 1aiÞ < CONN
þ

T� ai� 1ai
ðai� 1; aiÞ;

m� ðai� 1aiÞ < CONN
�

T� ai� 1ai
ðai� 1; aiÞ;

mFðai� 1aiÞ < CONN
F

T� ai� 1ai
ðai� 1; aiÞ

then ai−1ai, then ai−1ai is cubic δ−weak zone.

(v):If ½m�T ðai� 1aiÞ; m
þ
T ðai� 1aiÞ� � ½CONN

�

T� ai� 1ai
ðai� 1; aiÞ;CONN

þ

T� ai� 1ai
ðai� 1; aiÞ�;

mFTðai� 1aiÞ < CONN
F

T� ai� 1ai
ðai� 1; aiÞ

OR

If ½m�T ðai� 1aiÞ; m
þ
T ðai� 1aiÞ� < ½CONN

�

T� ai� 1ai
ðai� 1; aiÞ;CONN

þ

T� ai� 1ai
ðai� 1; aiÞ�;

and mFðai� 1aiÞ � CONN
F

T� ai� 1ai
ðai� 1; aiÞ;

then ai−1ai is partial cubic δ−weak zone

https://doi.org/10.1371/journal.pone.0297197.t002
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Fig 3. T ¼ ðI; JÞ.

https://doi.org/10.1371/journal.pone.0297197.g003

Table 3. Membership value of each vertex in CFG T ¼ ðI; JÞ.

Vertices Vertex membership

a1 h[0.1, 0.3], 0.2i

a2 h[0.1, 0.5], 0.3i

a3 h[0.2, 0.5], 0.3i

a4 h[0.3, 0.6], 0.4i

a5 h[0.2, 0.4], 0.3i

a6 h[0.2, 0.4], 0.3i

https://doi.org/10.1371/journal.pone.0297197.t003
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connectivity between vertices in T ¼ ðI; JÞ can be determined as follows:

CONN1T� ða1a2Þ
ða1; a2Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða1a3Þ
ða1; a3Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða2a3Þ
ða2; a3Þ ¼ h½0:1; 0:3�; 0:3i;

CONN1T� ða2a4Þ
ða2; a4Þ ¼ h½0:1; 0:3�; 0:2i;

CONN1T� ða3a4Þ
ða3; a4Þ ¼ h½0:1; 0:3�; 0:2i;

CONN1T� ða3a5Þ
ða3; a5Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða4a5Þ
ða4; a5Þ ¼ h½0:2; 0:3�; 0:3i;

CONN1T� ða4a6Þ
ða4; a6Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða5a6Þ
ða5; a6Þ ¼ h½0:2; 0:3�; 0:3i:

ð14Þ

It is noted that cubic α−strong zones are (a3, a5), (a3, a4), (a4, a6), cubic β−strong zones are

(a1, a2), (a1, a3), cubic δ−weak zones are (a4, a5), (a5, a6), there is only one partial cubic α−-

strong zone which is (a2, a4) and partial cubic δ− weak zone is (a2, a3) in CFG system. The clas-

sification of areas with tsunami threat into different zones, will be helpful to interpret the

situation of tsunami threat in areas due to earthquake. Based on the categorization of different

zones according to the tsunami threat level the level of planning requires variation. In the

cubic α−strong zone with no tsunami threat minimal planning is needed focusing on general

disaster preparedness measures. A partial cubic α−strong zone requires moderate planning

including early warning systems and resilient infrastructure. A cubic β−strong zone demands

a higher level of planning with comprehensive emergency response plans and coastal protec-

tion measures. In a partial cubic δ−weak zone, extensive planning is necessary involving drills,

evacuation centers and strict building codes. A cubic δ−weak zone representing a very high

tsunami threat, requires the utmost level of planning including tsunami-resistant structures

and advanced warning systems. Overall, planning efforts must align with the level of tsunami

Table 4. Membership value of each edge in CFG T ¼ ðI; JÞ.

Edges Edge membership Edges membership

(a1, a2) h[0.1, 0.2], 0.2i (a3, a5) h[0.2, 0.3], 0.3i

(a1, a3) h[0.1, 0.2], 0.2i (a4, a5) h[0.1, 0.2], 0.2i

(a2, a3) h[0.1, 0.3], 0.2i (a4, a6) h[0.2, 0.4], 0.3i

(a2, a4) h[0.1, 0.3], 0.3i (a5, a6) h[0.1, 0.2], 0.2i

(a3, a4) h[0.2, 0.4], 0.3i

https://doi.org/10.1371/journal.pone.0297197.t004

Table 5. All paths from a1 to a2 in T.

In CFG T

P1: a1! a2 with strength h[0.1, 0.2], 0.2i

P2: a1! a3! a2 with strength h[0.1, 0.2], 0.2i

P3: a1! a3! a4! a2 with strength h[0.1, 0.2], 0.2i

P4: a1! a3! a5! a4! a2 with strength h[0.1, 0.2], 0.2i

P5: a1! a3! a5! a6! a4! a2 with strength h[0.1, 0.2], 0.2i

CONN1T ða1; a2Þ ¼ h½0:1; 0:2�; 0:2i

CONN1T� ða1a2Þ
ða1; a2Þ ¼ h½0:1; 0:2�; 0:2i

https://doi.org/10.1371/journal.pone.0297197.t005
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threat in each zone to ensure effective disaster risk reduction and mitigation measures. It is

important to note that throughout this study, we specifically focused on simple connected

CFGs. The concept of partial cubic α−strong and δ−weak edges is more advantageous com-

pared to cubic strong and weak edges. This is because sometimes we encounter a problem or

graph structure where the IVF-connectivity is either strictly less or greater than the IVF-mem-

bership value of an edge, while the F-connectivity equals to the F-membership value of that

edge and vice versa. In such situations, the concept of cubic strong and weak edges fails to pro-

vide us with any relevant information about the nature of that edge, leading to difficulty in

understanding it. In these conditions, the concept of partial cubic α−strong and δ−weak edges

plays an important role by providing us with information about the nature of that edge.

Hence, the concept of partial cubic α−strong and δ−weak edges is more beneficial compared

to cubic strong and weak edges.

7 Comparative analysis

The concept of partial cubic α-strong and δ−weak edges presents a fresh expansion of the cur-

rent notion of cubic α-strong and cubic δ-weak edges within the framework of earthquake-

induced tsunami threat modeling. Through this comparative examination, it can be suggested

that partial cubic α-strong and δ−weak edges provide specific advantages in contrast to cubic

α-strong and cubic δ-weak edges.

CONN1T� ða1a2Þ
ða1; a2Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða1a3Þ
ða1; a3Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða2a3Þ
ða2; a3Þ ¼ h½0:1; 0:3�; 0:3i;

CONN1T� ða2a4Þ
ða2; a4Þ ¼ h½0:1; 0:3�; 0:2i;

CONN1T� ða3a4Þ
ða3; a4Þ ¼ h½0:1; 0:3�; 0:2i;

CONN1T� ða3a5Þ
ða3; a5Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða4a5Þ
ða4; a5Þ ¼ h½0:2; 0:3�; 0:3i;

CONN1T� ða4a6Þ
ða4; a6Þ ¼ h½0:1; 0:2�; 0:2i;

CONN1T� ða5a6Þ
ða5; a6Þ ¼ h½0:2; 0:3�; 0:3i:

ð15Þ

From Eq 15, when applying the concept of cubic α-strong, cubic β-strong, cubic δ-weak, par-

tial cubic α-strong and partial cubic δ-weak edges to the tsunami threat model given in a Fig 3,

specific edges can be identified with precision. These edges can be identified based on the satis-

faction of the given edges conditions. Cubic α-strong edges are (a3, a5), (a3, a4), (a4, a6), cubic

β-strong edges are (a1, a2), (a1, a3), cubic δ-weak edges are (a4, a5), (a5, a6), partial cubic α-

strong edge is (a2, a4) and partial cubic δ− weak edge is (a2, a3). In Cubic Fuzzy Graph, when

we discuss only cubic strong and weak edges, we have the concept of cubic α-strong edge. This

edge is such that if we remove it and then check the strength of connectivity, the IVF-connec-

tivity is strictly less than the IVF-membership value of that edge. In terms of F-connectivity,

it’s also strictly less than the F-membership value. However, in the condition of a cubic δ-weak

edge, it’s strictly greater. But in the case of a cubic β-strong edge, the IVF-connectivity is equal

to the IVF-membership value, and the F-connectivity is equal to the F-membership value. At

times, we encounter cases where the IVF-connectivity is equal to the IVF-membership value,
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but the F-connectivity is strictly less or greater than the F-membership value, or the IVF-con-

nectivity is strictly less or greater than the IVF-membership value while the F-connectivity is

equal to the F-membership value. In such situations, the concept of cubic α-strong or cubic δ-

weak edges cannot handle this. Therefore, in such conditions, the concept of partial cubic α-

strong and partial cubic δ-weak edges plays an important role. It provides information not

only about cubic α-strong, cubic β-strong and cubic δ-weak edges but also about the nature of

the remaining edges. From Fig 3 and Eq 15, if we only consider the concepts of cubic α-strong,

cubic β-strong and cubic δ-weak edges, we have cubic α-strong zones as (a3, a5), (a3, a4), (a4,

a6), cubic β-strong zones as (a1, a2), (a1, a3) and cubic δ-weak zones as (a4, a5), (a5, a6). How-

ever, the remaining edges that do not satisfy the conditions of these edges do not provide any

information about their nature. Therefore, using the concepts of partial cubic α-strong and

partial cubic δ-weak edges helps us understand the condition of the remaining edges. Hence,

when viewed comparatively, the concept of partial cubic α-strong and δ-weak edges presents

clear advantages over cubic α-strong and cubic δ-weak edges, particularly in terms of precise

zone delineation and a thorough examination of tsunami conditions across past, present and

future scenarios.

8 Conclusion

Fuzzy graphs play a crucial role in understanding and studying complex systems characterized

by uncertain and imprecise information. From various kinds of fuzzy graphs, CFGs offer a

more advantageous representation as compared to interval-valued fuzzy graphs and fuzzy

graphs. This advantage stems from their ability to illustrate the membership degree of vertices

and edges using both interval and fuzzy number forms. This enhanced representation facili-

tates a more profound and detailed understanding of the connections and uncertainties inher-

ent in the graph’s structure. Connectivity or the strength of connectivity is always considered

as a cornerstone in network theory. The connectivity in both fuzzy graphs and cubic fuzzy

graphs involves comprehending cubic α−strong, cubic β−strong and cubic δ−weak edges. This

comprehension is essential for analyzing intricate networks. Proficiency in these concepts sig-

nificantly aids in decision-making, problem-solving and the analysis of various fields such as

transportation, social networks and communication systems. The importance of connectivity

and the comprehension of cubic fuzzy graphs have prompted a detailed discussion on connec-

tivity within the domain of CFGs. In this research paper, the concepts of partial cubic α− strong

and partial cubic δ− weak edges are introduced and bounds for the CI1 of the CFG are com-

puted. In scenarios, where we have information about the past, future and current conditions

of a model or problem, we can represent the past condition as a lower interval-valued fuzzy

membership, the future condition as an upper interval-valued fuzzy membership and the pres-

ent condition as a fuzzy membership value. Our objective is to scrutinize the problem by

deducing lower interval-valued fuzzy connectivity, upper interval-valued fuzzy connectivity

and fuzzy connectivity. Furthermore, we aim to make new predictions based on this analysis.

The average connectivity index ACI1 depending upon the average strength of connectivity

among vertices of a CFG is introduced. The concept of partial connectivity reducing node

(PCRN) and partial connectivity enhancing node (PCEN) are introduced. To overcome the

uncertainty in the economy and determine the impact of tsunami threat in different areas, an

application by using strong and weak edges of CFG is proposed. Finally, a detailed comparison

between our research results and the existing methods to showcase their applicability and pro-

ductivity is provided. In the realm of future work, one promising avenue to explore is the

hybridization of graph theory with recent advancements in Farmatean fuzzy set models given

in [43–45]. This interdisciplinary approach has a lot of potential to advance both graph theory
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and Farmatean fuzzy set theory, paving the way for addressing intricate problems and improv-

ing decision-making procedures. We also want to extend the concept of vertex connectivity

and edge connectivity to the cubic Intuitionistic fuzzy graph (CIFG).
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