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Abstract

As autonomous driving technology continues to advance and gradually become a reality,

ensuring the safety of autonomous driving in complex traffic scenarios has become a key

focus and challenge in current research. Model-free deep reinforcement learning (Deep

Reinforcement Learning) methods have been widely used for addressing motion planning

problems in complex traffic scenarios, as they can implicitly learn interactions between vehi-

cles. However, current planning methods based on deep reinforcement learning exhibit lim-

ited robustness and generalization performance. They struggle to adapt to traffic conditions

beyond the training scenarios and face difficulties in handling uncertainties arising from

unexpected situations. Therefore, this paper addresses the challenges presented by com-

plex traffic scenarios, such as signal-free intersections. It does so by first utilizing the histori-

cal trajectories of adjacent vehicles observed in these scenarios. Through a Variational

Auto-Encoder (VAE) based on the Gated Recurrent Unit (GRU) recurrent neural network, it

extracts driver style features. These driver style features are then integrated with other state

parameters and used to train a motion planning strategy within an extended reinforcement

learning framework. This approach ultimately yields a more robust and interpretable mid-to-

mid motion planning method. Experimental results confirm that the proposed method

achieves low collision rates, high efficiency, and successful task completion in complex traf-

fic scenarios.

1. Introduction

Over the past decade, significant research and practical efforts have been devoted to the devel-

opment of autonomous driving technology. This development is driven by the pressing issues

of increasing global vehicle ownership, leading to worsening traffic congestion and a rise in

traffic accidents [1]. According to statistical data from the U.S. National Highway Traffic

Safety Administration in 2021, the death rate due to traffic accidents increased by approxi-

mately 7% during the same period, partly attributed to deteriorating driving habits [2].

Human factors have contributed to frequent traffic accidents, making the deployment of
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autonomous driving technology a compelling solution. Autonomous driving technology uti-

lizes high-precision sensing and efficient computational planning systems, which can signifi-

cantly enhance traffic efficiency and safety during travel [3]. Consequently, in recent years,

driven by policy initiatives across different nations, autonomous driving technology is advanc-

ing towards practical application and commercialization.

The core technologies of autonomous driving encompass modules such as Perception &

Location, Prediction, Planning, and Control [4, 5]. These modules integrate a wide array of

technologies from automatic control, artificial intelligence, multisensory information fusion,

and communication systems. The system architecture is illustrated in Fig 1. Autonomous driv-

ing systems rely on perception technology to gather information about the surrounding envi-

ronment, enabling vehicle localization and even predictions about the future states of other

traffic participants. The Planning module processes information from the Perception and Pre-

diction modules and operates on three levels: task planning, which maps a global path from

the starting point to the destination based on waypoints, often incorporating navigation infor-

mation via the Localization module; decision planning, which involves high-level driving

behavior decisions; and motion planning, which, using the navigation path and driving deci-

sion, generates a feasible and safe trajectory for the vehicle, allowing it to securely follow the

path to the designated location. The Control module receives instructions from the planning

module and controls the vehicle’s movement [6, 7].

Planning serves as the brain of autonomous driving, occupying a pivotal role in the system

hierarchy. It synthesizes information from various sources to plan the behavior and actions of

autonomous vehicles. Any error in one module can directly impact behavioral decisions, sub-

sequently affecting the entire driving process. As the research in autonomous driving technol-

ogy advances, the focus has shifted from simple, controlled environments to more challenging,

complex, and adverse conditions [8]. In these complex environments, autonomous vehicles

encounter traffic scenarios that are challenging even for human drivers. These scenarios often

include dense traffic, obstructed visibility, and various unexpected events. In a mixed traffic

environment where communication may be absent, and autonomous vehicles share the road

with human traffic participants, complex interactions occur. In complex traffic scenarios,

uncertainties stemming from obscured vision and future behavior of other traffic participants

make it difficult for autonomous vehicles to construct an accurate model of their surround-

ings, posing significant challenges to decision-making and planning for autonomous driving

[9]. Traditional rule-based planning methods face limitations when dealing with complex sce-

narios. While deep reinforcement learning-based planning methods exhibit improved scalabil-

ity in complex environments, they lack the ability to reason about uncertainties. Moreover,

their end-to-end nature raises concerns about reliability and robustness. Overcoming these

challenges to expedite the deployment of autonomous driving technology remains a key area

of focus for researchers.

With the increasing integration of autonomous driving technology into open environ-

ments, autonomous vehicles are expected to operate within mixed traffic flows alongside other

societal vehicles. In complex traffic scenarios, interactions between autonomous vehicles and

surrounding vehicles become more frequent and intricate. Therefore, accurately predicting

the latent states of other traffic participants, such as their driving styles, is crucial to facilitate

improved interactions between autonomous and other vehicles. This is of significant impor-

tance in enhancing the safety and reliability of autonomous driving planning. The potential

states of traffic participants encompass their driving intentions and driving styles, with driving

intentions being the primary factor influencing trajectory predictions by autonomous vehicles.

Planning modules can use these predictions to chart collision-free routes. In complex interac-

tions, however, attributes with relatively persistent characteristics, specifically driving styles,
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become critical for negotiating between vehicles [10]. Currently, in autonomous driving

research, prediction and inference mostly operate as separate modules and are not closely inte-

grated with planning. Most studies addressing autonomous driving planning in complex traf-

fic scenarios primarily consider collision avoidance, overlooking the influence of potential

states, such as driving styles, on vehicle interactions. As a result, the underlying negotiations

and bargaining processes and potential hazards in vehicle interactions often go unnoticed.

Even the most advanced autonomous driving technologies currently available struggle to

ensure safety when confronted with the complexity and uncertainty of real-world traffic sce-

narios [11].

In light of the aforementioned backdrop, to enable autonomous vehicles to safely navigate

complex traffic scenarios and efficiently interact and negotiate with surrounding vehicles, this

study investigates driving style prediction, autonomous driving planning, and the tight cou-

pling of the two. To address the issue of existing planning algorithms lacking the capability to

infer surrounding vehicles’ driving styles, we propose a driving style inference network based

on Variational Auto-Encoder (VAE) and Gated Recurrent Unit (GRU). This network lever-

ages historical trajectory data of nearby vehicles obtained through perception to infer their

driving styles. Furthermore, we introduce a stability controller based on Lyapunov functions

to enhance the robustness and stability of existing deep reinforcement learning algorithms.

We also integrate driving style features with other state parameters and train the system within

the deep reinforcement learning framework to obtain motion planning strategies. This equips

autonomous vehicles to successfully navigate complex traffic scenarios, interact with vehicles

of varying driving styles, and safely navigate challenging road conditions. The contributions of

this study are summarized as follows:

Fig 1. Architecture of autonomous driving system.

https://doi.org/10.1371/journal.pone.0297192.g001
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• Propose a driving style inference network based on VAE+GRU. Leveraging raw historical

trajectory information of surrounding vehicles obtained through perception, and construct a

multidimensional dynamic scene feature map. Use a traffic information module to extract

traffic constraint information and build multi-information trajectories. The encoder of the

VAE+GRU network learns to distinguish different features from the constructed multi-

information historical trajectories, inferring the driving styles of surrounding vehicles. The

decoder, based on a mixed attention mechanism, reconstructs the inferred driving style, a

latent feature, back into trajectory information, enabling deep reinforcement learning to

acquire safer planning strategies.

• Introduce the Lyapunov-Based Safety Actor-Critic (LBSAC) algorithm, based on Lyapunov

stability theory. To address the issue of poor robustness of existing deep reinforcement

learning methods when dealing with uncertain traffic scenarios, a Lyapunov function satisfy-

ing data-based stability theorems is incorporated into the critic network as a policy gradient.

This addition helps the algorithm learn stable policies and ensures that the method produces

safe and reliable strategies, particularly in highly uncertain environments.

• Combine the driving style inference method with the LBSAC reinforcement learning frame-

work, resulting in a more robust and interpretable Mid-to-Mid motion planning method

called Driving Style Inference-LBSAC (DSI-LBSAC). By processing observational informa-

tion and its latent states to obtain driving styles, we integrate this driving style information

with state information, aiding the LBSAC algorithm in learning motion planning outcomes.

2. Related works

2.1 Autonomous driving planning methods

Presently, planning methods for autonomous driving can be broadly categorized into four

main classes: rule-based methods, model-based methods, and reinforcement learning-based

planning Methods [12].

1. Rule-Based Planning Methods

Rule-based methods represent the classical decision-making approach employed in early autono-

mous driving research. These methods involve dividing a vehicle’s driving behavior into various

categories, and establishing decision rule sets based on driving regulations, driver experience,

traffic knowledge, and traffic laws. These rules are used to determine the driving behavior of

autonomous vehicles based on different environmental cues [13]. After receiving driving deci-

sion commands, Chen et al. employed a Dijkstra-based method to plan feasible driving trajecto-

ries [14]. Yu et al. [15] considered constraints from surrounding vehicles during lane-changing

maneuvers and utilized a third-degree polynomial to plan intelligent vehicle lane-change trajec-

tories. Yang et al. [16] employed Bézier curves to plan smooth paths for lane switching, adjusting

the maximum curvature of the path through parameter design. Yu et al. [17] proposed a method

based on polynomial curves to plan trajectories and speeds for intelligent vehicle lane changes.

Curve interpolation-based methods generally exhibit trackability, low computational costs, and

high real-time performance. Additionally, these methods are often used in conjunction with

other planning approaches for trajectory smoothing. Wu et al. [18] introduced a collaborative

evolution lane-changing trajectory planning method, achieving intelligent vehicle lane changes

by integrating curve interpolation methods with deep learning models.

However, rule-based methods necessitate extensive manual design of driving strategies, making

them ill-suited to complex traffic scenarios that involve the randomness of surrounding traffic

participants and environmental uncertainties.
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2. Model-Based Planning Methods

Qiao et al. proposed a Hierarchical Options for MDP (HOMDP) framework to address the

challenge of the vast state and action spaces in POMDP models. Unlike POMDP, HOMDP

utilizes a multi-layered selection network during decision-making, assessing the trustwor-

thiness of the vehicle’s current driving environment solely based on the current observa-

tion, without considering past observations. The HOMDP algorithm was validated in a

crossroads scenario [19]. The team led by Shaojie Shen at the Hong Kong University of Sci-

ence and Technology introduced a Multi-policy Decision Making (MPDM) system to han-

dle decision-making challenges in complex traffic scenarios. They employed the

Spatiotemporal Semantic Corridor (SSC) method for motion planning [20]. Subsequently,

researchers proposed enhancements to the MPDM system, replacing multiple decision

trees with a domain-specific closed-loop strategy tree to improve the decision system’s con-

tinuity. They also introduced a conditional focus branching mechanism to address the chal-

lenge of information overload from an excessive number of surrounding vehicles, evolving

into an Efficient Uncertainty-aware Decision-making (EUDM) system [21]. Li et al.

addressed the challenge of circular intersection road environments by proposing an online

solution for autonomous driving decision-making in partially observable Markov decision

processes, thereby enhancing computational accuracy and solution efficiency [22]. They

also introduced the use of a Multi-policy Decision Making (MPDM) system to tackle deci-

sion-making challenges in complex traffic scenarios. Additionally, they employed the Spa-

tiotemporal Semantic Corridor (SSC) method for motion planning [23].

However, current POMDP models for autonomous driving are excessively simplistic, with

overly strong assumptions during the modeling process, making them inadequate for effec-

tively handling the substantial randomness inherent in the driving process.

3. Reinforcement Learning-Based Planning Methods

Researchers such as Sharifzadeh utilized an inverse reinforcement learning algorithm based

on Deep Q-Networks to extract reward functions from expert driving data, assisting auton-

omous driving in learning lane-changing behaviors more akin to human drivers [24].

Rezaee et al. explored the application of the Maximum Entropy Reinforcement Learning

method in complex traffic scenarios, particularly at intersections, with a focus on address-

ing motion planning challenges in situations involving obstructed views. Unlike rule-based

and model-based methods, reinforcement learning-based end-to-end planning methods

incorporate perceptual processing into neural networks [25]. Currently, research in hierar-

chical planning primarily focuses on two levels: planning up to the control layer, which

manages speed and steering angles, and planning up to the decision layer, which includes

actions such as moving straight or turning left or right. It is essential to note that even when

planning extends only to the decision layer, the tight coupling between decision-making

and motion planning remains a consideration. Directly issuing control commands using

reinforcement learning algorithms can introduce safety risks due to the black-box nature of

the approach. Consequently, in recent years, scholars have proposed end-to-end motion

planning, employing reinforcement learning to generate driving trajectories as actions

while ensuring safety, thus maximizing the advantages of end-to-end methods [26]. Li et al.

introduced an integrated methodology for automated lane change systems in automated

vehicles, addressing limitations in existing works by combining reinforcement learning for

decision making with a specially devised trajectory planning model [27]. Gu et al. developed

a motion planning method for automated driving that combines reinforcement learning

and Curve interpolation strategy [28]. Hu et al. addressed the AGV conflict prevention path

planning by proposing a multi-agent deep method [29].
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2.2 Planning methods based on driving style inference

Urban autonomous driving encounters a multitude of complex traffic scenarios, such as dense

traffic flow, signal-free intersections, and uncertainty caused by occlusions, all of which inten-

sify the complexity of vehicle interactions, subsequently impacting driving safety. To address

this challenge, many researchers have integrated inferred driving styles of surrounding vehicles

based on perceptual information, including historical states and trajectories, directly into rein-

forcement learning algorithms during the study of autonomous driving decision planning.

Ma and colleagues employed a supervised learning approach to categorize and label driving

styles. They represented intersection scenarios as undirected graphs and employed graph neural

networks to infer the driving styles of surrounding vehicles and their interactions, aiding rein-

forcement learning in decision planning [30]. Inferring driving styles from historical trajectories

is a quintessential sequence data representation learning task. Variational Autoencoders

(VAEs) have demonstrated notable performance in representation learning studies, and various

research efforts currently utilize VAEs and their variants to process autonomous driving per-

ception data [31]. Consequently, some scholars have integrated VAEs into the tight coupling of

driving style inference and reinforcement learning-based planning. For instance, Morton and

colleagues employed a VAE network structure based on Recurrent Neural Networks (RNNs) to

encode the driving trajectories of human-driven vehicles with distinct driving styles into a latent

space. This latent encoding, along with the current driver’s state, is fed back into a feedforward

policy that produced multimodal actions, achieving joint optimization of the encoder and driv-

ing strategy [32]. Liu and others addressed T-shaped signal-free intersections and employed a

Variational Autoencoder with a recursive neural network to learn the latent representation of

features that lacked fundamental ground truth labels. Subsequently, they used this feature repre-

sentation with a deep reinforcement learning algorithm to learn planning strategies, enabling

autonomous vehicles to safely negotiate interactions with other vehicles in this scenario and

enhance efficiency at intersections [33]. Wang et al. presented a trajectory planning approach

for self-driving vehicles in uncertain intersection scenarios, the proposed approach is designed

on reinforcement learning and Transformer [34]. Liu et al. proposed conditional variational

autoencoder to generate the vehicle trajectory [35]. However, supervised learning necessitates

substantial labeling, and the cost of acquiring feature labels is often prohibitively high and typi-

cally absent from most real driving datasets [33]. Current unsupervised learning-based joint

optimization methods are limited to specific driving scenarios, and their network structures

may not effectively extract implicit traffic constraint relationships among vehicles during the

driving process. Consequently, planning for autonomous driving in complex traffic scenarios

remains an unresolved challenge that warrants further exploration, particularly in the context of

incorporating the inferred driving styles of surrounding vehicles.

3. The proposed method

3.1 Planning modeling based on POMDP

In complex traffic scenarios, there exist numerous pieces of information that autonomous

driving systems cannot observe. The uncertainty arising from unobservable factors presents a

significant challenge that needs to be addressed in the planning process for autonomous driv-

ing. Therefore, autonomous driving planning falls into the category of Partially Observable

Markov Decision Process (POMDP) problems. In this paper, we model the planning problem

for autonomous driving in complex traffic scenarios as a POMDP.

3.1.1 Foundations of POMDP. The Markov Decision Process (MDP) describes a sequen-

tial decision-making process where an agent interacts with the environment. In cases of
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partially observable Markov decision processes (POMDP), the ideal model for sequential deci-

sion-making is considered when the environmental state is only partially known due to

dynamic uncertainties. The MDP, represented by the tuple hS,A,T,R,yi, which can be trans-

formed into a POMDP by introducing an observation function O:S!O when the state is not

directly observable. The relationship between the state s2S and the observation o2O is defined

by function O, within the observation space O. Hence, the POMDP tuple can be expressed as

hS,A,T,R,O,O,yi, and ρ0 denotes the initial state distribution. The state transition probability

function Tðs; a; s0 Þ ¼ pðs0 js; aÞ dictates the probability distribution of the new state s’ when

action a is taken in the current state s. Analogous to MDPs, solving POMDP problems involves

finding a policy π:O!A that maximizes the expected cumulative reward:

p∗ ¼ arg max
p

Es0 ;a0 ;o0 ;���

X1

t¼t0
ytRðst; atÞ ð1Þ

where s0 � r0ðs0Þ, at � pðatjo1:tÞ, ot � OðotjstÞ and stþ1 � Tðstþ1jst; atÞ.

Given the characteristics of POMDP and the dynamic uncertainty and partial observability

inherent in autonomous driving scenarios, this paper employs the POMDP model to formu-

late the planning and decision-making problem.

3.1.2 Observation model. In single-agent autonomous driving (ego-vehicle), environ-

mental information primarily consists of the state information of surrounding human-driven

vehicles and the ego-vehicle’s own state within the traffic road environment. The number of

surrounding vehicles n may change over time t. All vehicles are modeled as moving in Frenet

coordinate space. ot
0

represents the state of the ego-vehicle at time t, and ot
i represents the state

of the ith surrounding vehicle at time t, i2{1,2,� � �,n}. The state information includes longitudi-

nal displacement s, lateral displacement d, and speed (vs,vd). These features reflect the interac-

tion between vehicles during the driving process. Additionally, the acceleration information of

human-driven vehicles to some extent reflects their intentions at specific moments. Existing

methods often overlook the influence of intentions on driving styles, which are persistent attri-

butes. Changes in intent can lead to abrupt style shifts, making the inferred driving styles less

precise in complex traffic scenarios. Therefore, it is necessary to extract acceleration informa-

tion from the state information of surrounding vehicles. Based on the current state of com-

puter vision algorithms, precise location information, after noise reduction, can be obtained

from the perception module, while speed and acceleration can be approximated from the first

and second derivatives of displacement, with Δt representing the adjacent time intervals.

vt
s ¼ _st ¼

st � st� 1

Dt

vt
d ¼

_dt ¼
dt � dt� 1

Dt

at
s ¼Âst ¼ _vt

s ¼
vt

s � vt� 1
s

Dt

at
d ¼Âdt ¼ _vt

d ¼
vt

d � vt� 1
d

Dt

ð2Þ

Utilizing the multidimensional feature information obtained through sensors and basic

processing, a dynamic feature map of autonomous driving is constructed. Centered on the

ego-vehicle, a 3×3 rectangular grid, comprising nine cells, is created to map surrounding vehi-

cles according to their relative positions. Position layers, velocity layers, and acceleration layers

are individually formed for s and d coordinates. These layers together create a 6×3×3 multidi-

mensional dynamic scene feature map, as illustrated in Fig 2.
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In complex traffic environments, the aforementioned state information is only partially

observable. Increased uncertainties arise in scenarios with occlusions or dense traffic, ren-

dering the state information of surrounding vehicles incompletely observable. In cases of

occlusion, it may be impossible to perceive even the positional information of certain vehi-

cles, rendering them entirely unobservable. Consequently, the feature map contains missing

information, and the interaction relationships need to be further learned through reinforce-

ment learning methods presented in subsequent sections. Moreover, each surrounding

vehicle has a latent state zi2{conservative,aggressive} representing the driving style of the ith
driver. This latent feature encapsulates the conservative and aggressive attributes of driving

styles. Unlike other state information, driving style cannot be directly observed or easily

calculated.

Fig 2. Multidimensional dynamic scene feature map observed under the POMDP model.

https://doi.org/10.1371/journal.pone.0297192.g002
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3.2 Extraction of vehicle trajectories and representation of state

information

3.2.1 Vehicle trajectory information extraction network. The multi-dimensional

dynamic feature map constructed from perceptual observation data reflects all observed infor-

mation within the model. However, the implicit interactions between surrounding traffic partic-

ipants cannot be directly discerned from position and velocity information. In the past,

information such as position, velocity, and acceleration within the multi-dimensional dynamic

scene feature map encapsulated intentions, implicit interactions, and constraints of surrounding

vehicles—details that were absent in conventional trajectory data consisting solely of positional

points. This paper introduces a network designed to process the multi-dimensional dynamic

scene feature map and acquire multi-modal trajectory data enriched with pertinent traffic infor-

mation. As illustrated in Fig 3, a 1×1 convolution kernel is employed to fuse the multi-dimen-

sional features of surrounding human drivers. Subsequently, a 2×2 convolution kernel is used

to enable interactions between the autonomous vehicle and surrounding vehicles, thus extract-

ing the interactions among vehicles. Finally, information q, reflecting the interactions and con-

straints between vehicles, which underlie the trajectories, is obtained through Maxpool and FC

layers. This information enriches the trajectory data with multi-modal insights.

3.2.2 Representation of vehicle trajectories and state information. Inference of latent

state information, such as the driving styles of surrounding vehicles, must be deduced from

the historical trajectory data containing position and corresponding velocity information.

Essentially, inferring latent driving styles equates to feature representation learning. Historical

trajectory data of vehicles, consisting of positional points and corresponding velocity informa-

tion, can be represented as xt
i . The distribution of actions for the ith human driver is modeled

as PðAt
i jx

t
i ; z

t
iÞ. The aim of latent state inference is to learn Pðzt

i jx
1:t
i Þ, where x1:t

i denotes the his-

torical observed trajectories of surrounding vehicles from the initial time to time t. To facilitate

the learning of feature representations for trajectories and latent state inference, trajectory data

for crossroad scenarios is needed. Prior to collecting trajectory information in complex traffic

scenarios, an elucidation of trajectory observations for crossroad environments is essential.

Traffic observation information processing process is llustrated in Fig 4. During the driving

process, with time t as the unit of measurement, each vehicle’s trajectory can be represented by

Fig 3. Traffic information extraction network.

https://doi.org/10.1371/journal.pone.0297192.g003
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its positional information at each time step, with the density of adjacent trajectory points

reflecting speed information. Therefore, during the feature representation learning phase, each

vehicle’s observable state, namely trajectory data, is simplified to x = (s,d|q). s represents the

longitudinal displacement of the vehicle from its initial state, d represents the lateral displace-

ment, and q incorporates the interaction constraints information extracted through the multi-

dimensional dynamic features and traffic information module. The trajectory state informa-

tion for each driver can be represented as τ = [x1,� � �,xt]. Considering the variability of vehicle

conditions in complex traffic scenarios, the past 20-time steps are selected as a segment of tra-

jectory. The collected trajectories are rotated to align all trajectories in the dataset in the same

direction. Consequently, lane and direction information is indistinguishable in trajectory data,

enabling the network to focus on learning latent feature differences rather than other dispari-

ties among vehicles.

Simulations were conducted for traffic scenarios without autonomous vehicles at signalized

crossroads, recording the trajectories of all surrounding vehicles controlled by the Intelligent

Driver Model (IDM) [36]. By learning feature representations from this dataset, autonomous

vehicles can infer features from other drivers’ trajectories before deciding to merge or wait.

The trajectory dataset is denoted as ftjg
N
j¼1

, where N represents the total number of

trajectories.

3.3 Inference of driving style

Utilizing a VAE+GRU network structure for encoding and decoding the trajectories of sur-

rounding vehicles, we learn the feature representations within the trajectories and infer driving

styles. The network architecture of this method is depicted in Fig 5. In the diagram, [••] repre-

sents information concatenation. The VAE network consists of an encoder and a decoder,

Fig 4. Traffic observation information processing process.

https://doi.org/10.1371/journal.pone.0297192.g004

Fig 5. GRU+VAE latent state inference network architecture.

https://doi.org/10.1371/journal.pone.0297192.g005
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with the former compressing the trajectory τ into a distribution of latent feature vectors z,

while the latter utilizes these latent feature vectors to reconstruct the trajectory.

3.3.1 VAE representation learning based on RNN. By employing an RNN to refine and

enhance the VAE, we create an autoencoder for data sequences with a Gaussian prior acting as

a regularization term for the hidden encoding. The decoder is a specialized RNN inference

model that conditions on the hidden encoding and contains no useful information in a degen-

erate environment. LSTM networks, due to their long-term memory capabilities, are com-

monly used in fields such as classification and prediction. The VAE+RNN representation

learning model quantifies the degree to which the model learns global features by observing

the variational lower bound. By encoding useful information in the latent variable z, the model

has a non-zero KL divergence term and relatively small cross-entropy term, which cannot be

achieved directly using VAE alone. The LSTM decoder captures subtle changes in the hidden

states, requiring the use of global latent variables to achieve good likelihood.

Applying the VAE+RNN representation learning method to driving style inference, we

learn the features from the historical state information of surrounding vehicles and infer the

corresponding driving styles. Since the potential driving styles of other vehicles affect the

autonomous driving strategy, maximizing the objective needs to consider this latent state.

logðatjstÞ ¼ log
Z

pðat; zjstÞdz

¼ log
Z

pðatjz; stÞpðzjstÞdz
ð3Þ

To address the issue of unknown latent states, this study encodes the driving trajectories of

different driving styles into a latent space to obtain a cognitive model q(z|a,s) closely approxi-

mating the true posterior distribution. Subsequently, the latent encoding and the current driv-

er’s state are fed into a feedforward policy to produce multimodal actions, transforming Eq (3)

as follows:

logðatjstÞ ¼ log
Z

pðatjz; stÞpðzÞ
qðzja; sÞ
qðzja; sÞ

dz

¼ logE
pðatjz; stÞpðzÞ

qðzja; sÞ

� � ð4Þ

Since the feedforward policy only considers the relationship between the current state and

action, joint optimization encourages the encoder to encode short-term information about tra-

jectories, such as acceleration. Therefore, driving style inference is not precise enough. To

address this, the framework incorporates a decoder based on the GRU network for trajectory

reconstruction, compelling the encoder to encode feature information.

3.3.2 VAE representation learning based on GRU. Compared to LSTM, GRU has fewer

parameters, faster training, and requires less data for generalization. In long-term prediction

inference in complex environments, GRU outperforms LSTM [37]. Therefore, the proposed

approach adopts an encoding structure based on GRU+VAE.

VAE learns a cognitive model q(z|x) regarding the posterior of the latent state encoding z
through data processing, forming an ellipsoidal region in latent space where data with similar

semantic features are clustered together. The autoencoder aims to train by attempting to make

the reconstructed output identical to the input in terms of feature representation. As shown in

Fig 5, the proposed VAE network comprises an encoder and a decoder. A dataset of trajectory

state information is used to train the VAE+GRU network to learn feature representations. In

the encoding phase, given trajectory τ = [x1,� � �,xt], the encoder GRU first applies a non-linear
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embedding layer to each state, and then provides the embedded features to the GRU units:

ht
e ¼ GRUðht� 1

e ; fencoderðt
tÞÞ ð5Þ

where ht
e represents the hidden states of the encoder GRU from 1 to t time steps. After the

entire trajectory passes through the encoder GRU, the final hidden state is treated as the

encoded latent feature of trajectory "e," and Gaussian parameters for latent driving styles τ are

obtained using a fully connected layer:

m ¼ fmðh
t
eÞ; si ¼ fsðh

t
eÞ ð6Þ

Finally, the reparameterization trick is employed to sample z from N(μ,σ) for more efficient

learning z ¼ mþ εs; ε � Nð0; IÞ:
3.3.3 Hybrid attention mechanism. As a time series inference task, the inference of driv-

ing styles in complex traffic scenarios possesses particular features. The features influencing

model performance change over time. For instance, during normal driving, vehicle motion

remains consistent, and driving styles are primarily inferred from historical positional and

velocity information. However, when unexpected situations arise at intersections, interactions

between vehicles change rapidly. In such cases, to avoid collisions, vehicles’ motion patterns

change drastically (e.g., hard braking or aggressive acceleration), and driving styles might dif-

fer from previous moments. Therefore, relying solely on either time-based or feature-based

attention mechanisms is insufficient to enhance the accuracy of inferring latent driving styles

in complex scenarios.

To address the rapid changes over relatively short time intervals, this study introduces a

hybrid attention mechanism that combines time-based and feature-based attention. This

attention mechanism assesses the influence on output accuracy for each moment and each fea-

ture independently, distributing attention weights. With a finer-grained attention allocation

mechanism, the model can focus on critical moments and corresponding features to produce

more accurate outputs. The principles of the hybrid attention mechanism are outlined below.

Eq (7) represents the hidden states H of GRU units over the past th frames:

H ¼ ½ht� ðth � 1Þ; � � � ; ht� 2; ht� 1�
T

ð7Þ

Assuming the hidden states are n-dimensional, then H 2 Rth�n. If the hidden state at time t
is ht2R1×n, the cosine similarity between gt and gf can be calculated for both the time dimen-

sion and the feature dimension using the scoring functions H and ht, respectively:

gtðH; htÞ ¼ HhT

gf ðH; htÞ ¼ htðWf HÞ
ð8Þ

where Wf 2 R
th�n. The time attention vector at 2 R

th�1 and the feature attention vector

af2R1×n are obtained via softmax functions:

at ¼ softmaxðgtðH; htÞÞ

af ¼ softmaxðgf ðH; htÞÞ
ð9Þ

As shown in Fig 6, the final hybrid attention matrix a 2 Rth�n
is obtained by combining

both attention mechanisms:

a ¼ ataf ð10Þ
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3.3.4 Decoder based on hybrid attention mechanism. The matrix obtained by the hybrid

attention mechanism assigns weights to the hidden states H and maximizes time and feature

dimensions, selecting the moments and features most relevant to the output. During the

decoding phase, since the driving style does not change within a single time step, latent state z
is treated as a part of the surrounding vehicle state, rather than the initial hidden state of the

decoder GRU. Therefore, at each time step t, the previous time step’s reconstructed state x̂t� 1

is connected with the latent state z from the encoder. The embedded joint state is then fed into

the next decoder GRU unit, where another embedding is applied to obtain the next hidden

state _ht
d and output the next reconstructed state x̂t:

ht
d ¼ contactðht� 1

d ;mt;mf Þ

_ht
d ¼ GRUðht

d; fencoderðx̂t� 1; zÞÞ

x̂t ¼ gdecoderð
_ht

dÞ

ð11Þ

In the first time step, a special sequence start state (SOS) is employed to reconstruct x̂1, sim-

ilar to a sequence start symbol in natural language processing, until the entire trajectory t ¼

½x̂1; � � � ; x̂t� is reconstructed. The objective of training the VAE+GRU network is:

L ¼ � bDKLðNðm; sÞkNð0; IÞÞ þ kt � t̂k2
ð12Þ

where DKL is the KL divergence. The first term regularizes the distribution of the latent shape

towards a standard normal distribution to make it closer to the prior. The second term is the

reconstruction loss, measuring the L2-norm error between the reconstructed trajectory and

the original trajectory. These two terms are weighted by β. By optimizing the above equation,

the proposed network learns the latent encoding representing the features of each trajectory,

which is the driving style, without the need for any ground truth feature labels. Furthermore,

the proposed method does not assume the number of feature classes or the semantics of feature

classes, making it capable of handling trajectories with more complex features.

Fig 6. Hybrid attention module.

https://doi.org/10.1371/journal.pone.0297192.g006
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3.4 Robust model-free deep reinforcement learning

Existing deep reinforcement learning methods suffer from the issue of excessive parameteriza-

tion, limiting the applicability of trained policies to complex traffic scenarios in autonomous

driving due to uncertainties. In response to this, the Actor-Critic reinforcement learning algo-

rithm is enhanced in this paper, introducing a Reinforcement Learning algorithm based on

Lyapunov’s safety Actor-Critic approach.

With the development of deep learning, researchers have introduced numerous deep rein-

forcement learning methods based on the Actor-Critic framework in recent years, successfully

applied in autonomous driving planning. Among them, the Deep Deterministic Policy Gradi-

ent (DDPG) algorithm and Soft-Actor-Critic (SAC) algorithm have performed exceptionally

well. Within the SAC algorithm framework, a Lyapunov function is used as a critic in the pol-

icy gradient formula, introducing a Lyapunov critic that satisfies LcðsÞ ¼ Ea�pLcðs; aÞ. The pol-

icy objective for strategy π becomes:

Jðs; a;w; c; s0 Þ ¼ Eðs;a;w;R;s0 Þ½blogðpyðfyðε; sÞjsÞÞ � Qðs; fyðε; sÞÞ�

þ lEv;p;Tp
DLðs; a;w; c; s0 Þ þ nETðsjr;p;t0Þ;Tðt0 jr;pÞ;p

ðLcðs; aÞ � k2Þ
ð13Þ

where πθ is parameterized by neural network fθ, ε is an input vector consisting of Gaussian

noise, λ is a positive Lagrange multiplier adjusted via policy gradient to control policy entropy.

D = (s,a,w,R,s’) represents the replay buffer. The expression for ΔL is as follows:

DLðs; a;w; c; s0Þ ¼ Lcðs
0; fyðε; s

0ÞÞ � Lcðs; aÞ þ ða3 þ 1Þc � Z2kwk2 ð14Þ

In this proposed framework, the Lyapunov candidate function serves as a supervisory signal

during training, Lc is updated to be an approximate value of the objective function Ltarget

related to the chosen Lyapunov candidate. The Lyapunov function is updated using a least

squares method to minimize the target function:

JðLcÞ ¼ ED
1

2
ðLcðs; aÞ � Ltargetðs; aÞÞ

2

� �

ð15Þ

The resulting algorithm is called the Maximum Entropy Deep Reinforcement Learning

based on Lyapunov, named Lyapunov-Based Safety Actor-Critic (LBSAC). Utilizing this algo-

rithm ensures that the planning policies learned by autonomous vehicles are stable and robust.

3.5 Motion planning based on LBSAC

3.5.1 Mid-to-Mid motion planning. Prior research on motion planning using deep rein-

forcement learning algorithms mainly focused on an end-to-end control framework. However,

this approach lacks interpretability and can lead to dangerous situations when applied in prac-

tice. Hierarchical reinforcement learning methods, which employ two agents to separately

learn decision-making and motion planning layers, introduce complexity by combining dis-

crete reinforcement learning actions with continuous observation spaces. Moreover, the

sequential coupling of reinforcement agents complicates computation and destabilizes the

training process because both agents need to balance exploration and exploitation. Therefore,

when addressing motion planning problems in complex traffic scenarios using deep reinforce-

ment learning, a modified framework is introduced. It processes the perceived state informa-

tion to infer driving styles, incorporates this latent state into the state information, and learns

the mapping from state information to motion planning-related actions using a reinforcement

learning algorithm. Only the decision-making and motion planning modules are combined,

while the control module tracks the motion planning output trajectory to drive the vehicle.

PLOS ONE An automatic driving trajectory planning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0297192 January 25, 2024 14 / 26

https://doi.org/10.1371/journal.pone.0297192


This design retains the control module, enabling the perception module to directly send com-

mands to the vehicle control in emergency situations, ensuring safety. This planning frame-

work is called Mid-to-Mid, as shown in Fig 7.

3.5.2 Motion planning action space design. In complex traffic scenarios, traditional pipe-

line-based planning methods struggle to handle environmental randomness and uncertainty.

To address these issues, a deep reinforcement learning agent is designed to extract useful fea-

tures from observation state information using a deep neural network and provide the optimal

trajectory in a continuous action space. Training an agent under the Mid-to-Mid framework is

a sensible choice. The agent processes the preprocessed observation state information and

optimizes a motion planning strategy, generating a continuous polynomial trajectory in Frenet

space. This approach does not generate driving commands (θ,T) based on observation infor-

mation but instead produces a continuous trajectory τ*. Therefore, the key to modeling

motion planning based on deep reinforcement learning lies in the processing of the state space

and the determination of the action space.

1. State Space

The Frenet framework is used to represent input states for the neural network, including

longitudinal displacement s and lateral displacement d. Before being fed into the network,

these values are normalized and transformed. The longitudinal and lateral displacements in

the Frenet framework, s and d, describe the state of the autonomous vehicle and surround-

ing vehicles. According to the driving style inference module, the output z corresponding

to the driving style of the surrounding vehicle is decoded and concatenated with the sur-

rounding vehicle information. The state information s includes the state of the autonomous

vehicle itself and the surrounding vehicle information, with the feature extraction for the

information from surrounding vehicle trajectories still relying on a traffic information

module network.

2. Action Space

An agent is introduced to learn and optimize a strategy to produce a feasible trajectory in

Frenet space at each time step, instead of discretizing terminal manifolds as in traditional

methods. A polynomial trajectory, also known as a lattice, is represented with three contin-

uous values: vf,df, and tf. Each value has an acceptable action sampling range. By mapping

these ranges to [–1, 1], a continuous action space for reinforcement learning can be defined

as follows:

A ¼ fvf ; df ; tfg ð16Þ

where each value is within the range [–1, 1]. Exploring different regions of the action space

is equivalent to examining different polynomial trajectories in the driving corridor, as

shown in Fig 8. The final output of motion planning consists of feasible trajectory points

composed of actions, which the control module uses to track the trajectory, thereby driving

the autonomous vehicle.

Fig 7. Framework diagram of the planning method in this thesis.

https://doi.org/10.1371/journal.pone.0297192.g007
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3.5.3 Reward function design. In terms of safety, collisions or deviations from the road

pose a danger; hence, Eq (17) represents the safety reward Rsafe.

Rsafe ¼
� 10; if collision

10; if out off road

(

ð17Þ

Regarding velocity, the speed values are designed to fall within the range between the lowest

and highest speed limits, ensuring safety. In terms of driving efficiency, the vehicle receives a

reward Rm at each time step, encouraging the vehicle to overtake slower cars, as shown in Eq

(18):

Rm ¼ 10exp
� ðVtarget � VegoÞ

2

5� Vmax
ð18Þ

To encourage the vehicle to switch to a faster lane as soon as possible after overtaking

slower vehicles, a lane-change reward Rlc is introduced. It’s important to note that lane changes

resulting in a speed increase have a positive impact on the overall reward function. Frequent

lane changes that do not lead to higher speeds not only decrease driving comfort but also vio-

late traffic norms. Therefore, this paper considers the rewards of lane changes from both posi-

tive and negative aspects, with the reward function as in Eq (19):

Rlc ¼ Rm þ rm �Wlcþ if speed gain > 1m=s

Rlc ¼ � RmWlc� otherwise

(

ð19Þ

As defined in the equation above, the speed gain threshold is set to 1 m/s. If a lane change

leads to a speed gain of at least 1 m/s, a positive lane change reward is given; otherwise, the

lane change action is penalized. Here, Wlc+ and Wlc− are set to 0.7 and 0.2, respectively. In

summary, the reward function R can be represented as the sum of the above components.

R ¼ Rsafe þ Rm þ Rlc ð20Þ

Fig 8. Trajectories for moving obstacles and candidate paths visualized in driving corridors.

https://doi.org/10.1371/journal.pone.0297192.g008
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4. Algorithm validation and simulation analysis

Urban autonomous driving encounters a multitude of complex traffic scenarios due to the

uncertainty of the driving environment. These scenarios include situations with obstructions,

heavy traffic, uncoordinated traffic signals, and obstructed paths due to broken-down vehicles.

Collecting real-world data on actual roads is challenging, and training autonomous vehicles

based on deep reinforcement learning in real traffic conditions can pose safety risks. Therefore,

to assess the feasibility, safety, and stability of the proposed planning method in addressing

typical complex traffic scenarios, this paper leverages the open-source urban driving simulator

CARLA (Car Learning to Act) and its publicly evaluated Leaderboard for autonomous driving

performance to construct complex traffic simulation scenarios and evaluate the performance

of autonomously driven vehicles trained with the proposed method.

4.1 Simulation environment setup and evaluation criteria

Complex traffic scenarios encompass intricate road layouts and challenging road conditions.

In urban autonomous driving, common complex road layouts include various intersections,

roundabouts, and merge intersections, while typical complex road conditions involve obstruc-

tions (commonly referred to as "phantom obstacles"), heavy traffic, and situations where dis-

abled vehicles obstruct the road. The combination of complex road layouts and challenging

road conditions constitutes complex traffic scenarios. The CARLA-based simulation platform

provides urban infrastructure, traffic signs, various weather conditions, and lighting scenarios

as part of the external environment, as depicted in Fig 9. Fig 9(A) illustrates driving environ-

ments during the day (left) and night (right), while Fig 9(B) showcases several typical weather

conditions, with the first row displaying clear and overcast days from left to right and the sec-

ond row illustrating rainy and partly cloudy conditions. The hardware configuration of the

computing platform and the software setup of the simulation system are detailed in Table 1.

Leaderboard is CARLA’s autonomous driving ranking platform, primarily designed for

assessing the driving capabilities of autonomous driving agents in real-world traffic conditions.

It serves as a publicly accessible evaluation platform, offering comprehensive assessment crite-

ria. In the tasks set on the Leaderboard, autonomous vehicles are required to navigate prede-

fined global routes. At the starting point of each route task, the autonomous driving agent is

initialized and directed to travel to a designated destination, as illustrated in Fig 10. Here, the

blue point represents the starting point, the red point signifies the destination, and the green

line represents the globally planned route. The established routes and tasks encompass various

areas, including highways, urban settings, and residential zones. The performance of autono-

mous driving is evaluated under diverse weather conditions, including daytime scenarios, sun-

sets, rainy conditions, fog, and nighttime.

Throughout the Leaderboard testing process, autonomous vehicles encounter various types

of traffic situations defined based on the criteria of the National Highway Traffic Safety

Administration (NHTSA). These situations include several typical complex traffic scenarios:

1. Longitudinal planning following the lead vehicle’s abrupt braking: When the leading vehi-

cle decelerates suddenly due to obstacles or congested road sections, the autonomous vehi-

cle must perform emergency braking or evasive actions.

2. Evasive maneuvers in scenarios with obstructed views of suddenly emerging traffic partici-

pants: Autonomous vehicles may encounter obstructions on the road, such as buildings or

roadside objects blocking their view. In such cases, they must execute emergency braking

or deceleration to avoid sudden traffic participants.
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Fig 9. Schematic diagram of CARLA simulation environment.

https://doi.org/10.1371/journal.pone.0297192.g009

Table 1. Hardware and simulation environment configuration.

Name Model version

GPU NVDIA GTX1060(6G video memory)

CPU Inter(R) Core(TM) i7-8700

Unreal Engine 4.22.2

CARLA 0.9.10

Pytorch 1.4.0

Python 3.7.9

CUDA 10.1

cudnn 7.6

Pygame 1.9.6

Gym 0.21.0

Opencv-python 1.21.5

https://doi.org/10.1371/journal.pone.0297192.t001
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3. Various interactions at intersections: While navigating through intersections, including

four-way and T-shaped intersections, autonomous driving vehicles must make choices

such as proceeding straight, turning left, or turning right. Negotiating interactions with var-

ious traffic participants is necessary during intersection crossings, including yielding to

conflicting traffic participants or reaching compromises.

4. Lane changes to overtake slow lead vehicles: Autonomous vehicles need to change lanes to

overtake slower lead vehicles, allowing them to attain higher speeds. During this process,

they may also need to respond to potential conflicts in the target lane.

Fig 10 illustrates typical complex traffic scenarios encountered during everyday driving,

highlighting that most complex traffic situations result from interactions between vehicles and

the potential for conflicts.

4.2 Experimental results and analysis

All methods underwent training in the complex traffic simulation environment for

120,000-time steps. The trained models are then loaded onto autonomous vehicles in the Lead-

erboard test case platform configuration. Performance comparisons of different planning

methods in terms of autonomous driving safety and efficiency are conducted based on the

evaluation criteria outlined above. Given the distinct frameworks and types of the three meth-

ods, it is not feasible to evaluate them based solely on algorithm-specific metrics, such as

reward functions. The following sections present an introduction to the relevant training and

testing results, along with an analysis.

(1) Testing in a single complex traffic scenario in Town01 map

The test results in the Town01 map are presented in Table 2. For clarity, the test scenario

involving driving at an intersection under normal traffic density conditions is presented

separately.

Observing the results in Table 2, several key observations emerge: 1) In the straight driving

task, the performance of various methods is remarkably close. Notably, the proposed approach

exhibits a lower collision rate due to improvements in robustness and stability. As traffic den-

sity varies, success rates for all algorithms decrease, attributed to the heightened uncertainty in

Fig 10. Example of a typical complex traffic scenario.

https://doi.org/10.1371/journal.pone.0297192.g010
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driving environments and increased perceptual information and observational data processing

required under dense traffic conditions. 2) Navigating through intersections presents a notably

greater challenge, especially in densely trafficked scenarios without coordinated traffic signals,

representing a typical complex traffic scenario. The proposed method demonstrates clear

advantages in handling intricate interactions in this task. Its success rate and collision rate are

significantly superior to End-to-end SAC and two advanced methods, Morton and AUTO, as

the proposed approach, relying on the VAE+GRU-based driving style inference network,

accurately predicts the driving styles of surrounding vehicles. Furthermore, the LBSAC algo-

rithm enhances robustness and stability, resulting in optimal safety and efficiency. A compari-

son with the MMFN on the CARLA Leaderboard indicates a slightly lower success rate for the

proposed method, but the difference is marginal, confirming the almost identical performance

and affirming the effectiveness of the proposed approach.

(2) Leaderboard testing in Town03 and Town04 maps

The trained models are tested on 20 task routes in the Town03 map and 10 task routes in

the Town04 map. The results are presented in Table 3. Route completion averages are calcu-

lated according to Eq (21), where �Co represents the overall average completion rate, �ci is the

average completion rate for each route, and c is the completion level for a single test on a spe-

cific route. In Leaderboard testing, collisions do not immediately terminate a task; instead, the

collision count is recorded. Consequently, a route may experience multiple collisions or none

Table 2. Test results at different traffic densities in Town01.

Task Traffic density Method Success rate Collision rate Deadlock/Timeout

Straight Sparse DSI-LBSAC 100% 0 0

End-to-end SAC 100% 0 0

Morton [38] 100% 0 0

AUTO [39] 100% 0 0

MMFN [40] 100% 0 0

Normal DSI-LBSAC 98% 0 2%

End-to-end SAC 96% 2% 2%

Morton [38] 95% 2% 3%

AUTO [39] 96% 2% 2%

MMFN [40] 98% 2% 0%

Dense DSI-LBSAC 94% 2% 4%

End-to-end SAC 93% 4% 3%

Morton [38] 91% 4% 5%

AUTO [39] 92% 4% 4%

MMFN [40] 95% 3% 2%

Driving at intersection Sparse DSI-LBSAC 98% 1% 1%

End-to-end SAC 94% 4% 2%

Morton [38] 95% 2% 3%

AUTO [39] 96% 2% 2%

MMFN [40] 99% 1% 0%

Dense DSI-LBSAC 83% 7% 10%

End-to-end SAC 74% 14% 12%

Morton [38] 77% 13% 10%

AUTO [39] 78% 10% 12%

MMFN [40] 85% 7% 8%

https://doi.org/10.1371/journal.pone.0297192.t002
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at all. Locking, leading to task timeout, occurs when autonomous vehicles are in deadlock situ-

ations. It is worth noting that some collisions may lead to deadlock, such as collisions with

buildings or vegetation. The average runtime is computed as the sum of all recorded test dura-

tions divided by the total number of tests. Different methods achieve varying route completion

rates, and completing more routes requires more time. Therefore, time cannot serve as the sole

efficiency evaluation criterion.

�Co ¼
1

20

X20

i¼1
�ci;�ci ¼

1

10

X
c ð21Þ

According to Table 3, in comparison with advanced methods such as End-to-end SAC,

Morton, AUTO, and MMFN, the proposed approach achieves the highest completion rate, the

fewest collisions, and the lowest instances of deadlock. Additionally, the proposed method

exhibits lower runtimes compared to these methods, indicating higher driving efficiency and

robustly affirming its effectiveness. Furthermore, since Town04 has a larger map and longer

routes, its runtime is significantly higher than in the Town03 environment. Thus, from the

perspective of autonomous driving planning alone, the performance of the DSI-LBSAC

method in comprehensive aspects like planning safety (few collisions), efficiency, and avail-

ability clearly outshines traditional end-to-end planning and imitation learning methods. A

comparison with MMFNon the CARLA Leaderboard reveals that on Town03, the proposed

method has a slightly superior completion rate and fewer collisions than MMFN. However, on

Town04, the proposed method has a slightly lower completion rate and more collisions than

MMFN. Overall, the proposed method and MMFN exhibit distinct strengths, and their perfor-

mances are essentially equivalent.

In the Town03 test cases, the proposed method excels by achieving 100% route completion

in several routes: route5, route7, route8, route14, route15, and route17. However, in some

route tasks (e.g., route4, 9, 10), vehicles trained by all methods exhibit lane departures and fail

to complete even 10% of the entire route. This issue may be attributed to path redundancy in

these routes. The same problem is observed in the Town04 map.

Two main factors contribute to deadlocks (timeouts): deadlocks resulting from collisions

and congestion-induced road segment deadlocks. The former occurs when autonomous vehi-

cles collide with roadside objects or are pushed off the road by other vehicles. Since reversing

is not part of the research and experiments, they remain trapped without escape. Visualizing

the driving process in sections where deadlocks consistently occur reveals the root causes, as

illustrated in Fig 11. In these scenarios, autonomous vehicles become ensnared in traffic, and

Table 3. Leaderboard task test results in Town03 and Town04 environments.

Map environment Method Average route completion degree (%) Number of collisions Number of deadlocks Average running time

Town03 The proposed method 64.60% 56 32 443.59s

End-to-end SAC 58.87% 74 34 440.98s

Morton [38] 61.10% 65 32 442.37s

AUTO [39] 62.74% 60 34 444.80s

MMFN [40] 64.18% 58 32 452.64s

Town04 The proposed method 57.38% 31 41 1058.10s

End-to-end SAC 51.70% 40 43 1029.53s

Morton [38] 50.39% 36 43 1045.51s

AUTO [39] 52.46% 38 43 1069.22s

MMFN [40] 58.40% 30 39 1093.90s

https://doi.org/10.1371/journal.pone.0297192.t003
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due to spatial constraints, they cannot execute lane-changing maneuvers as a regular vehicle

might. Even human drivers would face challenges in such extreme traffic conditions, necessi-

tating lane-crossing over solid lines or guidance from traffic officers. However, current auton-

omous driving systems are designed to adhere strictly to traffic regulations to ensure safety.

Therefore, when trapped, they deadlock and eventually time out, making it impossible to com-

plete the route. This situation is more prevalent in the Town04 map.

4.3 Sensitivity analysis

The proposed method comprises an overarching framework that includes a driving style pre-

diction inference network based on VAE and GRU, as well as improvements to the LBSAC

deep reinforcement learning algorithm within an Actor-Critic framework. To enhance the

performance of the LBSAC algorithm, an attention module is integrated. To ensure its safety

in uncertain environments, a safety layer is implemented.

To validate the effectiveness of the driving style inference network, the attention module,

and the safety layer in practical applications, three ablation models are trained in the Town03

map environment: models without the inference module, without the attention module (No

attention, No-attn), and without the safety layer (No safety threshold, No-st). Six routes,

namely route5, route7, route8, route14, route15, and route17, which performed well in the pre-

vious tests, are selected for evaluation. Each ablation model underwent ten tests per route, and

the results are compared against the DSI-LBSAC algorithm’s test outcomes.

According to Table 4, the following conclusions can be drawn:(1) The driving style infer-

ence module significantly enhances the planning module’s performance. All models incorpo-

rating the driving style inference network outperform models using only the LBSAC

algorithm. By predicting the driving styles of surrounding vehicles, the driving style network

effectively avoids potential conflicts, thus preventing situations that may lead to deadlocks. (2)

The attention module has a noticeable impact on the efficiency of the planning methods. Mod-

els that lack the attention module exhibit the longest average runtimes, with an additional time

requirement of 16.92 to 50.92 seconds compared to other models. This is particularly evident

when the completion rates of models without the attention mechanism and the original model

surpass those of models without the safety layer. Even in cases where the attention-free model’s

completion rate is higher, its runtime remains relatively high. The attention module assigns

varying weights to vehicles with distinct features and positions, allowing it to focus on vehicles

that have a greater impact on autonomous driving. Especially in complex traffic scenarios, the

attention module enhances the efficiency and reduces collision rates, affirming the necessity of

this mechanism. (3) The safety layer plays a crucial role in the safety of autonomous driving

planning methods. Models without the safety layer experience significantly more collisions

than other models. Even with the inclusion of the attention module, it cannot guarantee the

Fig 11. Deadlock scenarios during testing.

https://doi.org/10.1371/journal.pone.0297192.g011
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safety of planning output strategies in highly uncertain and complex scenarios. Through test-

ing records, it is observed that models without the safety layer perform poorly when dealing

with unexpected situations, particularly in scenarios where pedestrians suddenly emerge from

obscured areas, such as open environments. These experiments confirm the safety layer’s effec-

tiveness in handling planning safety in uncertain environments.

4.4 Generalization performance evaluation

To assess the algorithm’s generalization and transferability, the proposed models are tested on

new maps, Town05 and Town06, using the task routes provided by Leaderboard. Leaderboard

offers ten distinct routes for both Town05 and Town06, and constructs complex traffic scenar-

ios during the driving process to evaluate autonomous vehicles. Town05 and Town06 are

depicted in Fig 12. Town05 is a multi-lane urban map with numerous intersections, while

Town06 is classified as a highway map.

To assess the algorithm’s generalization, models trained in corresponding maps (e.g.,

Town05 and Town03) and (e.g., Town06 and Town04) are directly tested in the new maps.

This validation approach ensures the generalization of the method. The test results are pre-

sented in Table 5.

When comparing the model’s performance in new maps to the results presented in Table 3,

we observed a slight decrease of 0.71% in completion rate and a gain of 1.29% in completion

rate for Town05 and Town06, respectively. Overall, the performance variations are minimal.

Despite the simplicity of routes in Town05 and Town06 compared to Town03 and Town04,

the proposed model exhibited improvements in metrics such as collision rates. When trans-

ferred to new maps, the model maintained its safety, stability, and overall performance. This

generalization experiment confirms the method’s robust generalization and transferability.

5. Conclusions

In response to the interactions among vehicles and the potential impact of driving styles on

autonomous driving path planning, along with the limited robustness of existing deep

Table 4. Comparison of ablation model test results.

Map environment Method Average route completion degree (%) Number of collisions Number of deadlocks Average running time

Town03 The proposed method 100% 6 0 542.56s

LBSAC 98.37% 11 2 576.56s

No-attn 99.04% 12 0 593.48s

No-st 99.65% 17 0 558.32s

https://doi.org/10.1371/journal.pone.0297192.t004

Fig 12. Top view of Town05 (left) and Town06 (right).

https://doi.org/10.1371/journal.pone.0297192.g012
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reinforcement learning methods, we introduced a robust deep reinforcement learning

approach aided by driving styles. This approach aims to train autonomous vehicles to learn

motion planning strategies. By combining a driving style inference network based on VAE

+GRU and an improved deep reinforcement learning method, we achieved safe interactions

between autonomous vehicles and surrounding vehicles in complex traffic scenarios. We

explored the possibilities of closely integrating predictive reasoning modules with deep rein-

forcement learning-based planning methods.

A complex traffic simulation environment is created using the CARLA simulator and the

Leaderboard platform. Experiments are conducted under varying traffic densities and distri-

butions of driving-style vehicles to demonstrate the effectiveness of the proposed planning

approach in enabling autonomous vehicles to safely interact with participants exhibiting dif-

ferent driving styles.

While the method presented in this paper effectively addresses the challenges posed by cer-

tain complex traffic scenarios and facilitates safe interactions between autonomous vehicles

and other vehicles, there are further exploratory paths to consider in practical applications.

Enhancing the extension of the proposed inference method to infer higher-level latent states

like driving intent and combining more advanced predictions, such as trajectory prediction,

with deep reinforcement learning-based planning methods, is an avenue for future research.
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