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Abstract

We present a Deep Learning approach to predict 3D folding structures of RNAs from their

nucleic acid sequence. Our approach combines an autoregressive Deep Generative Model,

Monte Carlo Tree Search, and a score model to find and rank the most likely folding struc-

tures for a given RNA sequence. We show that RNA de novo structure prediction by deep

learning is possible at atom resolution, despite the low number of experimentally measured

structures that can be used for training. We confirm the predictive power of our approach by

achieving competitive results in a retrospective evaluation of the RNA-Puzzles prediction

challenges, without using structural contact information from multiple sequence alignments

or additional data from chemical probing experiments. Blind predictions for recent RNA-Puz-

zle challenges under the name “Dfold” further support the competitive performance of our

approach.

Introduction

Ribonucleic acids (RNAs) are polymeric molecules that can act as information messengers,

mediators, and regulators in the expression of genes. The specific function of RNA is tightly

associated with the 3D folding structure, which in turn is determined by its sequence of

nucleobases. The accurate prediction of RNA 3D structure from its primary sequence would

advance the design of synthetic RNA for biotechnological or therapeutic purposes and help to

improve RNA vaccines or RNA based gene therapies. Using Deep Generative Models for RNA

structure prediction circumvents the complex tasks of formulating an energy function from

which structural candidates can be generated but requires a sufficient amount of examples to

learn the complex conformational states RNA molecules can take. The functional diversity of

RNA in living cells is a consequence of its ability to form specific three-dimensional (3D) fold-

ing structures that allow for interaction with DNA, RNA, proteins, and small molecules [1, 2].

Understanding the relationships between sequence, structure, and function of RNA is essential

for understanding the function of living cells and particularly useful for the design of RNA

therapeutics [3, 4]. Furthermore, the automated prediction and the targeted design of RNA

tertiary structure would be an important step to further improve RNA therapeutics and to

advance the field of RNA biotechnology in general [5].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0297105 February 15, 2024 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ramakers J, Blum CF, König S,

Harmeling S, Kollmann M (2024) De novo

prediction of RNA 3D structures with deep

generative models. PLoS ONE 19(2): e0297105.

https://doi.org/10.1371/journal.pone.0297105

Editor: Yang Zhang, University of Michigan,

UNITED STATES

Received: May 31, 2023

Accepted: December 24, 2023

Published: February 15, 2024

Copyright: © 2024 Ramakers et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code is available

under the following public repository: https://

github.com/ramakers/deep-rnafold All data is

available under the following public repository.

Here the mini-mal data underlying the results is

placed in as well: https://uni-duesseldorf.sciebo.de/

s/UapNNvwkCIVMHib The data repository contains

also the training data and hence is big in size, so

that we required our internal university repository.

We are happy to share data also in other

repositories if there are some available by PLOS

that support 15GB capacity.

https://orcid.org/0000-0002-2925-152X
https://doi.org/10.1371/journal.pone.0297105
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297105&domain=pdf&date_stamp=2024-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297105&domain=pdf&date_stamp=2024-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297105&domain=pdf&date_stamp=2024-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297105&domain=pdf&date_stamp=2024-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297105&domain=pdf&date_stamp=2024-02-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0297105&domain=pdf&date_stamp=2024-02-15
https://doi.org/10.1371/journal.pone.0297105
http://creativecommons.org/licenses/by/4.0/
https://github.com/ramakers/deep-rnafold
https://github.com/ramakers/deep-rnafold
https://uni-duesseldorf.sciebo.de/s/UapNNvwkCIVMHib
https://uni-duesseldorf.sciebo.de/s/UapNNvwkCIVMHib


Algorithms for predicting RNA 3D structure from nucleotide sequence [6] are dominated

by four approaches: (i) template based methods such as FARFAR2 [7, 8] and 3dRNA2 [9, 10],

which decompose known structures into 1- to 3-mer fragments and combinatorially reassem-

ble them to find the structures with lowest molecular interaction energies [11], (ii) coarse

grained force field methods that minimise interaction energy by stochastically displacing

groups of atoms like SimRNA and RNA-BRiQ [12, 13], (iii) comparative modelling methods

that are based on the availability of homologous structures, and (iv) machine learning

approaches [14, 15] that combine sequence and chemical probing information to generate

candidate structures. Despite the steady increase in affordable computing power and the use of

more accurate energy functions [11, 16], the de novo structure prediction of larger RNAs

(>80nt) still remains challenging [7]. For secondary structure prediction deep learning based

models like RNA-FM, U-Fold and SPOT-RNA have allready surpassed shallow networks and

energy based methods [17–19]. Hence, it is appealing to study deep learning in the tertiary pre-

diction setup and recent studies with DRFold have shown that end-to-end deep learning for

tertiary structure prediction can be achieved [20]. Historically, the prediction challenges for

RNA structure prediction algorithms started with benchmarks for the prediction of small scale

structures [21] (2012) up to larger structures in [22] (2015), followed by more complex folds

such as riboswitches and ribozymes [23] (2017). In this historic context fragment-assembly

methods perform best, giving especially leading structure predictions for larger sequences.

For proteins, the benchmark for predicting 3D structures with atomic resolution is set by

deep learning approaches that take sequence information as input and predict both the dis-

tances between Cα or Cβ atoms, the dihedral angles of the polypeptide backbone, and the con-

formation of the side chains [24, 25]. Here, the accurate prediction of the global folding

structure crucially depends on the existence of a sufficient amount of homologous sequences

from multiple sequence alignments (MSA), which allows to identify at least some of the resi-

dues that are in contact [26]. These global structural constraints can be inferred from correla-

tions between amino acid substitution frequencies that arise from an evolutionary selection

pressure for stably folded protein structures [27]. The ability of deep neural networks to iden-

tify and generate complex statistical patterns in high dimensional spaces and to generalise well

across training examples makes deep learning approaches conceptually attractive for predict-

ing protein structures. Hence, within the scientific community concerned with RNA, the ques-

tion on when deep learning will lead to breakthrough has allready been raised [28] However,

deep learning approaches are in general data hungry and structure predictions strongly bene-

fits from a sufficiently large number of homologous sequences for each high resolution struc-

tural example in the training set. For the same reason, the use of clever data augmentation

strategies are crucial to achieve good performance [29].

Structure prediction for RNA shows some fundamental differences to proteins. First, in

contrast to almost all proteins, RNAs often fold into different alternative structures under

physiological conditions that are either stable or visited over time with high probability [30].

Second, for RNA the conformation of the phosphate backbone is strongly constraint by the

pairing of nucleobases, whereas for proteins the spatial location of the side chains is strongly

constraint by the polypeptid backbone. This difference arises from the fact that the secondary

structure of proteins is determined by hydrogen bonds within the peptide backbone, whereas

the secondary structure of RNA is determined by hydrogen bonds between nucleobases.

Third, as training of large deep learning models requires a large amount of independent train-

ing examples, the two orders of magnitude less available structures for RNAs in comparison to

proteins implies stronger restrictions on the model complexity for RNA structure prediction.

Finally, the less conserved RNA structures make it much harder to identify homologs for MSA

and therefore the crucial information about global folding constraints is in many cases not
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accessible. On the contrary, there exist structural probing methods to estimate the probability

of each nucleotide to be part a of a base paring interaction, such as SHAPE [31] or DMS [32].

However, unlike MSAs, structural probing methods can only give an estimate if a nucleotide is

in contact, but lack direct information about the contact partner. Moreover, structural probing

data represents an ensemble average over the structural conformations that a given RNA can

take and therefore can provide only useful information if the secondary structure is sufficiently

stable.

Materials and methods

To encode 3D RNA structures, we used a rotational invariant representation that was given by

the Euclidean distances between nucleotides, with each nucleotide position uniquely deter-

mined by a set of 5 selected atoms, where different sets were taken for purines and pyrimidines

(Fig 1). We made use of a Vector Quantised Variational Autoencoder [33] (VQ-VAE) to com-

press the 5 × 5 Euclidean distances between the selected atoms into K classes for each possible

nucleotide pair. We refer to these classes as distance classes, as the K = 3 classes we used

throughout this work agree well with the qualitative distance measures “near”, “intermediate”,

and “far” (Supplementary Information). The encoded distance classes represent the targets

Fig 1. Data flowchart for the RNA structure generation process. The PDB structure is represented by Euclidean

distances between nucleotide pairs and there are eight atom types for the RNA nucleotides, see also Table 1. The

position of each different nucleotide is determined by five out of eight selected atoms, resulting in an 8 × 8 matrix for

each single nucleotide which can be flattened into a vector. The resulting L × L × 64 Euclidean distances for all

nucleotide pairs are encoded into L × L × K discrete distance classes by a VQ-VAE [33], we choose K = 3. The

generation process uses a Deep Neural Network (DNN) to predict probability values for the distances classes of shape

L × L × K, so that for each pixel a via softmax a probabilitiy distribution of the K distance classes is learned. From these

predictions a single distance class for a single nucleotide pair is selected according to the MCTS policy (Methods) to

iteratively generate a path in the search tree. At each iteration the currently selected distance classes and the sequence

information are presented as input to the DNN. Once all distance classes are selected, the Euclidean distances can be

recovered by the VQ-VAE decoder. A Score Model (Methods) selects the most promising generated structures, which

are then further refined by minimising a coarse grained molecular energy function [13].

https://doi.org/10.1371/journal.pone.0297105.g001
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used for training a Deep Generative Model that takes sequence information and masked tar-

gets as input. The task of the Generative Model was to predict the probabilities of the masked

distance classes. For the masking, we first selected the fraction of nucleotide pairs (pixels) to be

masked by randomly drawing an integer number n from the set {1, 2,.., (L × (L − 1))2/2}, with

L the sequence length, and then randomly selecting n out of (L × (L − 1))2/2 pixels whose one-

hot encoded target values were then overwritten by assigning each distance class the same

value. We only need to select up to (L × (L − 1))2/2 pixels since distance matrices are symmet-

ric. Training neural network architectures with masked targets on input shows surprisingly

strong generalisation behaviour and has resulted in state-of-the-art results for learning words

representation in Natural Language Processing (NLP) and for image generation in computer

vision [34–37]. After training, a structure can be iteratively built up by sampling a distance

class for each nucleotide pair according to a MCTS search algorithm (Methods) and presenting

the selected distance class at the input (Fig 1). Although our generative model allows to esti-

mate the likelihood for each predicted structure by making use of the chain rule for probability

mass functions [36], this value is in general unreliable [38]. We therefore trained a Score

Model (Methods) that allowed to score the match between sequence and generated structures,

similar to a value function in reinforcement learning [39]. Each predicted, one-hot encoded

distance matrix with high score was mapped back to an Euclidian distance matrix, using the

decoder of the VQ-VAE. The Euclidean distances were further fine tuned by minimising a

coarse grained, physical RNA energy function [13].

In our approach we included some best practices for training deep neural networks. First,

deep neural networks strongly benefit from end-to-end learning, where gradients for updating

parameters are allowed to propagate from the objective function back to the input, thereby

avoiding extensive preprocessing steps that might reduce the information content [40]. Sec-

ond, the inductive bias induced by the network architecture should match the structure of the

data. We therefore combined self-attention layers (Supplementary Information) to extract

long-range interactions within the RNA sequence and used convolutional layers to predict

local correlations in the RNA 3D structure [41, 42]. Third, the final performance of a deep

learning model depends significantly on (i) the neural network size, (ii) the amount of training

data, and (iii) the training time. The generic empirical observation, which is also confirmed in

this work, is that increasing (i)-(iii) increases the prediction accuracy [43]. Consequently, we

employed advanced data augmentation techniques, which allowed us to train larger networks

that were able to model more complex mappings and achieve better generalisation.

Data extraction and preprocessing

For the construction of our training, validation and test set we extracted 2581 RNA molecule

entries from the RNAsolo database [44] with a resolution of less than 4 Å. From that, we dis-

tilled out structures that are non-redundant RNA only folds and split large complex structures

into their single chain components. We discarded RNA structures in complex with protein/

DNA and multichain RNAs and removed sequences with non A,G,C,U content. By including

RNA structures of the RNA-Puzzles challenges from the PDB that were missing in RNAsolo,

we arrived at 1454 RNA single chain structures. The extracted structures were grouped accord-

ing to their Bowling Green State University (BGSU) RNA class membership [45], on which we

performed hierarchical clustering based on sequence similarity, as high sequence similarity

typically implies high structural similarity. Clusters were build based on a sequence similarity

cutoff of 0.7. The test set was build from clusters that comprise the RNA-Puzzles. The complete

dataset was split on cluster level into training, validation, and test set, with cardinality 1127,

327, and 78, respectively. We perform such a stringent splitting to detect overfitting, as larger
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deep learning models can memorise structures based on sequence input. To augment the

structural data, we carried out Molecular Dynamics (MD) simulations [13] for each of the

1127 sequences that were initialised by the atom positions of structural variants that corre-

spond to the same PDB id (NMR ensembles or symmetrical copies of biological assemblies).

We ran the simulations independently 5 times with a varying number of time steps to obtain

“drifted structures” with about 3 Å root-mean-square error (RMSE) to the original PDB struc-

ture. The drifted structures induce noise on training targets, similar to label smoothing [46,

47], which is a regularisation technique that has been introduced to avoid overconfident pre-

dictions. From the 1454 structures, 467 had a sequence length L� 100nt. We used the

sequences of length L� 100nt to generated additional structure-sequence pairs by randomly

cropping them to length L = 100nt. For each cropped structure, we memorised the contact
nucleotides, which are those nucleotides of the crop that have less than 3.3 Å distance to the

remaining nucleotides of the original structure. We included only crops in the training dataset

with less than 5% contact nucleotides. This very stringent cutoff reduces the bias of training

examples towards contact constrained folding structures. We used a binary indicator variables

to mark all possible pairs of contact nucleotides and showed the corresponding distance classes

for these pairs as fixed input during training. As cropped structures made up most of the train-

ing set, the model effectively learned to predict substructures that were constrained by the

remaining part of the RNA structure. To predict free folding RNA structures we take the

trained prediction model for the cropped structures and set the binary indicator variables to

zero. This data augmentation approach is similar to the concept of non-leaking data set aug-

mentations [48]. As our dataset contains large structures with length up to 1513 nucleotides,

random cropping results in strong data augmentation with a total of 6245 unique structures.

After generating drifted structures for each unique structure, the augmented training, valida-

tion, and test sets comprise 27644, 3270, and 78 structures, respectively. We determined the

position of each nucleotide by 5 selected atoms (Fig 1) and compressed the 25 possible real dis-

tances between the selected atoms for any nucleotide pair into K = 3 distance classes using a

Vector Quantised Variational Autoencoder (VQ-VAE).

Autoregressive generative model

The generation of a 3D structure, s, from sequence information, x, was carried out iteratively

by first selecting a nucleotide pair (pixel) with index i 2 {1,.., N} from the N = L(L − 1)/2 possi-

ble pairings and subsequently selecting a distance class ki 2 {1,.., K} according to the class prob-

abilities predicted by the Generative Model, P(k|st, x). The selected distance class was then

one-hot encoded, resulting in an updated input structure st+1 st. We denote by at ¼ kit the

“action” for the t-th iterative step in the generation process and defined the current structural

state by st = (at, . . ., a1). Actions are never overwritten during the generation process, which

starts from an empty set of actions s0 by “masking” all pixels as defined below. The Generative

Model was realised by a feed-forward neural network P(k|st, x) = ∏iPi(ki|st, x) that predicted

probabilities for all distance classes k = (k1, k2, . . ., kN) in parallel, given the previous actions st.
The conditional independence of the predicted class probabilities is a consequence of the

deterministic network architecture, where the outputs (class probabilities for each pixel) are

uniquely determined by the input. The complete input feature map of the autoregressive

model comprised of (i) a one-hot encoding of the 16 possible nucleotide pairs (AA,AC, . . .,

UU) for each pixel, (ii) the already set distance classes in the autoregressive process, st, (iii)

coordinate frames that included the diagonal as symmetry axis and padded regions for

sequences of length L< 100, (iv) the output of a Self-Attention layer [42] that takes structural

probing data and homologous sequences as input (Fig 1). Training was carried out by showing
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for st a random fraction of distance classes (masked target) at the input, where the one-hot

encoding for the K distances classes was substituted by information that was related to the tar-

get logits, e.g. (1, −1, −1) if the target was the first distance class and (0, 0, 0) if the target class

was masked. The number of masked distance classes shown at the input was distributed

according to a truncated half-normal distribution, to enforce that almost complete targets are

shown less frequently during training. The feed-forward network architecture was a residual

network with 16 residual blocks and 26 channels in each hidden layer, trained by early stop-

ping (Supplementary Information). The generative model allowed to compute likelihood esti-

mates of a structure sN for a given nucleotide sequence x by making use of the chain rule of

probability, PðsN jxÞ ¼
QN

t¼1
Pðatjst� 1; xÞ.

Score model

The likelihood estimate was improved by learning a Score Model DðsN ; s0N ; xÞ (discriminator)

that was trained to distinguish between correct and incorrect distance-map/sequence pairs by

maximising the objective

JðDÞ ¼ EsN�PtrueðsN ;xÞ
Es0N�Pfalseðs

0
N ;xÞÞ

h
logDðsN ; s0N ; xÞ

i

þ EsN�PtrueðsN ;xÞ
Es0N�Pfalseðs

0
N ;xÞ

h
logð1 � Dðs0N ; sN ; xÞÞ

i

with D defined by

D∗ðsN ; s0N ; xÞ ¼
1

1þ exp½ f ðs0N ; xÞ � f ðsN ; xÞ�

and f ðs0N ; xÞ being the scalar output of a deep neural network. The theoretically optimal solu-

tion f ðsN ; xÞ ¼ log PtrueðsN ;xÞPfalseðsN ;xÞ
is typically not reached by optimisers based on stochastic gradient

decent [49]. Here, “true” corresponds to original PDB examples and “false” to PDB examples

with drifted atom position using Molecular Dynamics Simulations [13] under high tempera-

ture and encoded by the VQ-VAE or distance-maps predicted from the Generative Model.

The discriminator compares two complete distance-maps with respect to their match to a

given sequence, which is in contrast to the absolute likelihood estimate from the chain rule of

probability. The value f ðs0N ; xÞ is used to rank the predictions that are sampled from the Gener-

ative Model. For the Score Model, we used a Residual Network architecture with 8 residual

blocks, where blocks were connected by down-sampling layers using stride 2 convolutions

(Supplementary Information).

Structural sampling

Unlike proteins, RNAs frequently fold into different structures under physiological conditions.

To identify the structures that occur with high probability, we had to sample the large combi-

natorial space of possible distance-maps and rank them according to their corresponding like-

lihood. For RNAs of length L = 100 nucleotides, the combinatorial space of allowed distances

is given by KL(L − 1)/2 > 102000 for K� 3 and thus exceeds the number of possible games,

*10700, that can played in the board game Go. To realise fast sampling, we borrowed search

strategies from reinforcement learning (RL). We aimed to find the best sequential ordering (at,
. . ., a1) for presenting distance classes at the input, such that after a minimum number of auto-

regressive steps the probability masses for the remaining nucleotide distances became highly

concentrated into one class. This ordering allowed to predict the final distance map after T�
N steps by selecting the most likely distance classes for the set of remaining masked pixels,MT,
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in parallel

fkjgj2MT ¼ arg max
Y

j2MT

PðkjjsT; xÞ

To find a close to optimal autoregressive ordering, we developed a variant of the Monte

Carlo Tree Search (MCTS) that accounts for the fact that some actions affect the global dis-

tance-map and hence structure more that others. For a given nucleotide sequence, a tree of

possible RNA distance-maps can be built iteratively by connecting incomplete distance-maps

(nodes), st, with actions, at, such that each leaf node sL of the current tree can be reached by a

unique path of actions sL = (aL, . . ., a1). For selecting the actions to reach a leaf node from the

root node (empty set of actions), s0, we followed the selection rule (policy) [50]

atþ1 ¼ argmax
a
Qðst; aÞ þ Uðst; aÞð Þ ; Uðst; aÞ ¼ cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aNðst; aÞ

p

1þ Nðst; aÞ

with Q(st, a) the expected entropy reduction of P(a|st, x) if action a is taken, N(st, a) a counter

how often actions that connect the root node with a leaf node pass through the state-action

pair (st, a) under the actual policy, and U(st, a) a term that upweights rarely visited actions

(exploration), with cp being a tuneable constant. After reaching a leaf node, sL, the tree is

expanded by randomly selecting a subset SR of the remaining masked pixels, and from SR a

subset SH� SR of actions that result in sufficiently strong entropy reduction ΔHL< λlogK for

the predicted class probabilities, with λ = 1 and

DHL ¼ HðsLþ1; xÞ � HðsL; xÞ

Hðs; xÞ ¼ �
XN

j¼1

XK

kj¼1

Pðkjjs; xÞlogPðkjjs; xÞ

For |SH| = ; the leaf node sL is added to set of terminal nodes ST ST[sL and for |SH|6¼;

the tree is enlarged by |SH| nodes in parallel, initialising N(sL, a) = 1 and Q(sL, a) = v(sL+1|x) for

all a 2 SH, with value function the entropy reduction rate

vðsLjxÞ ¼
1

T

XT

t¼1

Hðs0jxÞ � HðsLjxÞ
Hðs0jxÞ

Along the path of actions from the root node to sL = (a1,.., aL), we updated for all t 2 {1,.., L}

the visit count N(st, at) N(st, at) + |S| and subsequently the expected reward

Qðst; atjxÞ  Qðst; atjxÞ þ
jSH j

Nðst ;atÞ
ðvðs∗Lþ1

jxÞ � Qðst; atjxÞÞ, using the ‘winner takes it all’ value

function vðs∗LjxÞ, with s∗L ¼ argmaxaL2SH vðsLjxÞ. For leaf nodes that were terminal nodes, sL 2
ST, we updated N(st, at) N(st, at) + Nexpl, with Nexpl = 10 a hyperparameter, along the path

and leave Q(st, at) unchanged to enforce exploration of different distance-maps and thus

structures.

Structural ensemble

We generated complete distance-maps for the set of terminal leaf nodes ST by argmax sam-

pling from P(k|sT, x), as introduced above. We ranked the complete distance-map relative to

each other according to the discriminator output. The resulting ensemble was a subset of the

possible distance-maps that an RNA can take. As we started out to the find the most likely dis-

tance-map by MCTS, with alternative distance-maps as a by-product of the search, the result-

ing ensemble was highly biased towards distance-maps with high likelihood.
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Refinement

For the RNA-Puzzles challenges (Fig 2) we carried out refinement steps using a coarse grained

force field method. For the sampled structural ensemble we computed 1000 simulation runs

using SimRNA. These simulation runs typically cluster near local optima. We used the built-in

SimRNA clustering function based on all Molecular Dynamics traces with an energy cut off at

25% and computed five spectral clusters based on 5.0, 10.0, 15.0, 20.0 and 25.0 Å pairwise dis-

tance between clusters. The cluster centers represent candidate structures from which the one

with highest likelihood was chosen for the retrospective evaluation and all 5 candidates were

submitted to the blind RNA-Puzzless prediction challenge (Supplementary Material).

Results and discussion

We first tested the reconstruction accuracy of the VQ-VAE as a function of the number of dis-

tance classes (Fig 2a). For K = 8 classes, the reconstruction error approached the average exper-

imental resolution of 2.8 Å root-mean-square error (RMSE). For K = 3 classes the median

reconstruction error was still in the range of the best predictions with 4 Å RMSE. Next, we

Fig 2. Results: Evaluation of the structural predictions. A, Reconstruction error resulting from encoding and decoding RNA 3D

structures of the test set as a function of the number of distance classes, B,C Simulated blind tests of the RNA-Puzzles Challenges in

comparison to other approaches, with or without simulated SHAPE reactivity data and homologous sequences as additional input.

The three right most predictions are real blind submission from the latest puzzle round 33 (7mlx, 7eoj, 7elq). Puzzles 6ufm, 6pom, and

6pmo are large compounds of tRNA-Riboswitch complexes. Puzzle predictions are sorted in descending order of the sequence length

(left to right) D, Reconstruction error of longer RNA-Puzzles that lack both structural and sequence homology (PDB 4R4V: 185 nt,)

in comparison to (PDB 4QLM: 108 nt, PDB 6pom tBox: 75, PDB 6ufm Complex: 175 nt) for which structural and sequence homologs

are available. Structures of length>175 nt were cut into substructure of length�100 nt, aligned with PyMOL, and RMSD calculated

as average over all substructures. E, Simulated chemical probing data in comparison with experimentally measured reactivities [52]

(SHAPE) for PDB 1Y26, F, Most likely alternative structures, as predicted by the Score Model, for the Gluatamine riboswitch and the

ZMP riboswitch (S3 Fig).

https://doi.org/10.1371/journal.pone.0297105.g002
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simulated a blind test by evaluating the accuracy on a held out test set that is given by the crys-

tal structures of the RNA-Puzzles challenges [51] (Fig 2b and 2c), including only free folding

RNA structures.

We observed significant improvements for RNA structure prediction problems that were

classified as difficult [7] (RNA-Puzzles 7, 27, and 28) due to their longer sequence (>100nt)

and their lack of homology to known structures (e.g. 6ufm in Fig 2d, S3 Fig). The difficulty can

be seen that all competing puzzle submissions have a high RMSD on the choosen examples,

which is also true for our approach. We have also participated in three blind predictions

(7mlx, 7eoj, 7elq) under the submission name “Dfold” with single digit RMSD reconstruction

error, which is in line with our retrospective evaluation. The blind predictions confirm that

our deep learning based approach can indeed predict new structures and is not only memoriz-

ing the training data.

To investigate the effect of structural probing data (SHAPE), we used a force field model

[13] to simulate SHAPE reactivities which are shown at the input during training. We thereby

assumed that single stranded RNA is more flexible than double stranded RNA and thus shows

higher mean squared displacement (MSD) of atoms during the force field simulations. The

simulated MSD values show good agreement with the experimentally determined SHAPE

reactivities (Fig 2e). We observed a small improvement in prediction accuracy on average

when we presented both SHAPE data and MSAs of homologous sequences at the input, which

indicates that the additional constraints imposed by simulated SHAPE data and evolutionarily

constrained nucleotide-nucleotide interactions provide only little additional information to

our model for RNAs of length L� 100nt. However, we found that this additional input data

allowed to infer global structural information (S2 Fig), thereby accelerating MCTS. This accel-

eration might become crucial in cases where exploring the global structural space by MCTS is

the limiting factor.

The ability of our approach to find alternative structures can be used to predict the different

states of riboswitches (Fig 2f). We simulated a blind prediction test by removing all homolo-

gous structures from the training set for the Glutamine Riboswitch (PDB: 5DDO) and the

ZMP Ribosowitch (PDB: 4XW7). The predicted alternative structures, which represent two

highest ranked branches of the MCTS by the Score Model, confirm the general viewpoint that

riboswitches work by a ligand mediated stabilisation of one structural conformation.

Despite the strong advances in protein structure prediction using Deep Learning

approaches, RNA 3D structure prediction remains challenging for longer sequences. The rea-

son can be attributed to the limited number of experimentally determined structures in public

databases (* 102 less structures for RNAs as for proteins) and the fact that some RNAs can

fold in different structural variants under physiological conditions. The existence of an ensem-

ble of possible RNA structures cannot be appropriately addressed by deterministic feed-for-

ward network architectures within deep learning approaches that assign each sequence exactly

one structure [24]. We therefore employed a structural sampling approach that combines a

deep generative model with an efficient search method through structural space. Our approach

provides a more efficient way of generating structural candidates than fragment assembly

approaches. This higher sampling efficiency may become crucial for longer RNA sequences,

where sampling the combinatorial space using structural elements becomes computationally

prohibitive. On the downside, predictions by deep neural networks frequently violate physical

constraints and require additional relaxation steps to generate valid structures with atom reso-

lution [24]. For that, it is worth exploring additional, e.g. stereochemistry data to stack next to

the SHAPE matrix for an uplift in prediction performance as validated in [53]. We therefore

expect that combining more RNA specific datasets and the use of an advanced score model

with atom resolution, such as ARES [16], to relax the outcome of a deep generative model is a
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promising strategy for further improvements of RNA 3D structure prediction. We have also

tested our model under various data splits and need to highlight that without a rigorous train-

ing, validation and test set split, deep learning based models are highly exposed to overfitting,

especially given the small amount of experimentally determined RNA 3D structures available.

Supplementary material

Data preparation and preprocessing

Source data. For the construction of our training, validation and test set we extracted

2581 RNA molecule entries from the RNAsolo database [44] with a resolution of less than 4 Å.

From that, we distilled out structures that are RNA only folds and we splitted large complex

structures into their single chain components. We further added additional RNAs that are not

availaible in RNAsolo directly from the PDB (especially from the RNApuzzles) and cleaned

the so derived raw dataset: In particular, we only kept a structure if (i) it had only RNA chains

(entry-type in pdb_entry_type.txt was “nuc”), (ii) the resolution method was either X-ray dif-

fraction or NMR (”method” in pdb_entry_type.txt was either “diffration” or “NMR”), (iii) the

PDB structure was downloadable from http://files.rcsb.org/download/, (iv) the “resNames”

were either A, C, G or U, (v) the chain had at least 14 nucleotides, or at least 7 nucleotides if

the structure was composed of multiple chains, (vi) for structures with 3 or more chains, all

chains were given by unique sequences.

Thus, we derived with 1454 RNA single chain structures. The so extracted structures were

grouped according to their BGSU class members [45] to not have same BGSU class members

from the training set in the validation and test set. To further enforce a structural difference

between the training and validation and test set, we enforce a splitting with an analysis of

sequence similarity, using hierarchical clustering with a similarity cutoff of 0.7. We split the

clusters into training, validation, and test sets (1127, 327, and 78 respectively). All RNA-Puz-

zles are kept in the test set to have a represantative blind prediction simulation. The validation

set is derived from all class members and clusters of similar sequence from the puzzle test set

so that no class members from BGSU as well as class members of similar sequence are in the

training set. The training set only contains pdb entries, that have no class and similarity mem-

ber in the validation and test set and hence, can be considered as structural different, so that

the networks can not memorize the structures. If we do not perform such a stringent splitting

we experience much stronger benchmark results, pointing to the fact that deep learning mod-

els can just memorize structures based on sequence input.

Neural network input data format. All PDB structures were converted into a reduced

5-atom positional representation for each residue [13] (Fig 1). For Guanosine monophosphate

and Adenosine monophosphates, we used the P, C4’, C2, C6 and N9 atoms. For Cytosine

monophosphates and Uridine monophosphates, we used the P, C4’, C2, C4 and N1 atoms. To

distinguish between purine and pyrimidine residues (G/A and C/U, respectively), we encoded

the cartesian coordinates (x, y and z) of the 5 atoms by an 8 × 3 coordinate matrix and indi-

cated the valid atoms (rows) by an 8 × 1 mask array, see Table 1.

When atoms were missing in a structure—which occurs frequently for the leading phos-

phate group—the corresponding coordinate and mask values were set to zero. The two atoms

that determined the position of the phosphate backbone (first two rows in coordinate matrix)

are shared between purines and pyrimidines. While both Purines and Pyrimidines have

C2-atoms, this atom does not occur at the same position in the nucleobases’ ring structures

and hence was encoded separately (see red frame in Fig 1).

Distance and mask tensors. For an RNA sequence of length L, we computed for all of the

L × L possible residue pairs the Euclidean distances between the encoded atoms. The resulting
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8L × 8L distance matrix was re-shaped into a L × L × 64 distance Tensor D and symmetrized

to satisfy the symmetry condition Dijk = Djik. For example, D1L1 = DL11 is the Euclidian dis-

tance between the phosphate atoms of the first and the last residue.

Some atom-atom distances in this distance tensor D, however, did not correspond to any

meaningful values because the corresponding atoms were missing and thus the coordinate

entries in the 8 × 3 matrices were zero. The respective elements in D were set to zero by multi-

plying distance tensor D with a mask tensorM that was calculated as follows. First, the mask

arrays of size 8 × 1 (Table 1) for the L residues were stacked to a single array of size 8L × 1 and

the outer product with itself was calculated to obtain a matrix of size 8L × 8L. This matrix was

then reshaped into a tensor of size L × L × 64 and symmetrized to obtain the mask tensorM.

Structures with long or multiple chains. When a structure had multiple chains or a

chain’s length exceeded 100 nt, we carried out the following steps to obtain multiple, smaller

substructures suitable for model training. First, when a structure had multiple chains, a chain

was randomly selected with probability proportional to its length and used as a substructure.

Then, if that chain’s length exceeded 100 residues, a random, continuous subsection of that

chain was cut out and used as the substructure instead. For each residue in this substructure,

the distances to the residues of the remaining, overall structure were calculated. For distances

below a threshold of 3.3 Å, the corresponding residues of the substructure were flagged as

“fixed” and the corresponding distance classes between “fixed” residues were presented at the

input during training of the generator.

Data augmentation. SimRNA is a 3D RNA structure prediction software that makes use

of coarse-grained residue representations and Molecular Dynamics Methods to sample the

conformational space [13]. This program starts with a circular initial RNA structure (that

resembles a snake biting it’s own tail) and then folds the RNA to minimize an energy function

while slowly cooling down the thermodynamic system. To do data augmentation, we used

SimRNA the opposite way: we started with the original PDB structure and then increased the

temperature to “drift away” from the original structure. Using this method, we generated 100

of such “drift structures” for each training example that were approximately 1, 3, 5 and 10 Å
RMSE away from the original PDB structure.

Simulated SHAPE data. SHAPE (selective hydroxyl acylation analyzed by primer exten-

sion) [52] is a method for obtaining RNA secondary structure information. SHAPE exploits

the fact that RNA residues that do not engage in base pairing, such as residues in dangling

ends or loops, react more easily with certain reagents, making their detection possible by

primer extension. In other words, higher SHAPE reactivities indicate regions of higher RNA

flexibility. SHAPE data generated under comparable experimental conditions is only available

Table 1. Encoding of purine (G/A) and pyrimidine (C/U) coordinates.

Atom type Pyrimidines Matrix & Mask Purine Matrix & Mask

P ðphosphateÞ

C40ðsugarÞ

C2 ðG=A onlyÞ

C6 ðG=A onlyÞ

N9 ðG=A onlyÞ

C2 ðC=U onlyÞ

C4 ðC=U onlyÞ

N1 ðC=U onlyÞ

xP yP zP
xC40 yC40 zC40

0 0 0

0 0 0

0 0 0

xC2 yC2 zC2

xC4 yC4 zC4

xN1 yN1 zN1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

1

1

0

0

0

1

1

1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

xP yP zP
xC40 yC40 zC40

xC2 yC2 zC2

xC6 yC6 zC6

xN9 yN9 zN9

0 0 0

0 0 0

0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

1

1

1

1

1

0

0

0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

https://doi.org/10.1371/journal.pone.0297105.t001
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for a very limited number of PDB structures [52]. We hence used above mentioned drift data

(see “Data augmentation”) to simulate SHAPE data. Specifically, we structurally aligned origi-

nal PDB structures and their drift structures and used the average absolute position-specific

deviation (that is, the RMSE between individual atoms) as simulated SHAPE data.

Experimental SHAPE data. We used publicly available SHAPE data [52]. As the simu-

lated SHAPE data only correlates with but does not exactly match the experimental SHAPE

data, we rescaled the experimental SHAPE data. For this purpose, we mapped all data percen-

tiles between experimental and simulated SHAPE data (for example, a SHAPE value that fell

into percentile 10 among the original SHAPE data was mapped to the 10th percentile of the

simulated SHAPE data). This mapping was learned using the following PDB IDs: 2L1V, 2K95,

3PDR, 3DIG, 1P5O, 3G78 and 2N1Q.

Similarity clustering. Structure is generally more conserved than sequence, hence struc-

tural similarity should ideally be used to split the data set into training, test and validation data

sets that share as little homology as possible. However, similarity scores based on RMSE have

the problem that global rearrangements dominate this score even if all structural domains are

conserved perfectly. We therefore decided to use sequence similarity as a proxy for structural

similarity and hence functional similarity. We aligned all sequences of all chains in the data set

with a scoring function that rewarded matches with 1 and punished mismatches and opening

gaps with -1. Gap extensions were treated as neutral. Then, we summed up the scores for struc-

tures that had multiple chains, and divided the scores by the overall length of the longest of

each compared sequence. Using these length-specific matching scores, we used complete hier-

archical clustering and chose a reasonable cutoff (0.7) to obtain sequence clusters.

Data sampling. First, we sampled uniformly over all sequence clusters. Longer sequences

are more informative than shorter sequences, hence we sampled proportional to sequence

length.

Homologs. To obtain sequences homologous to those in our PDB structure data set, we

followed the following workflow. First, we downloaded homologous sequences from RNAcen-

tral [54] using a Python script published on the RNAcentral Sequence search API website at

https://rnacentral.org/sequence-search/api. Then, we only kept homologous sequences that

fulfilled the following conditions (i) their E-value had to be less than 0.01, (ii) they must not

have insertions, and (iii) they had to have at least one mutation other than a deletion. Gaps in

homologous sequences were filled up with the letter ‘N’.

Deep learning architectures and hyperparameters

VQ-VAE network architecture. We encoded RNA tertiary structures by distance tensors

(L × L × 64)—as explained above—that act as both input and target of our VQ-VAE. We zero-

padded all entries of distance tensors that were outside the maximum sequence length L = 100.

Following the original work of the VQ-VAE [33], the encoder architecture was a residual net-

work [55] that consisted of one convolutional layer followed by 4 residual blocks. Each residual

block was of the form: Block = 2x[Batchnorm, ReLU Activation, Conv]. The two convolutional

layers (“Conv”) within each block could have different convolutional kernels, whose sizes we

report in the following format hereafter: [hight × width, out_channels], with block and kernel

settings as in Tables 2 and 3

In the vector quantisation step, the encoder’s residual network output of shape (L × L × 8)

was mapped to VQ-VAE encodings (distance classes) of shape (L × L × 3) using 3 codebook

vectors of embedding dimension 8. We enforced symmetry of the distance class tensors (along

the first 2 dimensions) by adding the transpose of the embedding and dividing the result by 2.
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The decoder architecture took the VQ-VAE encodings (distance class tensor) as input and

consisted of four sets of residual blocks followed by a final ReLU layer.

Between each set of residual blocks, we up-scaled the number of feature-maps by inserting

an additional convolutional layer that doubled the number of feature maps. The output of the

decoder had shape (L × L × 64) and corresponded to the distance tensor reconstruction. For

training, we used the same learning objective as in the original VQ-VAE [33] using an expo-

nential moving average for the codebook vector updates with a decay rate of 0.99. For optimi-

zation, we used standard Adam Optimizer [56] with a learning rate of 1 × 10−5 at a batch size

of 100.

Generator network: Data preprocessing. We stacked the following 4 tensors to obtain

input tensors for the generator network: (i) an encoded RNA sequence tensor, (ii) the corre-

sponding, partially masked distance class tensor, (iii) coordinate frame tensors to provide the

network with positional information, and (iv) an optional attention map of homologous

sequence alignment and SHAPE data. RNA sequences of length L were encoded as unique bit

patterns of shape (L × L × 8), (see S1 Fig). First, an RNA sequence was one-hot encoded by a

tensor of shape (L × 4). Unknown nucleotides that were denoted by an “N” in the sequence

were encoded by setting all values in the one-hot encoding to 0.25. This one-hot encoded

sequence was then copied L − 1 times to obtain a tensor of shape (L × L × 4). Then, this tensor

and its transpose were stacked along the last dimension to obtain a tensor of shape (L × L × 8).

This tensor corresponded to a unique bit pattern for each possible pairing and also contained

directional information. For sequences with L< 100, the sequence tensors were uniformly

padded with −1.

Partially masked distance class tensors were obtained from the distance classes using a pre-

trained VQ-VAE, followed by a “partial masking” process in which some pixels were set to

zero as described in the following. First, we drew the number of pixels to be masked at a given

training step from a truncated normal distribution with mean L2/2, standard deviation L2/4

and which was bounded at 2 standard deviations around the mean (this ensured that at least 0

and at most L2 pixels were masked, while rarely masking either very few or very many pixels).

Table 3. VQ-VAE decoder architecture.

Layer type Kernel 1 Kernel 2

Conv. Layer [5 × 5, 8]

4×Res. Block [5 × 5, 8] [5 × 5, 8]

Conv. Layer [5 × 5, 16]

4 × Res. Block [5 × 5, 16] [5 × 5, 16]

Conv. Layer [5 × 5, 32]

4 × Res. Block [5 × 5, 32] [5 × 5, 32]

Conv. Layer [5 × 5, 64]

4 × Res. Block [3 × 3, 64] [3 × 3, 64]

ReLU Activation

https://doi.org/10.1371/journal.pone.0297105.t003

Table 2. VQ-VAE encoder architecture.

Layer type Kernel 1 Kernel 2

Conv. Layer [7 × 7, 32]

Res. Block [5 × 5, 16] [3 × 3, 8]

4 × Res. Block [5 × 5, 8] [3 × 3, 8]

https://doi.org/10.1371/journal.pone.0297105.t002
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Then, we randomly drew the corresponding number of pixel positions and encoded masked

pixels with (0, 0, 0). However, we found that encoding masked pixels this way made it difficult

for the network to learn the difference between masked distance classes (0, 0, 0) and the regu-

lar, non-masked distance classes (1, 0, 0), (0, 1, 0) or (0, 0, 1). To overcome this limitation, we

encoded all regular, non-masked distance classes by setting all zeros to −1, so that, for example,

(1, 0, 0) was encoded as (1, −1, −1). Coordinate frames consisted of a “diagonal frame” that

had ones along the diagonal and was zero elsewhere, and a “padding frame” which contained a

box of side length L that had ones along its border and was zero elsewhere. The coordinate

frames were padded with −1 when sequences were shorter than 100 nt. The production of the

attention map of homologous sequences and SHAPE data is described in the following section

in detail. Overall, the generator input was a tensor of shape (L × L × 14), and contained the

encoded sequence tensor of shape (L × L × 8), the partially masked distance tensor of shape (L
× L × 3), both coordinate frames of shape (L × L × 2) and the homologous sequences alignment

and SHAPE data attention map tensor of shape (L × L × 1).

Generator network: Attention map of homologous sequences and SHAPE. For each

training example, an array of 50 randomly chosen, aligned and one-hot encoded homologous

sequences was produced. While the 4 standard nucleotides were encoded using one-hot cod-

ing (e.g. “A” was encoded as (1, 0, 0, 0)), gaps and unknown nucleotides were encoded by set-

ting all possible one-hot coding values to 0.25 such that the one-hot coding vector became

(0.25, 0.25, 0.25, 0.25). When there were fewer than 50 homologous sequences, the original

sequence was used to “fill up” the array. The resulting array of one-hot encoded homolgeous

sequences had shape (L × 50 × 4). Using a standard dense layer, this array was mapped onto a

tensor of shape (L × 50). Then, simulated SHAPE data was included by stacking a vector con-

taining L SHAPE reactivity values on that array, resulting in a tensor of shape (L × 51). Using

two separate dense layers, two tensors of shape (L × 64) were produced and self-attention was

applied to these tensors by using them as query and key tensors as described in the original

Transformer paper [42], resulting in an attention map of shape (L × L × 1). Self-Attention

added the benefit, that for every pixel, the corresponding nucleotide could receive both homol-

ogous sequence information as well as SHAPE reactivity information from all other nucleo-

tides in that sequence. We computed results on a sample attention map for the Adenine

Riboswitch (PDB: 1y26) in S2 Fig.

Generator network: Architecture. Using the (L × L × 14) input tensor described above,

the generator network performed regression on the full distance class map under the masked

learning objective, which is specified further below. The input tensor was first passed through

a convolutional layer to be further processed by a deep residual network architecture with

eight blocks, each one having the following structure: ResBlock = 2x[Batchnorm, Elu Activa-

tion, Conv] + 1x[Batchnorm, Elu Activation, Conv] + 1x[Batchnorm, Elu Activation, Dilated-

Conv], with standard skip connections after the first two and between the last two subblocks.

We employed standard convolutions with kernel sizes as described in Table 4 below. We also

Table 4. Generator network: Resiudal architecture.

Layer type Conv DilatedConv

Conv. Layer [3 × 3, 26]

8 × ResBlock [3 × 3, 26] [3 × 3, 26], dilation rate = 2

Batch normalisation

Elu Activation

Conv. Layer [1 × 1, 3]

Softmax Activation

https://doi.org/10.1371/journal.pone.0297105.t004
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used dilated convolutions with a dilation rate of 2 in the residual blocks. Here, the last convolu-

tion layer compressed the residual network output into an appropriate shape of (L × L × 3) so

that, after a final softmax activation, the network’s output corresponded to predicted distance

classes, see Table 4.

The network was trained under the masked learning objective, implemented using the

cross entropy between target distance classes and generator predictions coming from input

tensors with partially masked distance tensors as a loss function. We further employed weight

decay (L2 regularization) following standard recommendations for training large residual

architectures [55]. Table 5 shows the generator hyperparameter setup using a lazy Adam

Otimizer.

For stabilized training, we chose a learning rate with linear warmup scaling and cosine

decay. After five million iteration steps we stopped the network training.

Score model. The Score Model was implemented to distinguish which one of two distance

class maps was better. Its architecture as described in Table 6 was a residual network using

optimization hyperparameters as further described in Table 7.

The Score Model was trained to discriminate between “correct” and “incorrect” distance

class maps as described in the following. The set of correct examples consisted of all 8048

examples in the training data set. To create the set of incorrect examples, we used SimRNA-

based data augmentation to compute 100 drift structures of up to 10 Å RMSE away from each

original structure in the training data set. Using the VQ-VAE setup, we then computed

Table 5. Generator network: Optimization hyperparameters.

LazyAdamOptimizer β1 = 0.9, β2 = 0.997, � = 1e − 8

Batch size 500

Weight decay 0.01

Learning rate α 0.001

Learning rate warmup steps 100000

https://doi.org/10.1371/journal.pone.0297105.t005

Table 6. Score model network architecture.

Layer type Conv DilatedConv

Conv. Layer [3 × 3, 5]

4 × ResBlock [3 × 3, 5] [3 × 3, 5], dilation rate = 2

Batch normalisation

Relu Activation

Conv. Layer [1 × 1, 100]

Relu Activation

Conv. Layer [1 × 1, 1]

https://doi.org/10.1371/journal.pone.0297105.t006

Table 7. Score model network: Optimization hyperparameters.

LazyAdamOptimizer β1 = 0.9, β2 = 0.997, � = 1e − 9

Batch size 100

Weight decay 0.0001

Learning rate α 0.001

Learning rate decay 0.9988

https://doi.org/10.1371/journal.pone.0297105.t007
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distance class maps for all original as well as drift structures. We further increased the dataset

of incorrect examples by factor 10 by randomly flipping class pixels from the targets distance

classes. We also used the Generator networks’ argmax predictions, showing only 0%, 5%, 10%,

15% and 20% of the target distance classes at the input. Then, at each training step, both a cor-

rect and a corresponding incorrect distance class map of shape (L × L × 3) were fed through

the network to obtain two “logit maps” of shape (L × L × 1). The values of the correct logit

map were then subtracted from corresponding values of the incorrect logit map, followed by

taking the sum over all differences. We optimized this objective with L2 regularization under

the following hyperparameter setup and used a standard learning rate decay exponential to the

iteration steps.

MCTS: Sampling structural ensembles. The MCTS algorithm sampled pixelwise one of

the three distance classes using the Generator network iteratively. Naturally, the diagonal had

high class probabilitiy values, so that we started initialising the search tree by setting the diago-

nal to the nearest distance class. Except for the diagonal, we started by masking all (L × L × 3)

target distance classes with zeros and iteratively filling in class indicators, e.g. (1, −1, −1) if the

MCTS chose the first distance class. With that basic step logic, MCTS could iteratively fill up

pixels and update visit counts and values at each node. The value objective in the MCTS was

designed such that the network aimed to get a sharp view after some pixels were set, so that

not every single of the L2/2 pixels needed to be sampled. This reduced the depth of the search

tree by a large margin. Typically, the Generator network produced sufficiently sharp predic-

tions when the MCTS was able to predict 30% of the target distance classes correctly. The

remaining pixels were then filled up using an argmax prediction of the Generator network

given that leaf. Exemplarly, we computed the leafs of the search tree for two alternative struc-

tures shown in S3 Fig for the ZMP- Riboswitch (PDB: 4xw7).

Refinement. The SimRNA simulation runs are carried out under the standard configura-

tion file:

# config.dat

NUMBER_OF_ITERATIONS 2000000

TRA_WRITE_IN_EVERY_N_ITERATIONS 200000

INIT_TEMP 1.15

FINAL_TEMP 0.9

BONDS_WEIGHT 1.0

ANGLES_WEIGHT 1.0

TORS_ANGLES_WEIGHT 0.0

ETA_THETA_WEIGHT 0.40

The computation of the five spectral clusters required the following steps:

Example: 7elq: GGAGUAGAAGCGUUCAGCGGCCGAAAGGCCGCCCGGAAAUUGCUCC

INPUT: Sequence

1. MCTS: sample structural ensemble using generative network

Output: N structures

python mcts.py GGAGUAGAAGCGUUCAGCGGCCGAAAGGCCGCCCGGAAAUUGCUCC

2. SimRNA:

for i in 1. . .N:

./SimRNA 7elq_i.pdb -c config.dat

# compute 1000 repition runs
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# -> N*1000 trafl files / pdb outputs

# -> concatenate all trafl files

Output: 7elq.trafl

3. SimRNA Clustering

./clustering 7elq.trafl 0.25 5.0 10.0 15.0 20.0 25.0

Output: 5 cluster centers

4. Discriminator:

Rank 5 cluster centers

OUTPUT: 5 ranked pdb files (cluster centers)

Supporting information

S1 Fig. Encoding of sequence information. RNA sequences of length L were encoded as

unique bit patterns of shape (L × L × 8): A First, every nucleotide in an RNA sequence was

one-hot encoded, e.g. G: (1, 0, 0, 0), C: (0, 1, 0, 0), A: (0, 0, 1, 0), U: (0, 0, 0, 1), N: (0.25, 0.25,

0.25, 0.25). For the full sequence, these one-hot encodings led to a tensor of shape (L × 4).

Unknown nucleotides that were denoted by an “N” in the sequence were encoded by setting

all values in the one-hot encoding to 0.25. This one-hot encoded sequence was then copied L
times (a1) to obtain a tensor of shape (L × L × 4). Then, this tensor and its transpose (a2) were

stacked along the last dimension to obtain a tensor of shape (L × L × 8). b A sample sequence

Tensor that corresponded to a unique bit pattern for each possible pairing and also contained

directional information. For sequences with L< 100, the sequence tensor was uniformly pad-

ded with −1 Red insert: example bit pattern for the Tensor at the first three pixels with depth 8.

(PDF)

S2 Fig. Attention: Improved performance from adding structural probing data (SHAPE)

and homologous sequences. Attention Maps were a good indicator for the location of struc-

tural contacts. High attention values (red pixels) were almost exclusively found at the “near”

distance class, resulting in higher probability scores for the generator’s initial prediction for

that class. Incorporation of experimental A or simulated B SHAPE data both resulted in lower

false positive rates of attention placement compared to when no SHAPE data C or no SHAPE

data and no homolgous sequence information d was used, with false positive rates being, 4.3%,

5.7%, 14.8% and 21.4%, respectively (the false positive rate was calculated as the number of

incorrectly placed red, high attention points divided by the total number of red, high attention

points, where high attention points were defined by attention scores above 0.01).

(PDF)

S3 Fig. MCTS: Search tree with two distinct leafs. Starting with all target distance classes

masked, the Generator places initial probabilities for every pixel in the distance class softmax

prediction. From there, pixels were sampled iteartively using the MCTS search objective which

aimed for entropy reduction. We derived two terminal leaf nodes A for which the Generator

network saw enough distance pixels to fill up the remainers using its argmax prediciton B.

From those filled up leafs, the VQ-VAE could be applied to decode into real distance space C.

After further energy refinement, we showed for the ZMP-Riboswitch (PDB: 4XW7), that those

two leafs indeed corresponded to two different structures. The riboswitch has a movable hinge

part, which gets stabilized by a small molecule. Hence, our best leaf prediction in red is closer

to the blue target solution, bottom C. We also sampled an alternative structure. In this
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particular example, the strechted grey RNA structure C was ranked with a lower score by the

Score Model.

(PDF)
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