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Abstract

Background and purpose

Motor deficits of the ipsilateral lower limb could occur after stroke and may be associated

with walking performance. This study aimed to determine whether the accuracy and move-

ment path of targeted movement in the ipsilateral lower limb would be impaired in the

chronic stage of stroke and whether this impairment would contribution to gait.

Methods

Twenty adults with chronic stroke and 20 age-matched controls went through Mini Mental

Status Examination (MMSE), and a series of sensorimotor tests. The targeted movement

tasks were to place the big toe ipsilateral to the lesion at an external visual target (EXT) or a

proprioceptive target (PRO, contralateral big toe) with eyes open (EO) or closed (EC) in a

seated position. A motion analysis system was used to obtain the data for the calculation of

error distance, deviation from a straight path, and peak toe-height during the targeted move-

ment tasks and gait velocity, step length, step width and step length symmetry of the lower

limb ipsilateral to the brain lesion during walking.

Results

The stroke group had significantly lower MMSE and poorer visual acuity on the ipsilateral

side, but did not differ in age or other sensorimotor functions when compared to the controls.

For the targeted movement performance, only the deviation in PRO-EC showed significant

between-group differences (p = 0.02). Toe-height in both EXT-EO and in PRO-EO was a

significant predictor of step length (R2 = 0.294, p = 0.026) and step length symmetry (R2 =

0.359, p = 0.014), respectively.

Discussion and conclusions

The performance of ipsilateral lower limb targeted movement could be impaired after stroke

and was associated with step length and its symmetry. The training of ipsilateral targeted

movement with unseen proprioceptive target may be considered in stroke rehabilitation.
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Introduction

Stroke affects more than 80 million people globally and is the leading cause of disability among

adults worldwide [1–3]. More than half of stroke survivors reported still having residual func-

tional limitations in the chronic stage [4–6]. Sensory and motor impairments on the contralat-

eral side of stroke are commonly accepted as the primary underlying cause of functional

limitations. While this notion cannot be disputed, the function of the limbs ipsilateral to the

lesion should not be overlooked, as it can help to compensate for the lost function and contrib-

ute to the maximization of functional ability [7–10].

Anatomical and imaging studies have shown that the descending pathways from the motor

cortex, although predominantly cross to the contralateral side, there remain some ipsilateral

connections [11]. Stroke may affect the origin of these uncrossed connections and lead to ipsi-

lateral motor deficits. Imaging studies have also shown bilateral cortical activation during uni-

lateral hand movements, suggesting bilateral hemispheric control of movement [12, 13]. Thus,

brain lesion on one side could affect motor performance bilaterally. When taken together,

these notions suggest the possibility of ipsilateral motor deficits after a stroke.

For the ipsilateral upper limb, motor deficits could be observed soon after stroke [14–16].

In the chronic stage of stroke, ipsilateral upper limb motor deficits continue to exist, including

lower muscle strength [17, 18], slower movement time [8, 17, 19–21], larger aiming error [17,

22, 23], and poorer dexterity [18] and force regulation [24], compared to non-impaired age-

matched controls. Some of these ipsilateral deficits have been found to be related to the perfor-

mance of daily activities [18, 25, 26].

For the lower limb motor deficits ipsilateral to the lesion, the information is scarce. Imme-

diately after stroke, the ipsilateral quadriceps showed smaller peak isometric torque and poorer

force regulation [27]. The ability of ipsilateral foot tracking was also found to be impaired, i.e.

slower and less accurate, in the subacute stage of stroke [28]. In the chronic stage, when per-

forming fast repeated target tapping with the ipsilateral foot, stroke patients were found to

require longer time between landing and liftoff [20]. In both previous studies of ipsilateral

lower limb movement control, external visual targets were used for the study of tracking move-

ments. However, in daily living, the foot ipsilateral to the lesion may need to make discrete

movements or move to a location in relation to the contralateral foot, i.e. proprioceptive target.

What is more, it is unclear if ipsilateral motor deficits would be associated with declined walk-

ing performance after stroke.

The purposes of this study were to determine whether the accuracy and movement path of

targeted movement in the ipsilateral lower limb would be impaired in the chronic stage of

stroke and whether this impairment would be related to gait. It was hypothesized that for the

stroke group, their performance of ipsilateral targeted movement, including accuracy and

movement path, would differ from the controls, and these performances would be associated

with gait. Specifically, this study used external and proprioceptive targets to simulate the need

of daily activities. The information could improve the understanding of motor deficits after

stroke and provide information for the planning of stroke rehabilitation in the chronic stage.

Methods

Study participants

Persons with stroke who visited outpatient clinics at the neurology department of a medical

center and the rehabilitation department of a local hospital during the experimental period

were screened for eligibility and invited to participate. The inclusion criteria included having a

unilateral first time cortical/subcortical stroke at least 6 months ago, medically stable and able
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to understand instructions and follow experimental commands. The exclusion criteria

included full or near full recovery of the lower limb motor function (Brunnstrom motor recov-

ery stage VI or better) or other neuromuscular or musculoskeletal conditions that would inter-

fere with the lower limb movements or walking. Forty-seven stroke patients were contacted.

Among them, 21 patients were excluded because of not meeting the inclusion criteria or refus-

ing to participate in the study. Another six patients were unable to complete the experimental

procedure because of fatigue. A group of age-matched controls (CON) from nearby communi-

ties was also recruited. The Institutional Review Board of the National Cheng Kung University

Hospital approved this study. All the research methods were performed in accordance with

the provisions of the Declaration of Helsinki (as revised in Tokyo 2004). All the participants

provided written informed consents. The corresponding author has access to information that

could identify individual participants during or after data collection. After enrollment, the par-

ticipants received sample characterization, targeted movement, and walking tests sequentially.

Sample characterization

For the characterization of the study participants, a series of sensorimotor function tests were

conducted. The modified Traditional Chinese version of the Mini Mental State Examination

(MMSE, maximal score = 33) has been found to have high reliability and was used to assess

cognitive function [29]. This version added three items, subtraction (7 minus 3), addition (2

plus 4), and writing down one’s name, to account for the impact of low education level. Visual

acuity was tested with a standard printed Snellen eye chart 6 m away. The Snellen eye chart is

widely used for clinical visual acuity assessment due to its ease of use, even though its reliability

has been demonstrated to be poor [30]. The Fugl-Meyer lower extremity motor scale (FMLE-

motor, range 0–34) has been shown to have high reliability [31] and was used to measure the

motor function of the lower limb contralateral to the stroke. A score of 21 or higher has been

shown to indicate a high level of mobility function in persons with chronic stroke [32]. The

scale included the test of reflex activity of the knee flexors and extensors, volitional movement

within synergies, volitional movement mixing synergies, and volitional movement without

synergy, and coordination (heel-to-knee cap in supine). Because the majority of the stroke par-

ticipants showed involuntary associated movements in the contralateral lower limb, the leg

muscle strength was not directly measured. Grip strength, a measure which has been shown to

be highly correlated with the strength and motor function of the lower limbs [33, 34], was mea-

sured using a handgrip dynamometer. Plantar cutaneous sensitivity was examined at the plan-

tar side of the first metatarsal head using the Semmes-Weinstein monofilaments (Patterson

Company, IL, USA). Briefly, the monofilament fiber was applied at a 90˚ angle to the skin, and

the participant indicated if the fiber was felt or not. The smallest filament that the participant

was able to perceive indicated the threshold for touch-pressure. The test has been found to

have high reliability [35].

A limb matching task, that is moving the ipsilateral limb (less affected side) to match the

position of the contralateral limb, is one of the frequently used tests of joint position sense for

persons with stroke [3, 36, 37] and was adopted in this study to measure the knee and ankle

joint position sense. Participants closed their eyes and sat in a customized, height-adjustable

chair with fully supported thighs, and feet freely dangling above the ground. To test the knee

joint position sense, the experimenter held the bilateral malleoli to move the nondominant

(for CON) or contralateral (for STROKE) lower leg approximately 15˚ into flexion or exten-

sion, stopped, and then instructed the participant to match the knee joint angle by moving the

other lower leg without moving the rest of the body. To test the ankle joint position sense, the

same initial position was adopted except that both heels were supported by a stool. The
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experimenter first held the first and fifth metatarsal heads to move the nondominant (for

CON) or contralateral (for STROKE) ankle joint into plantar- or dorsi-flexion, stopped, then

instructed the participant to match the ankle joint angle by moving the other foot without

moving the rest of the body. Each task was repeated twice. The differences in the joint angle of

the two sides were used to represent joint position sense.

Targeted movement tests

Participants sat in a customized height-adjustable chair with the trunk erect (no back support),

buttocks near the front edge of the seat, knees slightly bent and feet flat on the ground. This

starting position was designed to simulate upright standing position in which most of the

lower limb functional movement would occur, but with the body weight supported by the

chair to minimize the need for balance control. Participants were asked to move the dominant

(for CON) or ipsilateral (for STROKE) foot to a target on the floor that was covered by black

cloths. In daily life, the foot may need to move to a particular location in relation to an external

target, such as a slipper, or a proprioceptive target, such as the other foot, either with or with-

out online visual cues. Thus, two types of targets were used, external and proprioceptive, and

for each target, the task was performed twice with and without vision. The target would be

positioned at a distance approximately one third of the foot-length away from the moving

foot’s big toe. The participants practiced each condition once before data acquisition. The tests

were conducted using either the dominant (for CON) or ipsilateral (for STROKE) leg. The test

sequence for the proprioceptive and external target conditions was randomized to reduce the

potential impact of fatigue or learning.

External target. A bright-colored arrowhead (target) was placed on the ground, approxi-

mately one third of the foot-length away from the big toe, at a distance easily within reach by

the moving foot (dominant side for CON and ipsilateral side for STROKE). Participants were

allowed 3s to look at the target and memorize its location. Afterwards, the target was removed

and the participants were instructed to move the big toe to the memorized target location. In

the eyes open condition (EXT-EO), the eyes remained open for the entire test. In the eyes

closed condition, participants closed their eyes before moving the foot (EXT-EC).

Proprioceptive target. This task required the participant to place the dominant (for

CON) or ipsilateral (for STROKE) big toe at the location previously occupied by the big toe

(target) of the nondominant/contralateral foot. The starting position was identical to that of

the external target condition. The target foot was moved passively to a random location within

reach of both feet (approximately one-third foot-length in front and within 30˚ range of its ini-

tial location). Participants were allowed 3s to memorize the target location. Afterwards, the

feet were first lifted off the floor and then the chair was rotated approximately 30˚ around the

vertical axis toward the side of the target foot after the participants opened their eyes. This con-

dition was designed to simulate a situation where the foot ipsilateral to the lesion was to move

to a position in relation to the contralateral foot after the position of the body has been

changed in the environment, similar to walking. In the eyes open condition (PRO-EO), the

eyes remained open throughout the test. In the eyes closed condition (PRO-EC), participants

closed their eyes when the contralateral foot was being passively moved, and then opened the

eyes after the chair rotation.

Walking test

Participants were instructed to walk at their preferred speed on an obstacle-free walkway for 8

meters and used their usual walking devices as needed. The test was performed once.
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Data reduction and statistical analysis

SIMI MOTION1 (SIMI Reality Motion Systems GmbH, Unterschleissheim, Germany) with

an eight-camera 3 dimensional motion analysis system was used to record the lower limb kine-

matics with a sampling rate of 100 Hz for joint position sense, targeted movement and walking

tests. For the joint position sense assessment and walking test, reflective markers were placed

at the midpoint between the two posterior superior iliac spines, and bilateral anterior superior

iliac spines, greater trochanters, medial and lateral epicondyles of the knees, medial and lateral

malleolus, second metatarsal heads, and heels in order to calculate the knee and ankle joint

angle. Two reflective markers were placed at the nails of both big toes to indicate their posi-

tions during the targeted movements and an additional marker was used to indicate the loca-

tion of the arrow for the external target conditions.

Computer algorithms written in MATLAB (Version R2013a, The Math Works Inc. MA,

USA) were used for data reduction. For the joint position sense assessment, the hip, knee and

ankle joint centres were calculated according to the joint kinematic methods proposed by the

International Society of Biomechanics [38]. The hip and knee joint centre formed the thigh

segment, the knee and ankle joint centre formed the shank segment, and the heel and second

metatarsal head formed the foot segment. The knee joint angle was defined as the angle

between the thigh and shank segments. The ankle joint angle was defined as the angle between

the shank and foot segments. For the external target and exproprioception tests, the position

data of the reflective markers were used to calculate the errors and deviations.

The parameters of interest for the targeted movement included the error, deviation, and

peak height of the big toe on the side ipsilateral to the lesion (Fig 1). The distance between the

final position of the big toe and the target was used to represent error. The mean distance

between the big toe (of each data point) and the line between the starting position and the tar-

get was used to represent the deviation. Toe-height was the highest point of the big toe

trajectory.

For walking performance, the means of two consecutive strides were used for data analysis.

Because the parameters for targeted movement primarily concerned spatial characteristics, the

gait parameters of interest thus focused on step length and its symmetry index, and step width.

Gait velocity was also investigated to represent overall gait performance. Symmetry index (SI)

was calculated based on the equation below.

SI ¼ j1 �
ipsilateral

contralateral
j

where ipsilateral = the side ipsilateral to the brain lesion

For the basic information and physical function, independent t, Mann-Whitney U, and chi
square tests were used for between group comparisons for continuous, rank ordinal and cate-

gorical variables, respectively. For the targeted movement and gait parameters, because most

of them were not normally distributed, the Mann-Whitney U tests were used for between-

group comparisons. To assess the potential explanation of variance in the gait performance of

the ipsilateral lower limb for the stroke group by the targeted movement performance, a step-

wise regression analysis was performed. In this analysis, the gait parameter was treated as the

dependent variable, while its corresponding significantly correlated targeted movement

parameter was considered as the independent variable. Furthermore, considering that the gait

characteristics of the limb ipsilateral to the lesion might be associated with the motor function

of the contralateral limb, the FMLE-motor scale would also be included as an independent var-

iable in the regression analysis, if it demonstrated a significant correlation with gait perfor-

mance. Kendall’s tau’b correlation analysis was used to determine the correlations between the
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gait parameters, FMLE-motor and targeted movement parameters. The significance level was

set at 0.05.

Results

There were 20 participants in each group. Compared to CON, STROKE had significantly

lower MMSE and poorer ipsilateral side (comparing to the dominant side of CON) visual acu-

ity. Comparing to the dominant side of CON (Table 1), the ipsilateral side of stroke had signif-

icantly poorer visual acuity, but not grip strength or plantar sensitivity. Comparing to the non-

dominant side of CON (Table 1), the contralateral side of stroke had significantly smaller grip

strength, but not visual acuity or plantar sensitivity. Regarding the targeted movement perfor-

mance, it was observed that only the deviation in PRO-EC exhibited significant differences

between the two groups. Specifically, STROKE displayed a greater deviation in PRO-EC com-

pared to CON. (Table 1). Fig 2 displays examples of targeted movement trajectories under var-

ious conditions. The gait parameters were all significantly different between the two groups

(Table 1).

Table 2 shows the results of correlation and regression analysis for STROKE. Gait velocity

and step width were not significantly correlated with any of the targeted movement parame-

ters, and thus regression analysis was not conducted. The ipsilateral step length was signifi-

cantly correlated with deviation and toe-height in EXT-EO, and FMLE-motor. The variables

EXT-EO toe-height and FMLE-motor explained 29.4% and 17% of the variance in ipsilateral

Fig 1. Definitions of targeted movement task parameters (error, deviation, toe-height). The continuous line shows the

trajectory of the big toe of the moving leg.

https://doi.org/10.1371/journal.pone.0297074.g001
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Table 1. Basic characteristics, targeted movement performance and gait. Ipsilateral and contralateral side refers to the side Ipsilateral and contralateral to the stroke,

respectively.

Control Stroke p
Age (years) 61.9±8.0 61.8±8.3 0.85

Mini Mental Status Examination 31.9±1.0 29.6±3.7 0.005*
Stroke

Side (right/left) 10/10

Duration (month) 33.8±30.4

Fugl-Meyer lower limb motor scale 19.4±5.1

�21/<21# 11/9

Dominant/ipsilateral side

Visual acuity (decimal) 0.70±0.33 0.47±0.24 0.019*
Plantar sensitivity big toe (dB) 4.00±0.17 4.08±0.59 0.221

Grip (% body weight) 38±12 37±10 0.642

Non-dominant/contralateral side

Visual acuity (decimal) 0.63±0.31 0.58±0.27 0.708

Plantar sensitivity big toe (dB) 4.01±0.19 4.21±0.46 0.076

Grip (% body weight) 35±10 16±17 0.002*
Joint position error (degree)

Knee 4.90±4.24 5.28±2.64 0.737

Ankle 6.49±2.75 7.32±5.03 0.534

Targeted movement performance

External target

Error (cm)

Eyes closed 3.05±1.14 3.29±1.21 0.512

Eyes open 2.05±0.60 2.02±0.51 0.904

Deviation (cm/data point x 100)

Eyes open 0.72±0.28 0.65±0.21 0.718

Eyes closed 1.15±0.45 1.43±0.74 0.301

Toe-height (cm)

Eyes open 4.62±1.82 5.53±1.92 0.105

Eyes closed 4.40±1.55 5.24±2.13 0.174

Proprioceptive target

Error (cm)

Eyes open 2.59±1.65 3.20±2.46 0.383

Eyes closed 4.86±2.31 7.21±4.40 0.091

Deviation (cm/data point x 100)

Eyes open 2.08±1.26 2.35±1.42 0.565

Eyes closed 2.37±0.72 3.74±2.05 0.02*
Toe-height (cm)

Eyes open 6.72±2.87 7.55±2.87 0.231

Eyes closed 6.90±2.28 7.57±2.60 0.398

Gait parameters (ipsilateral side)

Gait velocity (m/s) 1.17±0.18 0.49±0.35 <0.001*
Step length (m) 0.61±0.09 0.33±0.19 <0.001*
Step width (m) 0.10±0.03 0.14±0.04 0.001*
Symmetry index of step length 0.15±0.09 2.07±5.20 0.039*

*statistically significant
# A Fugl-Meyer lower limb motor scale�21 indicated a high level of mobility function.

https://doi.org/10.1371/journal.pone.0297074.t001
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Fig 2. The big toe trajectory of the ipsilateral leg targeted movement tasks of a representative control (blue lines) and

stroke (red lines) participant. Circle: starting position; triangle: target location; continuous line: trajectory of the big toe;

dotted line: direct line between the starting position and target in the sagittal plane.

https://doi.org/10.1371/journal.pone.0297074.g002

Table 2. Results of correlation and regression analysis.

Dependent factor Independent factors (correlation coefficient)# R2 change Beta coefficient 95% CI p
Gait velocity

None

Step length

EXT-EO deviation (-0.490) NI

EXT-EO toe-height (-0.412) 0.294 -0.474 -2.751~-0.206 0.026*
FMLE-motor (0.485) 0.170 0.418 0.033~2.920 0.046*

Step width

None

Symmetry index of step length

EXT-EO toe-height (0.386) NI

PRO-EO toe-height (0.359) 0.323 0.569 0.565~4.284 0.014*
FMLE-motor (0.364) NI

# factors significantly correlated with the dependent factor in correlation analysis

CI: confidence interval

NI: not included in the regression model

FMLE-motor: Fugl-Meyer lower limb motor scale

https://doi.org/10.1371/journal.pone.0297074.t002
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step length, respectively. The symmetry index of step length was significantly correlated with

toe-height in EXT-EO and PRO-EO, and FMLE-motor, with PRO-EO toe-height explaining

32.3% of the variance.

Discussions

After stroke, the function of the ipsilateral limbs could be important. This study focused on the

ipsilateral lower limb targeted movement of stroke participants and found that, compared to

the controls, the movement path was less straight when the target was the un-seen contralateral

foot. Furthermore, some of the ipsilateral targeted movement parameters could explain more

than a quarter of the variance in step length and its symmetry during walking for the stroke

group. These findings suggest that ipsilateral lower limb function could be impaired after

stroke and could affect walking performance.

To move a body end point (such as hand or foot) to an intended location in the environ-

ment, several functions are needed, including sensory information about the target with

respect to the body and about the initial position of the body, transformation of this informa-

tion into motor commands, and sending out motor commends for movement execution [39–

41]. In this study, the between-group difference in the targeted movement were not significant

when the target was clearly seen, i.e. in EXT-EO and EC and PRO-EO. Therefore it seemed

that for the ipsilateral lower limb in persons with stroke, these functions were not likely to be

impaired to an extent that would affect the accuracy or movement path of targeted movement

performance.

To reach a target without any temporal or spatial constraints, the most efficient movement

path would be a straight line from the starting point to the target, and the hand tends to move

fairly straight when the target location is known [42]. Studies have shown that when there is

uncertainty about the target, greater deviations in the hand path would occur in monkeys,

while humans would tend to exhibit greater path length in reaching movements [43–45].

Insufficient sensory inputs or errors in sensory estimates of the target could result in target

uncertainty and possibly lead to deviations in movement path [43, 46]. In the proprioceptive

target conditions in this study, the location of a body segment in the environment was the tar-

get. The perception of the orientation of the body in extra-personal space relies on visual, pro-

prioceptive and exteroceptive inputs, however these signals alone are insufficient to provide

this information [47–53]. It has been proposed that these signals when mapped onto a body

representation could provide information about the body in extra-personal space [47, 52–54].

The awareness of the limb orientation in the environment can also enable the planning of

motor commands to move the limb directly toward a target outside the body [55].

In PRO-EC, there were no visual cues for the estimation of the target location and it was

found that the movement path of the stroke group had significantly greater deviation, com-

pared to the controls. Moreover, the absence of a significant between-group difference in

PRO-EO also suggested that the between-group differences observed in PRO-EC could mainly

be attributed to the differences in visual cues. It appeared that the stroke group was affected to

a greater extent by a lack of visual cues about the target. These findings also implied that the

ability to estimate the location of the contralateral foot in the environment without visual cues

might be affected after stroke.

Previous studies have reported that possibly due to deficits in motor control mecha-

nisms, such as movement planning and organization, stroke may lead to declines in the

performance of ipsilateral upper limb aiming movement [8, 20, 56]. For the lower limb, in

addition to sensorimotor function of the contralateral lower limb, muscle strength in the

ipsilateral lower limb have also been shown to exhibit associations with gait patterns after
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unilateral stroke previously [57–60]. This study included persons with chronic stroke with

different mobility function levels and was the first to report that ipsilateral lower limb tar-

geted movement performance was also associated with gait after stroke. The sub-tasks

involved in gait adaptation primarily include taking a step to properly place the foot in the

environment and at the same time maintaining forward propulsion force and balance in

healthy adults and persons with stroke [61, 62]. Targeted movement is a fundamental abil-

ity in proper foot placement and could thus be associated with gait. Specifically, in the

external and proprioceptive target eyes open conditions, greater toe-height predicted shorter

step length and poorer step length symmetry. For the stroke group, while the motor function

(FMLE-motor) of the contralateral lower limb was found to be a significant factor influencing

step length, its impact was relatively minor compared to the performance of targeted move-

ment in the proprioceptive target eyes closed condition (PRO-EC).

It should also be noted that in this study, the big toe and the target were placed on the

ground and therefore lifting the foot off the floor was not necessary. In spite of this, all the par-

ticipants lifted the foot off the floor while moving toward the target. Intuitively, this behavioral

strategy was used to avoid foot-ground contact. During the swing phase of walking, the swing

foot also needs to avoid floor contact. While walking under more challenging conditions, such

as vision restrictions or floor irregularity, attention would be consciously diverted toward the

control of the lower limbs. This could lead to increased minimal distance between the swing

foot and the floor [63–65]. In the eyes open condition in this study, continuous online visual

cues about the distance between the foot and the floor were available and could be consciously

used for the control of the movement. Therefore, lifting the foot higher off the floor, resulting

in greater toe-height, could serve as an indicator of heightened attentiveness to the control of

the swing foot. For stroke participants, this shift in attention could possibly mean taking

smaller steps or allocating less attention to maintaining gait symmetry in order to minimize

foot-floor contact. Further studies are needed to verify these notions.

This study is limited in several ways. The psychometric properties of the targeted move-

ment performance measurements were not tested and could limit the reliability of the data.

The mechanisms underlying the association between targeted movement performance and

gait were not investigated. The contributions of the sensorimotor function of the lower limbs

contralateral to the stroke were not included in the regression analysis due to sample size limi-

tations. Future studies are needed to better understand these issues.

In conclusion, persons with stroke did not differ from healthy controls in performing ipsi-

lateral lower limb targeted movement when the target location was visible prior to initiating

the movement. When the target was the contralateral foot and not visible, the motion of the

ipsilateral leg showed significantly greater deviation, suggesting impaired ability to estimate

the location of the contralateral foot within the environment without visual cues after stroke.

The performance of ipsilateral targeted movement within the stroke group accounted for over

a quarter of the variation in both step length and its symmetry. These findings together

implied that the training of ipsilateral targeted movement may be helpful in improving

walking performance for people with chronic stroke. However, future studies are needed

to examine the possible effects.
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