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Abstract

Stable isotope analysis (SIA) is widely used to study trophic ecology and food webs in

aquatic ecosystems. In the case of fish, muscle tissue is generally preferred for SIA, and the

method is lethal in most cases. We tested whether blood and fin clips can be used as non-

lethal alternatives to muscle tissue for examining the isotopic composition of two freshwater

predatory fish, European catfish (Silurus glanis) and Northern pike (Esox lucius), species of

high value for many freshwater systems as well as invasive species in many others. Blood

samples from the caudal vein, anal fin clips, and dorsal muscle obtained by biopsy punch

were collected from four catfish and pike populations (14–18 individuals per population).

Subsequently, these samples were analyzed for δ13C and δ15N. The effects of alternative

tissues, study site, and fish body mass on the isotopic offset were investigated. Both species

showed a correlation between the isotopic offset and the tissue type, as well as the study

site, but no significant relationship with the body mass. The isotopic offsets between tissues

were used to calculate the conversion equations. The results demonstrated that both blood

and fin clips are suitable and less invasive alternative to muscle in SIA studies focused on

European catfish and Northern pike. Blood provided better correspondence to muscle iso-

tope values. However, our results clearly demonstrated that isotopic offsets between tissues

vary significantly among populations of the same species. Therefore, obtaining a muscle

biopsy from several individuals in any population is advisable to gain initial insights and

establish a possible population-specific inter-tissue conversion.

Introduction

Stable isotopes are widely used in aquatic science [1–3], primarily δ13C and δ15N [3, 4]. They

are used in a broad spectrum of studies such as indicating nutrient pollution [5, 6],
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determining contaminant bioaccumulation [7, 8], tracking changes in carbon cycle over time

[9], investigating aquatic food webs [10–12], and even assessing individual specialization [13].

Muscle tissue is commonly used for stable isotope analysis (SIA) of vertebrates [14], specifi-

cally the dorsal white muscle in fish studies [15]. Approximately 0.5 mg of dry mass is neces-

sary for one analysis which constitutes a relatively substantial and often even lethal intrusion

into the fish body [16]. Fish typically occupy higher positions within food webs underscoring

the significance of their inclusion in the analysis of trophic structure and energy flow within

aquatic ecosystems [17]. Nevertheless, the considerable size and high trophic position of pred-

atory fish species impose constraints on sample sizes [12, 18]. Predatory fish exhibit notably

lower population densities, and capturing large individuals through conventional sampling

methods is usually challenging [12]. The substantial reduction of key species populations can

also have a significant impact on ecosystem functioning [19]. Additionally, predatory fish are

intentionally introduced into various systems (e.g., drinking water reservoirs) to exert a top-

down effect on lower trophic levels. Therefore, it is preferable not to reduce their population

density by lethal sampling [20]. In certain locations, such actions are even prohibited by the

regulations of respective authorities.

The use of non-lethal sampling in stable isotope studies of fish, aimed at preventing unnec-

essary mortality of sampled animals, has recently received significant attention [16, 17, 21, 22].

Recent studies have explored non-lethal and minimally invasive alternatives, including scales,

mucus and fins [17, 22–25]. The use of fin tissue has been the most prevalent [12], and such tis-

sue is capable of regeneration [26, 27]. In contrast, collecting and employing blood for fish

studies is relatively infrequent [28], despite its common application in various analyses, includ-

ing SIA of higher vertebrates [29, 30]. The sampling is straightforward, particularly for large

individuals, and results in minimal injury [13] compared to the muscle tissue sampling

through biopsy punch [17, 31]. Although a biopsy itself is considered a non-lethal method for

obtaining tissue, and according to Henderson et al. [31], it can even be performed in fish

under 30 cm in size, the primary advantage of blood tissue collection over biopsy lies in the

easier and gentler collection process. Additionally, there is a lower risk of introducing infec-

tions due to minimal external injury [32, 33]. This method is more comfortable for both the

sampled individual and the person conducting the sampling. Despite the fact that biopsies

often disrupt vessels in the muscle, causing bleeding in volumes greater than required for SIA

blood analysis (personal observation), blood collection from fish results in complete healing

within 2–3 weeks, demonstrating a 100% survival rate in teleost blood draws of 1 μL g-1 with

no post-treatment [34]. Approximately 200 μL of blood is sufficient for SIA, making this col-

lection method safe for fish as small as 200 g of body mass [32, 34]. While it is possible to

reduce the risk of introducing infections into biopsy wounds by using techniques such as

applying Fish BandageTM and a non-toxic, non-allergenic cellulose-based powder that forms a

clear viscous gel upon contact with water and can treat skin ulcers and bind open wounds in

fish when combined with an antiseptic [31], this represents an additional step in the sampling

process, consequently increasing the sampling time.

Several studies have demonstrated correlations between isotopic signals from ’non-lethal

tissues’ and those from muscle tissue [16, 17, 22, 35, 36]. Nevertheless, it is essential to consider

that the isotopic offsets, defined as the differences in isotope value between individual tissues,

are not solely attributed to variations in tissue protein composition [37]. Stable isotope bioki-

netics also play a role in this regard [13, 38], and although often overlooked, they likely have a

significant impact on differences among populations and various life stages within the same

species [21, 39]. The biokinetics of stable isotopes in various tissue types, species, and environ-

ments is a complex issue. Unfortunately, current findings do not provide clear conclusions

about the isotopic turnover rate of different tissues [13, 38, 40, 41]. Turnover depends not only
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on tissue type but also on individual size and environmental temperature [38]. For an average

organism weighing 1 mg, the isotopic half-life at 10˚C is nine days, and at 40˚C, it is only three

days for both 13C and 15N (full turnover is about four to five times longer). However, for a 100

g organism, the half-life at 10˚C is 80 days for 13C and 84 days for 15N. At 40˚C, these values

decrease to 28 days for 13C and 30 days for 15N. In the case of a 100 kg organism, the half-life

at 10˚C is 303 days for 13C and 321 days for 15N. At 40˚C, these values decrease significantly to

105 days for 13C and 115 days for 15N [38]. As shown above, isotopic turnover rates vary

among individual elements. It appears that 15N turnover rates are slightly longer than those of
13C [38, 40]. However, in the case of summer flounder (Paralichthys dentatus), no difference

in the half-life between 15N and 13C was observed [41].

Based on several studies, the order of tissues in terms of isotopic half-life, from fastest to

slowest, is approximately as follows (with slight variations in individual studies): Plasma!

Liver! Fin!Heart!Mucus! Blood! Red blood cells! Bone collagen! Scale!

Muscle [13, 38, 40, 41]. Another important factor that can influence isotopic turnover is the

type of diet. It appears that different body tissues respond to dietary changes by altering their

isotopic turnover rates. Tissues with longer isotopic turnover tend to exhibit greater differ-

ences depending on the type of diet [40].

Although the notable increase and growing trend towards non-invasive sampling are evi-

dent, there remains a lack of information concerning the relationship between isotope signa-

tures of muscle and less harmful tissues for numerous species and populations [17, 22]. This

study aims to contribute to the existing knowledge by examining the use of fin clips and blood

in comparison to muscle tissue for two key apex predator fish species: European catfish

(Silurus glanis) and Northern pike (Esox lucius) [12, 42]. The studied species are among the

most widespread predatory fish in Europe and thus play a crucial role in maintaining ecosys-

tem stability through top-down control [43]. To mitigate the influence of any single location,

samples were collected from four distinct study sites. The primary aim was to investigate the

feasibility of using fin and blood tissues as less harmful alternatives for δ15N and δ13C analyses

in place of muscle tissue. The specific aims were as follows: (i) to examine the correlation

between blood and fin tissues isotope signatures and those of muscle tissue, (ii) to assess the

suitability of blood or fin tissue as a viable alternative, (iii) to develop appropriate conversion

equations to enable the interchangeable use of different tissues in future stable isotope studies,

and (iv) to explore whether variations in isotope signatures among tissues correlate with fish

body mass differences.

Methods

Study design

Fishes were treated in accordance with the Experimental Animal Welfare Commission under

the Ministry of Agriculture of the Czech Republic guidelines (Ref. No. CZ 01679). The work

was approved by the Ethics Committee of the Czech Academy of Sciences.

The study was conducted in 2017 at four water bodies of similar size and fish species com-

position, but varying in their trophic states: two oligotrophic post-mining lakes, Most and

Milada, and two meso-eutrophic reservoirs, Žlutice and Řı́mov, Czech Republic (Fig 1). For

basic parameters of the study sites see Table 1, and for further details see [20, 44].

Electrofishing (method description by [45]) and long-lines (method description by [20, 46,

47]) were used in 2017 to capture adult individuals of European catfish and Northern pike on

4–7 September in Most Lake, 11–14 September in Milada Lake, 25–28 July in Žlutice Reser-

voir, and 18–21 July in Řı́mov Reservoir.
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Body size and mass of European catfish ranged from 630 to 1,500 mm SL (mean±SD: 1046

±214 mm) and 1.6 to 21.8 kg (mean±SD: 8.35±5.18 kg), and Northern pike body size ranged

from 450 to 1,200 mm SL (729±202 mm), and mass ranged from 0.6 to 13.8 kg (3.75±3.06 kg).

All individuals were weighed to the nearest gram, and samples of three body tissues were col-

lected for SIA under anesthesia, a bath containing clove oil. Specifically, a small sample of the

anal fin (1 cm2, resection), 0.2 cm3 of dorsal muscle (biopsy punch Miltex, skin removed), and

1 mL of blood from the caudal vein using an 18-gauge needle Sterican were taken. The three

tissue samples from each individual were placed on ice and transferred to a laboratory freezer

for SIA. Subsequently, all European catfish and Northern pike were released back into the

water bodies.

Stable isotope analysis (SIA)

All frozen samples for SIA were subsequently dried at 60˚C for 48h and ground into a uniform

powder using a Retsch MM 200 ball-mill (Retsch GmbH, Haan, Germany). Minor subsamples

(0.52–0.77 mg) were carefully placed into tin cups for δ13C and δ15N analysis. All SIA were

Fig 1. Map of the Czech Republic with four study sites, Most and Milada artificial lakes, and Žlutice and Řı́mov

reservoirs. Lakes and reservoirs share the same scale.

https://doi.org/10.1371/journal.pone.0297070.g001

Table 1. Basic hydrological and geographical parameters of the four study sites. Total phosphorus (TP) presents an average from longitudinal profiles of three areas

sampled four times per year in 2013–2017.

Site Area (ha) Volume (106 m3) Long-term inflow (m3 s-1) Retention time (days) Max. depth (m) Altitude (m a.s.l.) Trophy, TP (μg L-1)

Most 311 70 0.06 drainless 75 199 2.5

Milada 250 36 0.04 10,248 25 145 5

Žlutice 161 16 1.24 146 23 508 25.8

Řı́mov 210 34 4.38 93 45 468 26.4

https://doi.org/10.1371/journal.pone.0297070.t001
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performed using a FlashEA 1112 elemental analyzer coupled to a Thermo Finnigan DELTA-

plus Advantage mass spectrometer (Thermo Fisher Scientific Corporation, USA) at the Uni-

versity of Jyväskylä, Finland. Carbon and nitrogen isotope ratios are presented as δ13C and

δ15N values relative to the international standards for carbon (Vienna PeeDeeBelemnite, Aus-

tria) and nitrogen (atmospheric nitrogen). The precision of the analytical results was deter-

mined to be ±0.20‰ through repeated analyses of a consistent standard (Northern pike white

muscle tissue), which was inserted in each analytical run following every five samples. The

data were not adjusted for lipid content due to elemental carbon–nitrogen (C:N) ratios

observed in all tissues being less than 4 (except for a single catfish blood sample at Řı́mov Res-

ervoir) indicating a low lipid content [48].

Data analysis

Prior the analyses, the data distribution was visually checked by histogram plotting. No obvi-

ous skewness distribution was observed. Paired t-tests were conducted to assess whether blood

and fin isotope values differ from those of muscle, and also to determine whether C:N ratios in

blood and fin of individuals at each study site differ compared to those muscle tissue. The iso-

topic offsets between tissues, defined as the differences between blood and muscle or fin and

muscle stable isotope values, were compared among study sites (Milada, Most, Žlutice, Řı́mov)

for European catfish and Northern pike using a one-way repeated measures analysis of vari-

ance (ANOVA) with multiple comparisons (Tukey HSD test). Additionally, the one-way

ANOVA was used to assess the differences in C:N ratios among all tissue types across all study

sites. The statistical analyses were performed in STATISTICA 9.1 [49] and used the standard

level of significance of α = 0.05. Linear model with the random effect of site was applied to

model the relationships between mussel isotopes with the isotopes in fin and blood and

between the isotope offsets and fish mass. The models were prepared for each species and C

and N isotope separately. After fitting the models, regression diagnostics was applied by plot-

ting the residual vs. fitted values and Normal QQ Plot to check the residuals variance. The

models were developed using R packages “lme4” [50] and “nlme” [51] in R software [52].

Results

The δ13C and δ15N values in blood and fins of European catfish and Northern pike were gener-

ally found to be significantly different from those in their muscle tissue. However, the differ-

ence in δ13C between the blood and muscle was not significant for European catfish at one

study site and for Northern pike at two study sites. Regarding δ15N, there was no significant

difference between the blood and muscle of Northern pike in two study sites, and between the

fin and muscle of Northern pike in one study site (Table 2).

Blood generally showed neither clear enrichment nor depletion of δ13C compared to mus-

cle tissue. In European catfish, the blood exhibited a slight δ13C enrichment at three study sites

and a slight depletion at one study site. For Northern pike, the blood displayed slight δ13C

enrichment at only one study site and slight depletion at three study sites. The fin was consis-

tently and significantly enriched in δ13C in comparison to the muscle tissue in both species

across all study sites (Table 2). In both European catfish and Northern pike, both the blood

and fins were consistently and significantly enriched in δ15N when compared to the muscle

tissue, observed across most study sites. The degree of these differences was more pronounced

in the blood compared with fins of European catfish. In the case of Northern pike, on average,

the degree of these differences between blood and fin was similar. The difference in both δ13C

and δ15N between less harmful tissues and muscle tissue tended to be greater in European cat-

fish when compared to Northern pike (Table 2).
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For European catfish, both δ13C and δ15N offsets between both blood and muscle, and fin

and muscle significantly differed among study sites. The statistical values for δ13C offset were:

ANOVA: F3,62 = 6.87, p< 0.001 for blood vs. muscle, and ANOVA: F3,62 = 4.26, p< 0.01 for

fin vs. muscle. The statistical values for δ15N offset were: ANOVA: F3,62 = 12.31, p< 0.001 for

blood vs. muscle, and ANOVA: F3,62 = 4.30, p< 0.01 for fin vs. muscle.

Also for Northern pike, the differences in both δ13C and δ15N offsets between both blood

and muscle, and fin and muscle were significant among study sites. The statistical values for

δ13C offset were: ANOVA: F3,56 = 5.67, p< 0.01 for blood vs. muscle, and ANOVA: F3,56 =

9.77, p< 0.001 for fin vs. muscle. The statistical values for δ15N offset were: ANOVA: F3,56 =

3.81, p< 0.05 for blood vs. muscle, and ANOVA: F3,56 = 7.44, p< 0.001 for fin vs. muscle.

Tukey HSD comparisons of pairwise offset differences between study sites revealed signifi-

cant distinction. Specifically, there were significant differences in δ13C of European catfish

between blood and muscle in two cases, between fin and muscle in one case. Additionally, for

δ15N, significant differences were between blood and muscle in three cases and between fin

and muscle in one case (Table 3). For Northern pike, Tukey HSD comparisons of pairwise off-

set differences between study sites revealed significant differences in δ13C between blood and

muscle in one case, between fin and muscle in three cases, and for δ15N between blood and

muscle in one case and between fin and muscle in two cases (Table 3).

Table 2. Mean ± SE values of δ13C and δ15N, in muscle (M), blood (B) and fin (F) tissues of European catfish (top) and Northern pike (bottom) at four study sites

(Most, Milada, Žlutice and Řı́mov). Significant differences between offset (means how given tissue is enriched or depleted compared to muscle tissue) of blood and mus-

cle (B) and fin and muscle (F) (paired t-test) were examined. The C:N ratios were measured in three tissues of European catfish (top) and Northern pike (bottom). Asterisks

indicate a significance (paired t-test, p> 0.05 = -, p< 0.05 = *, p< 0.01 = **, p< 0.001 = ***).
Site Mean ± SE Statistics Mean ± SE Statistics

Tissue δ13C (‰) δ13C offset t p δ15N (‰) δ15N offset t p C:N

Most M -22.86 ±0.96 15.95 ± 1.01 3.28 ± 0.05

(N = 16) B -22.36 ±1.27 0.5 ± 0.53 3.72 ** 16.35 ± 1.08 0.40 ± 0.48 3.25 ** 3.62 ± 0.12

F -21.46 ± 1.02 1.4 ± 0.46 11.88 *** 16.31 ± 1.03 0.36 ± 0.46 3.05 ** 3.47 ± 0.08

Milada M -22.45 ± 0.77 27.39 ± 0.66 3.22 ± 0.09

(N = 16) B -22.03 ±0.70 0.42 ± 0.45 3.64 ** 28.57 ± 0.53 1.18 ± 0.33 13.71 *** 3.62 ± 0.15

F -21.38 ± 0.69 1.07 ± 0.45 9.22 *** 28.17 ± 0.53 0.79 ± 0.38 8.09 *** 3.40 ± 0.08

Žlutice M -26.32 ± 0.67 16.00 ± 1.41 3.59 ± 0.34

(N = 18) B -26.39 ± 0.66 -0.07 ± 0.45 0.68 - 16.69 ± 1.23 0.70 ± 0.42 6.86 *** 3.63 ± 0.09

F -25.71 ± 0.71 0.61 ± 0.49 5.15 *** 16.83 ± 1.20 0.83 ± 0.65 5.29 *** 3.52 ± 0.10

Řı́mov M -23.69 ± 1.75 14.65 ± 0.47 3.53 ± 0.31

(N = 16) B -22.44 ± 0.37 1.26 ± 1.47 3.31 ** 15.13 ± 0.24 0.48 ± 0.29 6.59 *** 3.69 ± 0.41

F -22.05 ± 0.31 1.64 ± 1.56 4.08 *** 15.05 ± 0.30 0.40 ± 0.31 4.98 *** 3.53 ± 0.14

Most M -20.97 ± 1.43 16.82 ± 0.78 3.28 ± 0.02

(N = 14) B -20.99 ± 1.26 -0.02 ± 0.32 0.27 - 17.25 ± 0.86 0.43 ± 0.29 5.42 *** 3.63 ± 0.15

F -20.22 ± 1.30 0.75 ± 0.66 4.09 ** 17.15 ± 0.74 0.34 ± 0.26 4.61 *** 3.50 ± 0.06

Milada M -22.17 ± 0.89 28.90 ± 0.72 3.27 ± 0.03

(N = 16) B -22.00 ± 1.05 0.18 ± 0.29 2.36 ** 29.05 ± 0.65 0.15 ± 0.31 1.87 - 3.57 ± 0.08

F -21.07 ± 1.04 1.10 ± 0.30 14.30 *** 29.37 ± 0.70 0.47 ± 0.48 3.76 *** 3.49 ± 0.04

Žlutice M -27.24 ± 0.64 15.44 ± 0.95 3.29 ± 0.05

(N = 14) B -27.32 ± 0.63 -0.08 ± 0.22 1.39 - 15.59 ± 0.82 0.15 ± 0.33 1.66 - 3.66 ± 0.18

F -26.74 ± 0.50 0.50 ± 0.31 5.90 *** 15.44 ± 0.96 0.00 ± 0.13 0.02 - 3.55 ± 0.06

Řı́mov M -21.96 ± 0.33 14.90 ± 0.31 3.34 ± 0.07

(N = 16) B -22.17 ± 0.41 -0.21 ± 0.21 3.93 ** 15.00 ± 0.37 0.10 ± 0.17 2.27 * 3.61 ± 0.12

F -21.63 ± 0.48 0.33 ± 0.28 4.70 *** 15.44 ± 0.49 0.54 ± 0.30 7.04 *** 3.56 ± 0.04

https://doi.org/10.1371/journal.pone.0297070.t002
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The C:N ratios were, on average, lowest in the muscle tissue of both European catfish and

Northern pike. In contrast, blood reached the highest average values (Fig 2). In the case of

European catfish, both blood and fin reached significantly higher C:N values than muscle in

Milada and Most lakes (paired t-test, p< 0.001). Also in Žlutice Reservoir, C:N ratio was sig-

nificantly higher in blood than in muscle of European catfish (paired t-test, p< 0.05), however

no difference was found between fin and muscle (paired t-test t17 = -0.75, p = 0.46). In Řı́mov

Reservoir, there was no difference in C:N ratio between both blood and muscle (paired t-test

t15 = -0.80, P = 0.44) and fin and muscle (paired t-test t15 = -0.04, p = 0.97) of European catfish.

For Northern pike, the C:N ratio was consistently and significantly higher in both blood and

fin compared to muscle, across all study sites (paired t-test, p< 0.001) (Fig 2). Among study

sites, C:N ratios were significantly different in muscle and fin of European catfish (muscle:

ANOVA: F3,62 = 7.98, p< 0.001; fin: ANOVA: F3,62 = 5.69, p< 0.001) and Northern pike

(muscle: ANOVA: F3,56 = 6.30, p< 0.001; fin: ANOVA: F3,56 = 6.60, p< 0.001). In contrast,

there was no significant difference in C:N ratio in blood among the study sites either for Euro-

pean catfish (ANOVA: F3,62 = 0.16, p = 0.92) or Northern pike (ANOVA: F3,56 = 1.03,

p = 0.39).

The linear regression revealed significant relationships between the δ15N and δ13C values in

muscle, fin and blood of both European catfish and Northern pike (Figs 3 and 4). Thus, both

less harmful tissues served as reliable predictors for muscle. Specifically, blood demonstrated

strong predictive capabilities for both δ13C and δ15N values in the muscle of both European

catfish and Northern pike. For European catfish, the coefficients of determination (R2) for

δ13C were, on average, 0.83 and 0.79 for blood and fin, respectively (Fig 3). Similarly, for δ15N,

the R2 values were 0.91 and 0.84 for blood and fin, respectively (Fig 4). Regarding Northern

pike, the R2 values for δ13C averaged 0.94 and 0.86 for blood and fin, respectively (Fig 3), and

for δ15N the R2 values were 0.92 and 0.88 in blood and fin, respectively (Fig 4). The regression

diagnostics of isotope linear model with the random effect of site demonstrate uniform residu-

als variance and lack of high leverage effects. Models intercepts and standard errors in fixed

effects were higher for European catfish compared to Northern pike and slopes were compara-

ble with exception of δ13C for European catfish with lower slope (Table 4). Similarly, random

effects were higher for European catfish compared to Northern pike (Table 4).

No distinct trends were found through linear regression analysis between isotopic tissue

offsets and fish body mass in either species or in any study site. For European catfish, the R2

Table 3. Tukey HSD statistical values (p) of the difference in δ13C and δ15N offsets between blood and muscle (B—M), and fin and muscle (F—M) among study

sites (Most, Milada, Žlutice, Řı́mov).

Species Offset: δ13C (B—M) δ13C (F—M) δ15N (B—M) δ15N (F—M)

European Catfish Most × Milada 0.992 0.727 <0.001 0.075

Most × Žlutice 0.217 0.058 0.153 <0.05

Most × Řı́mov 0.072 0.871 0.937 0.994

Milada × Žlutice 0.350 0.440 <0.01 0.992

Milada × Řı́mov <0.05 0.283 <0.001 0.131

Řı́mov × Žlutice <0.001 <0.01 0.423 0.060

Northern Pike Most × Milada 0.197 0.120 0.052 0.711

Most × Žlutice 0.937 0.419 0.066 0.053

Most × Řı́mov 0.237 <0.05 <0.05 0.336

Milada × Žlutice 0.055 <0.01 0.999 <0.01

Milada × Řı́mov 0.001 <0.001 0.965 0.915

Řı́mov × Žlutice 0.563 0.692 0.965 <0.001

https://doi.org/10.1371/journal.pone.0297070.t003
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reached mean values of 0.11 ± 0.17 SD for the blood and muscle δ13C offset, and 0.17 ± 0.17

SD for the fin and muscle δ13C offset in relation to the body mass. Regarding δ15N, the R2

reached mean values of 0.24 ± 0.22 SD for the blood and muscle offset, and 0.05 ± 0.04 SD for

the fin and muscle offset in relation to the body mass. For Northern pike, the R2 reached mean

values of 0.10 ± 0.11 SD for the blood and muscle δ13C offset, and 0.01 ± 0.02 SD for the fin

and muscle δ13C offset. In the case of δ15N, the R2 reached mean values of 0.07 ± 0.07 SD for

the blood and muscle offset, and 0.04 ± 0.05 SD for the fin and muscle offset in relation to the

body mass. The regression diagnostics of offset isotope linear model with the random effect of

site demonstrate uniform residuals variance and lack of high leverage effects. Models’

Fig 2. C:N ratios of European catfish (a) and Northern pike (b) in tissues (muscle: blue, fin: gray, blood: red) at four

study sites (Most, Milada, Žlutice, Řı́mov). Box and whiskers plots: upper and lower quartiles (boxes), median values

(line inside the boxes), mean value (crosses), maximum and minimum values (whiskers), and outliers (circles) are

shown.

https://doi.org/10.1371/journal.pone.0297070.g002
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intercepts were the highest for European catfish offset δ15N for all tissues combination, offset

δ13C fin to body mass and Northern pike offset δ13C fin to body mass comparison (Table 5).

The slopes values were generally low with the highest values for European catfish offset δ13C.

The random effect intercept and residual variances were the highest for European catfish offset

δ13C (Table 5).

Discussion

Sampling white muscle typically involves sacrificing the fish [16]. However, in our case, none

of the predatory fish were directly sacrificed. We employed a biopsy punch to extract the mus-

cle, a method feasible for larger fish species [33]. Nevertheless, this procedure still constitutes a

relatively invasive intervention into the fish body, and the potential consequences upon its

release into the water are generally unknown [31]. In contrast, methods such as fin clipping

[22, 53] and blood collection [54] are significantly less disruptive. Blood sampling through the

caudal vasculature is widely employed in fish biology for investigating health and physiology

[54]. In live fish, it offers a rapid, uncomplicated, and comparatively less harmful approach for

obtaining tissue, in contrast to the invasive and even more intricate nature of biopsies [31, 54].

The fin clip collection is a routine and widely used technique, employed either to acquire tissue

samples for various analyses [35] or to mark fish [55].

In general, the differences in δ13C and δ15N isotope values between muscle and less harmful

tissues in both predatory fish were smaller in the case of blood than in the fin. This is likely to

be due to a more comparable protein composition between muscle and blood than between

muscle and fin [37]. However, it appears that this effect is not related to the biokinetics of sta-

ble isotopes.

In our previous study [13], we calculated isotopic half-life [38] for European catfish and

Northern pike in the presented study sites. We considered both the mean mass of the individu-

als and the temperature at which they were found, as determined by telemetry measurements

[42]. Based on these calculations, the average isotopic half-life for blood and fin were quite

similar in both species. Conversely, the half-life of these tissues in both species significantly dif-

fered from the notably longer half-life of muscle. For European catfish, the average isotopic

half-life values were 39, 44 and 153 days for blood, fin, and muscle, respectively. In the case of

Northern pike, the values were 39, 41 and 139 days for blood, fin and muscle [13]. However, as

mentioned in the introduction, the issue of biokinetics is highly complex and can be influ-

enced by various other factors, such as the diet composition, which is unknown in this case

[40]. Nevertheless, significant variations in both δ13C and δ15N were observed in most

instances between muscle and blood, or between muscle and fin. The fin was enriched in δ13C

compared to muscle in both European catfish and Northern pike across all study sites. This

pattern is consistent with findings from several other studies focusing on diverse fish species

[22, 53, 56] as well as various Northern pike populations [57, 58]. The fin tissue was enriched

also in δ15N in both species at nearly all study sites. This is noteworthy since many previous

studies have reported δ15N depletion in fin tissue compared to muscle in other species [22, 53]

or have identified an inconclusive trend between fin and muscle [17, 33, 56]. However, for

example, in the case of callop (Macquaria ambigua) in the Australian Darling River, the fins

Fig 3. Linear regressions between δ13C of less harmful tissues (blood: black circles and line, fin: gray circles and line)

and muscle tissue for European catfish (left column) and Northern pike (right column) in Most lake (a, e), Milada lake

(b, f), Žlutice reservoir (c, g) and Řı́mov reservoir (d, h). The same scale is maintained on both axes in all images. The

linear regression equations for European catfish and Northern pike to convert δ13C values in blood (black equations)

and fin (gray equations) to those in muscle are presented with added statistical significances of the linear regression

and the 95% confidence intervals of the slopes.

https://doi.org/10.1371/journal.pone.0297070.g003
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were also enriched in δ15N compared to the muscle [17]. A similar pattern was observed with

the bleak (Alburnus alburnus) in Spain [53]. Therefore, it appears that, unlike δ13C, the trend

in δ15N is not as clear and may vary among species. Notably, Syväranta et al. [59] determined

that the δ15N of European catfish fin tissue exhibited a slight but insignificant depletion in rela-

tion to muscle tissue. However, in order to compare isotopic signatures between tissues, these

authors aggregated data from catfish individuals collected across four distinct locations. Con-

sequently, it became impractical to draw conclusions about population-specific disparities in

δ13C and δ15N between muscle and fin tissues. The two prior studies on Northern pike that

investigated the isotopic relationship between fin and muscle [58, 60] revealed that fin δ15N

was significantly depleted compared to muscle, whereas our observations demonstrated an

opposing fin-muscle δ15N difference in three out of four pike populations (with no significant

difference between the two tissues in δ15N within one studied population). Our findings unde-

niably illustrate that isotopic offsets between tissues can considerably differ among populations

of the same species. Thus, it is unrealistic to assume the feasibility of devising a singular spe-

cies-specific conversion equation that would universally apply to all populations of the given

species. Rather, aligning with the perspectives of other researchers [39, 61, 62], we propose that

a tissue-to-tissue conversion equation should be developed distinctly for each specific popula-

tion of interest. The isotopic signal of individuals and their various tissues partly reflects the

distinct protein composition of the tissues [37]. However, it is primarily influenced by the die-

tary composition of individuals or the entire populations. This diet composition can vary con-

siderably within a species, both seasonally and across different localities [11–13]. The diet of

apex predators in our study sites was extensively examined, based on both SIA and the stom-

ach content analysis [12, 63]. The study sites differed significantly from each other in terms of

the diet composition of apex predators and their growth rates [12, 63]. In the oligotrophic sites

of Milada and Most, apex predators exhibited significantly slower growth compared to the

meso-eutrophic reservoirs Žlutice and Řı́mov [63]. Moreover, at Milada and Most lakes, the

diet of apex predators displayed high variety, including invertebrates, fish, and semi-aquatic

prey such as waterfowl, mammals, and amphibians. In contrast, at the Řı́mov and Žlutice,

Fig 4. Linear regressions between δ15N of less harmful tissues (blood: black circles and line, fin: gray circles and line)

and muscle tissue for European catfish (left column) and Northern pike (right column) in Most lake (a, e), Milada lake

(b, f), Žlutice reservoir (c, g) and Řı́mov reservoir (d, h). The same scale is maintained on both axes in all images. The

linear regression equations for European catfish and Northern pike to convert δ13C values in blood (black equations)

and fin (gray equations) to those in muscle are presented with added statistical significances of the linear regression

and the 95% confidence intervals of the slopes.

https://doi.org/10.1371/journal.pone.0297070.g004

Table 4. Parameters and coefficients of isotope linear model with the random effect of site.

Model parameters Fixed effect Random effect

Species Isotope Comparison Intercept

value

Intercept std.

error

Slope

value

Slope std.

error

Intercept

variance

Intercept std.

dev.

Residual

variance

Residual std.

dev.

European

catfish

δ13C Muscle

-blood

-3.7903 2.1450 0.8598 0.0914 0.1652 0.4065 0.7404 0.8605

Muscle-fin -4.2773 1.8306 0.8634 0.0804 0.0692 0.2630 0.7966 0.8925

δ15N Muscle-blood 0.2875 0.2653 0.9489 0.0133 0.0119 0.1091 0.1672 0.4089

Muscle-fin -0.1803 0.4627 0.9779 0.0233 0.0522 0.2285 0.2484 0.4984

Northern

pike

δ13C Muscle-blood -0.5306 0.6249 0.9755 0.0268 0.0278 0.1668 0.0736 0.2712

Muscle-fin -2.3728 1.0239 0.9242 0.0451 0.1068 0.3268 0.1753 0.4187

δ15N Muscle-blood -0.1892 0.3025 0.9991 0.0150 0.0267 0.1634 0.0843 0.2904

Muscle-fin 0.2561 0.4765 0.9694 0.0234 0.0813 0.2851 0.1104 0.3322

https://doi.org/10.1371/journal.pone.0297070.t004
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their diet consisted almost exclusively of fish [12, 63]. Particularly, semi-aquatic prey signifi-

cantly differed in the SIA signal from other food sources [12, 59]. This distinct diet composi-

tion among study sites, along with varying growth rates, which likely affect the isotopic

turnover rate, could be the main reason for the offset differences between tissues at different

locations. This is supported by the observation that differences were evident in nine cases

between oligotrophic and meso-eutrophic sites, but only in three cases between meso-eutro-

phic sites and once between the oligotrophic sites. In addition to the different protein compo-

sition of tissues [37], the dietary changes during the season are probably the main factor

contributing to the offset differences between tissues of individual species within one popula-

tion at one study site. This is further supported by the observation that the European catfish,

which exhibits higher seasonal diet plasticity than the Northern pike [12, 13], shows a more

pronounced difference in offset between tissues. The better body condition of catfish in the

more productive Řı́mov and Žlutice may also have caused the higher C:N ratio variability in

muscle than in blood and fin due to a potentially higher level of lipid reserves stored in muscle

tissue of some predators. The muscle tissue, being metabolically active, undergoes continuous

metabolic changes such as growth, repair, and energy storage [64] that can result in a more

variable range of C:N ratios compared to more stable tissues like blood and fin.

To the best of our knowledge, blood has not yet been proposed as an alternative tissue to

muscle, and our study is also the first ever to compare the isotope values between blood and

muscle in European catfish and Northern pike. Within the studied populations of the two

predatory species, the isotopic offsets between blood and muscle were usually smaller com-

pared to the isotopic offsets observed between fin and muscle. Particularly in the case of

Northern pike, isotope values between blood and muscle did not significantly differ in half of

the studied populations. Even in those populations where these values differed significantly,

the offset between tissues was not substantial (ranging from 0.10 to 0.43‰; Table 2). These

results indicate that in certain species and populations the isotopic offsets between blood and

muscle of δ13C and δ15N may be negligible. However, predicting routinely in which popula-

tions such a situation will occur is challenging. Thus, it is essential to asses initially the isotopic

offsets between tissues for each population of interest. If necessary, a population-specific inter-

tissue conversion can then be calculated.

For both species, the offsets between tissues differed significantly across some of the study

sites. We calculated the conversion equations for each study site individually, both for δ13C

and δ15N in both blood and fin of both studied species. The conversion equations from blood

Table 5. Parameters and coefficients of isotope offsets linear model with the random effect of site.

Model parameters Fixed effect Random effect

Species Isotope Comparison Intercept

value

Intercept std.

error

Slope

value

Slope std.

error

Intercept

variance

Intercept std.

dev.

Residual

variance

residual std.

dev.

European

catfish

offset

δ13C

Blood- body

mass

0.1676 0.3225 0.0425 0.0215 0.2431 0.4931 0.7081 0.8415

Fin- body mass 0.7873 0.3025 0.0466 0.0221 0.1832 0.4280 0.7547 0.8687

offset

δ15N

Blood- body

mass

0.8052 0.1969 -0.0137 0.0102 0.1162 0.3409 0.1572 0.3965

Fin- body mass 0.6164 0.1640 -0.0022 0.0125 0.0492 0.2218 0.2421 0.4920

Northern

pike

offset

δ13C

Blood- body

mass

-0.0351 0.0954 -0.0002 0.0127 0.0223 0.1494 0.0752 0.2743

Fin- body mass 0.6724 0.1846 0.0004 0.0200 0.1016 0.3188 0.1842 0.4292

offset

δ15N

Blood- body

mass

0.2556 0.0945 -0.0129 0.0133 0.0202 0.1421 0.0837 0.2893

Fin- body mass 0.3494 0.1353 -0.0029 0.0158 0.0516 0.2271 0.1154 0.3398

https://doi.org/10.1371/journal.pone.0297070.t005

PLOS ONE Non-lethal isotope analysis in freshwater predatory fish: Blood and fin tissues as alternatives

PLOS ONE | https://doi.org/10.1371/journal.pone.0297070 January 18, 2024 13 / 18

https://doi.org/10.1371/journal.pone.0297070.t005
https://doi.org/10.1371/journal.pone.0297070


to muscle and from fin to muscle were all significant. Their coefficients of determination were

notably high: R2 for δ13C exceeded 0.77 and 0.46 for blood and fin, respectively, and for δ15N it

exceeded 0.87 and 0.74 for blood and fin, respectively. The isotopic relationships between tis-

sues in individual populations of European catfish and Northern pike exhibited better results

on average than those observed in other fish species [17, 22, 39, 33, 58]. This could possibly be

attributed to our study’s focus on adult individuals of two large fish species, as isotopic turn-

over rates generally decrease with body mass [30]. Thus, the δ13C and δ15N values between tis-

sues may have been in better agreement in these larger adult fish. As such, the isotopic offsets

between blood and muscle, as well as fin and muscle, can be used to formulate a tissue conver-

sion model, allowing collected blood and fin tissue values to be converted to equivalent muscle

tissue values for integration into food web analyses. However, establishing a species- or popu-

lation-specific conversion model might require a muscle biopsy from a small number of fish,

as the models for both species and both tissues varied to some extent among the study sites. A

number of prior studies focusing on inter-tissue isotopic differences in other fish species also

suggest that fractionation between tissues could differ among populations of the same species,

potentially necessitating population-specific conversion equations [22, 39, 61, 62]. We did not

observe any evident trend in the effect of body mass on the isotopic differences between tissues

for either European catfish or Northern pike at any study sites. This lack of trend might indi-

cate that inter-tissue isotope fractionations remain relatively consistent during the adult life-

history stage. Regarding lipid content (approximated by C:N ratio), both species exhibited a

clear pattern. The C:N ratio was consistently lowest in muscle, intermediate in fin, and highest

in blood across all cases. Although significant differences in C:N ratio were evident in muscle

and fin across study sites, the blood consistently displayed an unexpectedly stable C:N ratio,

with no noticeable variation among study sites.

In conclusion, both δ13C and δ15N values for blood and fin serve as highly accurate predic-

tors of respective isotope values for muscle tissue in adult apex predators like European catfish

and Northern pike. Generally, blood proves to be a more suitable tissue than fin as it corre-

sponds more closely to muscle tissue. Although blood sampling is time-consuming and

requires technical proficiency, with practice, it is feasible to routinely draw blood from larger

fish using minimally invasive methods [54]. However, the routine collection of fin clips stands

out as a simpler and more commonly employed approach [17, 53, 55]. The variations in offsets

among populations were notably different, not only for the studied European catfish and

Northern pike but also for other species examined previously [22, 61, 62]. These differences

likely stem from site-specific environmental conditions, population-related physiological fac-

tors, and mainly due to the varying diet composition. Thus, it is advisable to determine isoto-

pic offsets between tissues from a small sample e.g. 10 individuals within each population of

interest, in order to ascertain the necessary conversion correction.

Finally, our optimal guide for SIA, not only for valuable fish but ideally for any other species,

suggests avoiding the need to kill individuals. Instead, if their size allows, it is preferable to con-

duct a muscle tissue biopsy in a necessary subsample of approximately 10 individuals from each

studied locality. Concurrently, for these and all other individuals, opt for less harmful tissue

sampling methods, such as blood or fin. Based on the 10 individuals, perform a regression anal-

ysis between muscle tissue and the less harmful tissues. Subsequently, these conversion-cor-

rected data could be used. This process eliminates the need to harm or kill more individuals.
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12. Vejřı́k L, Vejřı́ková I, Blabolil P, Eloranta AP, Kočvara L, Peterka J, et al. European catfish (Silurus gla-

nis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci Rep. 2017; 7: 15970.

https://doi.org/10.1038/s41598-017-16169-9 PMID: 29162872
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