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Abstract

With the development of the Internet of Things (IoT), the use of UAV-based data collection

systems has become a very popular research topic. This paper focuses on the energy con-

sumption problem of this system. Genetic algorithms and swarm algorithms are effective

approaches for solving this problem. However, optimizing UAV energy consumption

remains a challenging task due to the inherent characteristics of these algorithms, which

make it difficult to achieve the optimum solution. In this paper, a novel particle swarm optimi-

zation (PSO) algorithm called Double Self-Limiting PSO (DSLPSO) is proposed to minimize

the energy consumption of the unmanned aerial vehicle (UAV). DSLPSO refers to the oper-

ational principle of PSO and incorporates two new mechanisms. The first mechanism is to

restrict the particle movement, improving the local search capability of the algorithm. The

second mechanism dynamically adjusts the search range, which improves the algorithm’s

global search capability. DSLPSO employs a variable population strategy that treats the

entire population as a single mission plan for the UAV and dynamically adjusts the number

of stopping points. In addition, the proposed algorithm was also simulated using public and

random datasets. The effectiveness of the proposed DSLPSO and the two new mecha-

nisms has been verified through experiments. The DSLPSO algorithm can effectively

improve the lifetime of the UAV, and the two newly proposed mechanisms have potential for

optimization work.

1 Introduction

With the rapid development of the Internet of Things (IoT), more and more devices are con-

nected to the Internet [1]. Among them, UAVs, as a link in the IoTs, have a broad application

prospect [2–4]. With the arrival of the Industry 4.0 era, sensing technology and UAV driving

technology have been developed rapidly, which makes UAVs more widely used in agriculture,

forestry, and other fields [5–7].

However, an important question is faced after the large-scale deployment of IoT devices:

how to efficiently collect the data generated by these devices [8]? Since many IoT devices are

distributed in long-distance or inaccessible areas and have limited energy supply, traditional
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data collection methods can no longer meet the demand. Therefore, we need to develop novel

data collection methods to solve this challenging task [9, 10].

Some novel data collection schemes have already emerged. For example, the use of mobile

base stations or satellite networks for data collection, the use of technologies such as low-

power Bluetooth to achieve miniaturized transmission in a localized range, and the improve-

ment of the accuracy and stability of UAV flights by carrying artificial intelligence algorithms

and autonomous navigation systems [11, 12]. These programs provide new solution directions

for solving data collection problems.

In recent years, the use of UAVs to accomplish data collection tasks has become a popular

topic. First, due to UAV mobility and flexibility, UAVs can move freely in a variety of environ-

ments and can quickly reach the target location for data collection. Second, in terms of estab-

lishing a line-of-sight link with the target device, UAVs ensure a stable communication

connection for efficient data transmission. In addition, UAVs can provide emergency services

for IoT devices during temporary or unexpected events, such as emergency rescue and moni-

toring [13].

In sensor networks, energy consumption is one of the most important factors affecting the

lifetime of the device [14]. Many IoT devices have limited energy and are rarely recharged.

Therefore, reducing energy consumption is crucial to extending the device’s lifetime.

Among these studies mentioned above, this paper, on the other hand, focuses on how to

improve mission planning during UAV data collection and use optimization algorithms to

arrange the stopping points of the UAVs to reduce the total energy consumption of the UAVs

as well as the IoT devices.

Based on the application background and with reference to the PSO optimization algo-

rithm, this paper proposes an improved swarm intelligence algorithm. The algorithm is able to

achieve a better balance between global and local search. Since we believe that its individual

motion process has a certain degree of similarity with the particle swarm, we refer to it as an

improved PSO algorithm, and the contributions of this paper are as follows:

1. Noting that the current problem is a position-finding problem, the PSO is used as the basis

for the optimization, and the PSO’s movement method is applied to the optimization algo-

rithm (the background of the PSO originates from the observation of bird foraging behav-

iors, which is in line with the characteristics of the current problem in terms of the

position-finding).

2. Since the number of UAV stopping points is not fixed, a variable population strategy is

designed for the PSO optimization algorithm.

3. We notice that the local search capability of the simple PSO is inadequate, from therefore

we propose a Self-Limiting Radius (SLR) mechanism in this paper to compensate for the

lack of local search capability of the algorithm.

4. In addition, the global search capability of PSO is also inadequate compared to other cur-

rent algorithms, so we propose a Multiple Simulated Annealing (MSA) strategy to enhance

the global search capability. And we conduct experiments to test the performance of MSA.

5. The DSLPSO algorithm is finally realized, which achieves a better-balanced effect in global

and local search.

The workflow diagram of DSLPSO is shown in Fig 1.

The rest of the paper is organized as follows. Section 2 describes progress on current

research issues over the past two years. Section 3 is about materials and methods. Section 3.1

describes the energy consumption formulation of the UAV-based IoT data collection system.
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Section 3.2 describes the framework and implementation of DSLPSO. Section 4 gives experi-

mental results and discussion. Section 5 concludes with final remarks and further work.

2 Related studies

Despite the great advantages of UAVs in assisting data collection for the IoT network, how

to improve their efficiency remains a key issue to be addressed. In recent years, scholars

have turned their attention to UAV deployment optimization and flight trajectory planning

Fig 1. The workflow diagram of DSLPSO.

https://doi.org/10.1371/journal.pone.0297066.g001
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[15]. Recently, reference [16] gave a more comprehensive review of UAV-based sensing

networks.

Reference [17] introduces the DEVIPS (differential evolutionary algorithm for variable

population sizes) algorithm. DEVIPS optimizes the deployment of UAVs by considering the

number and location of UAV stopping points in an IoT data collection system. The method

demonstrates the potential of evolutionary algorithms to solve variable-length optimization

problems, and the paper defines a standard UAV-based data collection system, so it has been

studied by many scholars.

In the last two years many scholars joined the research in this direction, reference [18] pro-

posed a new population-based optimization algorithm BSADP(backtracking search algorithm

with dynamic population). This algorithm solves the energy consumption problem of the

UAV-based IoT data collection system by determining the optimal number and location of

UAVs’ stopping points. The BSADP provides a simple framework combining an improved

backtracking search algorithm and a population based on the inverse learning adjustment

mechanism. Reference [19] proposed an enhanced energy-efficient data collection optimiza-

tion algorithm for UAV clusters in IoT. The algorithm focuses on reducing the total energy

consumption while optimizing the number and location of UAVs. By considering the relation-

ship between energy harvesting and energy consumption, the data collection efficiency is sig-

nificantly improved. Reference [20] proposed a UAV-based IoT data collection mechanism

for low-latency data delivery in sparse deployment scenarios. The mechanism aims to over-

come the data transmission bottleneck from the edge region of the ground sensor network to

the base station. By utilizing a cooperative relay system, the approach improves the age of

information performance in UAV-based IoT data collection.

In addition, reference [21] proposed a memetic algorithm based on isomorphic transcoding

space to optimize the deployment of UAVs, especially to solve the problem of UAV distribu-

tion in energy-efficient artificial intelligence of things data collection. Reference [22] addresses

the use of height information of UAVs for multi-source localization in the efficiency problem,

a sound source localization model compatible with PSO is proposed. Reference [23] considers

UAV-enabled wireless powered communication networks scenarios where UAVs need to

cover ground-based wireless devices, a non-dominated sequential genetic algorithm with

improved K-means initialization and variable dimensionality mechanism is proposed to solve

the power and trajectory optimization problem for UAVs. Reference [24] proposed an adap-

tive trajectory optimization algorithm to minimize the energy consumed by mobile edge com-

puting and minimize the process urgency indicator. Reference [25] employs a variable length

trajectory planning algorithm, which includes a genetic algorithm to update the stopping point

deployment and deal with the problem of associating UAVs with stopping points and user

devices. Reference [26] proposed a joint deployment and trajectory optimization framework

for UAV applications in IoT systems. UAV deployment optimization is performed by intro-

ducing an adaptive whale optimization algorithm and UAV flight trajectory optimization by

introducing elastic ring self-organizing mapping. Reference [27] proposed a multi-objective

trajectory optimization algorithm based on cutting and padding coding strategy to minimize

the energy consumption and task urgency of a single UAV-based mobile edge computing sys-

tem, which provides computing services for ground-based IoT devices using UAVs, and the

algorithm performs well in the validation experiments. Advanced metering infrastructure for

smart meter data collection via UAVs is investigated in reference [28], the total cost of electric-

ity is minimized by jointly optimizing the number of UAVs, power supply size, charging loca-

tion, and data collection trajectory planning. Reference [29] proposed a method to jointly

optimize UAV flight trajectories and passive phase shifts of intelligent reflecting surfaces to

save energy consumption and task completion time for multiple UAVs.
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The above mainly summarizes the research in the direction of UAV-based data collection

in the past two years, many of which refer to the theoretical research in the reference [17], and

methods such as swarm intelligence and neural networks are current research hotspots in this

direction. In addition to planning the trajectory of the UAV to reduce energy consumption,

there are also studies on the latency of the sensing network [30], sensor lifetime [31], and sens-

ing protocols [32] to ensure secure data transmission.

In the current research on UAV-based data collection systems, genetic algorithms or

swarm intelligence algorithms are used, but we found that genetic algorithms (e.g., genetic

algorithm, differential evaluation algorithm) do not take into account that the problem is a

position-finding problem, so these algorithms are ineffective in terms of local optimization,

and algorithms based on swarm intelligence (e.g., dandelion algorithm, PSO) do not have a

strong global search capability for the current problem, and to solve the problem we have

proposed the DSLPSO algorithm, which strengthens the algorithm’s ability of local

searching.

3 Materials and methods

3.1 Problem formulation

As shown in Fig 2, a UAV-based IoT data collection system. In this system, the UAV flies at a

fixed altitude in order to collect data from the area at each stopping point. By flying between

each stopping point, data collection for the whole area is eventually realized. In our study, we

will focus on the energy consumption of data transmission and UAV hovering in the system

(after the stopping points are found, the problem will be transformed into a typical traveling

salesman problem for a single UAV data collection system, and thus the flight energy con-

sumption can be further solved using the traveling salesman problem solution method, as in

the reference [15]).

The design and optimization of UAV-based data collection systems are of great significance

in many fields such as environmental monitoring and agricultural observation. Energy con-

sumption can be reduced and the efficiency of data collection can be improved through ratio-

nal planning of UAV routes and flight strategies.

In this study, we will evaluate the energy consumption of the system by comprehensively

considering the UAV’s hovering energy consumption and transmission energy consumption

during data collection.

Since the UAV is free in 3D space and are not affected by ground structures, it is free to

choose stopping points within the mission area of data collection. Considering the mission

area as a 3D space and assuming that there are m IoT devices in the space. The location of the

ith(i 2 [1, m]) IoT device is (xi, yi, 0). Assume that the UAV flies at a constant altitude of H and

the number of stopping points of the UAV is n, then the location of the jth(j 2 [1, n]) UAV

stopping point is (Xj, Yj, H). The distance between the stopping point and the IoT device can

be expressed as [24]:

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXj � xiÞ
2
þ ðYj � yiÞ

2
þ ðH � 0Þ

2
q

ð1Þ

A binary variable Cij is used to indicate the correspondence between a UAV and an IoT

device, where Cij = 1 indicates that a data connection is established between the ith IoT device

and the jth UAV stopping point, and Cij = 0 indicates that no data connection is established. A

UAV can only support data transmission of M IoT devices at the same time.
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Then Cij needs to satisfy the following constraints [24]:

C1 : Cij 2 f0; 1g ð2Þ

C2 :
Xn

j¼1

Cij ¼ 1 ð3Þ

C3 :
X

Cij ¼ m ð4Þ

C4 :
Xm

i¼1

Cij � M ð5Þ

Fig 2. Data collection system with a single UAV.

https://doi.org/10.1371/journal.pone.0297066.g002
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The energy consumption between the ith IoT device and the jth UAV stopping point dur-

ing data transmission is [17]:

Gij ¼ G0d� 2
ij ð6Þ

where G0 denotes the channel gain at a distance of 1 meter. Thus the data rate can be expressed

as [17]:

Rij ¼ B log
2
ð1þ

PiGij

d
2
Þ ð7Þ

where Pi is the transmit power between the ith IoT device and the jth UAV stopping point, B is

the system bandwidth, and δ2 is the white Gaussian noise power.

Let Eij denote the energy consumed to send the data volume Di between the ith IoT device

and the jth UAV stopping point. Then [18]:

Eij ¼
PiDi

Rij
ð8Þ

Then all the energy consumption EIoT generated by data transmission can be expressed as

[18]:

EIoT ¼
Xm

i¼1

Xn

j¼1

CijEij; i 2 ½1;m�; j 2 ½i; n� ð9Þ

Since we assume that the UAV hovers over the stopping point until it completes the data

transmission task at that point, the hovering time Tj of the UAV at the jth stopping point is

[15]:

Tj ¼ max ðCij
Di

Rij
Þ ð10Þ

The total energy consumed by the UAV hovering is [15]:

EUAV ¼
Xn

j¼1

PhTj ð11Þ

where Ph is the hovering power of the UAV.

Based on the above description, the energy consumption of the whole UAV data collection

process can be defined as [15, 17, 18]:

min
fXj ;Yjg;n

EUAV þ �EIoT; j 2 ½1; n� ð12Þ

where � is the weight between the energy consumption of the UAV and the energy consump-

tion of all IoT devices.
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And this optimization needs to satisfy the constraints C1 to C4 as well as C5 to C8 con-

straints [18]:

C5 : Xmin � Xj � Xmax ð13Þ

C6 : Ymin � Yj � Ymax ð14Þ

C7 : Hmin � H � Hmax ð15Þ

C8 : nmin � n � nmax ð16Þ

where Xmin and Xmax denote the upper and lower bounds of Xj, respectively. Ymin and Ymax

denote the upper and lower bounds of Yj, respectively. Hmin and Hmax denote the upper and

lower bounds of H, respectively. nmin and nmax denote the upper and lower bounds of n,

respectively.

3.2 Proposed algorithm

We note that many scholars currently use evolutionary algorithms such as genetic algorithms

and differential evolution algorithms to solve the data collection problem of UAVs, and the

current problem is a problem of position-finding, evolutionary algorithms due to the mecha-

nism of the later fine-tuning of the stopping point is relatively inadequate, such as the algo-

rithm of [17] is very good at searching globally, but the search ability is not strong in the local

range, the algorithm’s solution may not be a locally optimal solution due to the lack of a pro-

cess to fine-tune the optimization result. (We will show this in Section 4.4)

Although swarm intelligence algorithms such as [18] take into account the characteristics

of the problem and can better balance the local convergence of the algorithm at the later stage,

in practice, we find that the sowing radius mechanism of the algorithm in [18] changes too

fast, the global search ability cannot meet the requirements of the problem, and it is easy to fall

into the local optimum, and it is difficult to jump out of such a dilemma, so we hope to propose

a new mechanism, SLR, to replace the sowing radius.

PSO algorithm originates from the observation of bird foraging behavior, which is essen-

tially a position-finding method, and its application background is similar to the UAV stop-

ping point position-finding, meanwhile, the PSO has fewer parameters and is simple to

implement, so it is easy to be extended and modified, so we consider the PSO as the basic algo-

rithm, and the SLR to improve the algorithm’s local search capability, and after several experi-

ments, we determined that the current problem has high requirements for the global search

ability of the optimization algorithm, and based on several experiments, we proposed the MSA

to improve the global search ability of the algorithm, and in the end, we proposed a new vari-

able population mechanism to meet the solution conditions of UAV data collection problem.

3.2.1 Variable population strategy. Since the DEVIPS study used the variable population

strategy, the variable population approach has received some attention in the UAV data collec-

tion problem, and the key idea is to turn “each individual corresponds to a solution of the

problem” into “the whole population corresponds to a solution of the problem.

In the current research problem, since the number of stopping points of UAVs is uncertain,

assuming that in the current UAV mission planning problem, the data collection range is

1000 × 1000 (Xmax = Ymax = 1000), the number of IoT devices is 100, and the number of simul-

taneous communication supported by UAVs is 5, the number of stopping points usually fluc-

tuates between 20 and 30 after solving the problem with the optimization algorithm, so it is

difficult to determine the coding method of the individuals.
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As shown in Fig 3, there are three common coding strategies.

The first one is the fixed-length coding method, under which an individual represents a

solution to a problem, but the fixed-length coding method faces the following problems: The

coding length of an individual will be taken as “the dimension of the problem × the maximum

number of stopping points”, i.e. 3 × 100 for the standard problem mentioned above, which

makes the coding of an individual particularly long and increases the computational complex-

ity. Furthermore, the probability of generating better subindividuals when using the popula-

tion updating algorithm will be reduced due to the long coding length.

Fig 3. Three coding strategies commonly used in UAV data collection mission planning.

https://doi.org/10.1371/journal.pone.0297066.g003
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The second is the variable-length coding strategy, in which the coding length is not fixed, and

each individual may have a different coding length, which ensures that the algorithm can search

for a different number of stopping points, but at the same time, due to the different coding

lengths of each individual, it is difficult to achieve evolutionary iteration between individuals.

The third is the coding strategy of variable population, that is, one of the current hot

research algorithms, references [15, 17, 18], and many other papers have adopted this method.

In this coding strategy, each individual represents the coordinates of a stopping point, while

the whole population represents one deployment.

In this paper, the third coding strategy is adopted because it does not require the design of

special crossover and mutation operators and does not cause the search chaos problem, and

each individual contains only three dimensions, so the evolutionary iteration between individ-

uals can be simply realized.

3.2.2 Basic framework of DSLPSO. Algorithm 1 demonstrates the basic flow of DSLPSO,

as can be seen from that, the DSLPSO algorithm can be divided into two phases, the initialize

phase and the iterative phase: the first phase is to initialize the population using the random

initialization method (When using the random initialization method to generate the initial

population, if the generated population does not satisfy the constraints, it is randomized again

until the constraints are satisfied), and then enter into an iterative phase, in which the SLR is

updated according to the current number of iterations, and then computed using two opera-

tors, remove and replace.

Algorithm 1 The proposed DSLPSO
Input: The positions of IoT devices
Output: The positions of UAV stopping points
1: Generate an initial population using random initialization methods
2: for fe < feMax do
3: Calculate the SLR.
4: Calculate the fitness of the population, updating populations

using the remove operator
5: 7Calculate the fitness of the population, updating populations

using the replace operator
6: end for
7: Convert the population to UAV stopping point positions

Where fe denotes the number of runs of the fitness evaluation function and feMax is the

maximum number of runs of the fitness evaluation function, and the fitness of the population is

the total energy consumption of the UAV data collection process. In the framework of this algo-

rithm, we refer to DEVIPS using the fe as the termination flag of the algorithm, to verify

whether this metric can reflect the actual computational complexity (see Section 4.2 Table 4) of

the algorithm, we tested the algorithm’s time consumption in the various processes in the exper-

iment section, and found that the algorithm spends about 90% of the time in the population fit-

ness evaluation, so it is reasonable to adopt fe as the variable for the termination condition.

In the fitness evaluation function, the computational effort is mainly in calculating the dis-

tance between the stopping point and the IoT devices, and since the number of stopping points

is positively correlated with the number of devices, the complexity of calculating the distance

is O(m2), and the time complexity of the algorithms proposed in this paper is in line with simi-

lar algorithms based on the use of fe as the variable for the termination condition, which is O
(m2 × feMax).

3.3 SLR mechanism and MSA strategy

Since the simple motion of the standard PSO, the local optimization effect is inadequate, in

order to solve this problem, we propose the mechanism of SLR. The basic principle of SLR is:
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when generating sub-populations in each iteration, the subindividuals are always generated in

a circle with a certain radius, the self-limiting radius, and centered on the previous generation.

In this paper, we use vslr to denote the value of the self-limiting radius and SLR to denote the

self-limiting mechanism.

We believe that the use of SLR can increase the motion effectiveness of PSO, and can effec-

tively limit the problem of over-speed of the individuals of PSO when they move. Meanwhile,

in order to ensure that the motion nature of PSO is not affected, some modifications are also

made to the definition of particle velocity. In DSLPSO, the particle’s velocity is defined as fol-

lows: the initial velocity of the individual is set to 0, if the next generation of the individual’s fit-

ness is better than the current individual, then the velocity of the next generation is set to the

distance between the position of the next generation and the current individual’s position, and

if the next generation of the individual’s fitness is not as good as the current individual, then

the velocity of the next generation individual is set to 0.

On this basis, we define the movement mode of the particle: if the velocity of the current

individual is not 0, it moves vslr meters in the direction of the velocity, and if the velocity of

the current individual is 0, it moves randomly in a circle of radius vslr centered on the current

individual’s position. In addition, the updating of the vslr is also an important issue, and to

solve this problem, we refer to the simulated annealing method and improve it by proposing

the MSA, MSA uses a multiple simulated annealing algorithm for vslr updating. In the pro-

posed MSA mechanism, vslr is updated as follows:

Let the number of simulated annealing be qtime and the total number of iterations be

feMax, then an annealing has a total of cUnit = feMax/qtime generations, let the maximum vslr
be Rmax (this value is usually equal to Xmax), and the current generation is fe, then the vslr can

be calculated by the following equation:

vslr ¼
Rmax

2b
fe

cUnitc
�
ð feMax � feÞ%cUnit

cUnit
ð17Þ

where bAc denotes rounding down to A and % denotes the remainder operation. The equation

is divided into two parts by the multiplication sign, the first half is used to compute the maxi-

mum vslr of the current simulated annealing process, and the second half is used to compute

the progress of the current iteration in the current simulated annealing process.

The algorithm operates in practice with the variation of vslr versus qtime as shown in Fig 4.

Under the control of SLR mechanism and MSA strategy, the range of the individual’s move-

ment is limited by vslr and at the same time, vslr is limited by MSA, i.e., there are two mecha-

nisms for limiting the movement of an individual, so we call this PSO algorithm the double

self-limiting PSO algorithm.

3.3.1 The replace and remove operators. Inspired by [17], we propose a novel variable

population strategy.

Usually, the operator of the variable population contains three operators, the insert opera-

tor, the remove operator, and the replace operator, but we consider the characteristics of PSO

and use two operators, the remove operator and the replace operator, so that the operators are

more in line with the form of PSO.

The remove operator is used to reduce the number of UAV stopping points to an optimal

number, we found during our experiments that the remove operator usually only plays a role

in the early stage, and does not participate in the optimization in the later stage, for this rea-

son we designed a self-adaptive remove operator, see Algorithm 2 for the algorithm

description.

Algorithm 2 Remove operator
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Input: The population of DSLPSO (representing all UAV stopping points)
Output: Population of DSLPSO after deletion of some individuals
1: rr = 0;
2: rc = 1;
3: if rc > 0 then
4: rf = 0;
5: for i= 1 to N do
6: Remove the ith individual from the population, noting that the
current population is Xr
7: Compute the fitness of the Xr population, denoted as fval
8: if fval < Fbest then
9: rf = 1;
10: rr = 0;
11: Replace the current population with Xr
12: end if
13: end for
14: if rf == 0 then
15: rr = rr + 1;
16: rc = rc − rr;
17: else
18: rc = rc + 1;
19: end if
20: else
21: rc = rc + 1;
22: end if

In the remove operator, the population size is assumed to be N, we control the timing of the

remove operator using three variables, rr (to record the number of consecutive failures of the

remove operator), rc (the number of iterations until the next remove operation), and rf
(whether or not this iteration produces an optimization), in this way, in the early stages of the

algorithm, the remove operator will normally reduce the number of stopping points, while in

the later stages, the remove operator will significantly reduce the number of runs and the

amount of computation.

The replace operator is the core of the DSLPSO, In this section, we will implement the way

the particles move under the SLR mechanism, whose pseudo-code descriptions are given in

Algorithm 3.

Algorithm 3 Replace operator
Input: The population of DSLPSO (representing all UAV stopping points)
Output: Population of DSLPSO after individual movement
1: for i = 1 to N do
2: ind = P{i}
3: if ind.v 6¼ 0 then
4: indn = ind + rand(1, 3) ×SLR;
5: else
6: indn = ind + ind.v;
7: end if
8: fval = Fitness(P)
9: if fval < Fbest then
10: v1 = indn—ind;
11: v2 = sqrt(sum(v1 × v1) / sqrt(sum(SLR × SLR)));
12: indn.v = v2;
13: else
14: indn.v = 0;
15: end if
16: P{i} = indn;
17: end for
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Where the population size is assumed to be N, rand(1,3) denotes three random numbers

from 0 to 1, forming a vector, Fitness is the fitness evaluation function, “×” means that the ele-

ments of the corresponding dimension are multiplied to form a new vector.

In order to facilitate the understanding, this paper uses ind.v to denote the current velocity

of the ind particle (For the actual implementation, we put the velocity after the individual cod-

ing, i.e., the actual coding of each individual has five dimensions).

The replace operator contains two parts: individual iteration and velocity update. In the

individual iteration part, each individual moves according to the current velocity: if the veloc-

ity is not 0, it moves according to the velocity, and if no optimization has been generated in the

previous generation and the velocity is 0, the individual moves randomly within the vslr.

In the velocity update part, the population fitness after the iteration change is first calcu-

lated. If no optimization is produced, the velocity of the current individual is set to 0, and this

individual is allowed to move randomly in the next iteration. If an optimization is produced,

the direction vector of the velocity is calculated, so that the modulus of this vector is equal to

vslr and set to the velocity of the individual.

4 Results and discussion

In this section, we design four experiments to answer the following four questions:

Fig 4. vslr during iteration.

https://doi.org/10.1371/journal.pone.0297066.g004
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1. Does SLR and MSA proposed in this paper improve the optimization of the algorithm?

2. Does DSLPSO have an advantage over other algorithms in the current UAV mission plan-

ning problem?

3. Does DSLPSO still work well for the current mission planning problem with different data

collection ranges and number of IoT devices, and is the DSLPSO algorithm generalizable

enough?

4. In the first three experiments, we set qtime (the number of annealing) of the DSLPSO to 2

by default, the SLR is affected by the change of qtime and the number of iterations, so how

should we choose qtime? How does the MSA play a role in optimization?

4.1 Experimental environment

The parameters of the experiment are shown in Table 1, which are basically the same as

[17, 18].

All experiments were run on MATLAB (2021b), Windows 10 operating system (64-bit),

16G of operating memory.

4.2 Impact of MSA and SLR

In order to verify whether our proposed SLR and MSA are effective, in this experiment, we

used three different PSO-based algorithms, see Table 2, which are all PSOs that we have

Table 1. Experimental environment.

Parameter Symbolic Value

Number of IoT m [100, 700]

Maximum value of X-axis Xmax [1000, 3000]m

Maximum value of Y-axis Ymax [1000, 3000]m

Flight altitude of UAVs H 200m

Height of IoT devices - 0

Amount of data Di [1, 1000]MB

Number of simultaneous transmissions supported by UAV M 5

Number of evaluation function calls feMax [1, 6] × 105

Transmission power Pi 0.1W

Channel gain at 1m G0 -30dB

White Gaussian noise power δ2 -250dBm

Bandwidths B 1MHz

Number of annealing times qtime [2, 6]

Hover power of UAV Ph 1000W

https://doi.org/10.1371/journal.pone.0297066.t001

Table 2. Three PSO algorithm proposed.

Algorithm Full Name Comment

DSLPSO Double Self-Limiting

PSO

The main algorithm studied in this paper.

SAPSO Self-Adaptive PSO The difference from DSLPSO is that the SLR uses a traditional adaptive strategy

(i.e., linearly decreasing with the number of iterations).

VPPSO Variable Population

PSO

A PSO Algorithm with variable population.

https://doi.org/10.1371/journal.pone.0297066.t002
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improved according to the variable population strategy, among which SAPSO (self-adaptive

PSO) can be regarded as the one-time simulated annealing DSLPSO, the VPPSO is a PSO algo-

rithm with a variable population strategy. In brief, SAPSO uses SLR mechanism on the basis of

VPPSO, and DSLPSO uses MSA strategy on the basis of SAPSO.

With this experiment, we hope to answer the following two questions:

1. Has the introduction of the SLR mechanism in optimization improved the effectiveness of

the algorithm? (By comparing the performance of SAPSO and VPPSO)

2. How does the MSA strategy affect the optimization process? (By comparing the perfor-

mance of DSLPSO and SAPSO)

We let each algorithm be executed repeatedly for 100 times, and then the average of each

generation is counted to plot the figure. The results of the three algorithms are shown in Fig 5.

It can be seen that the DSLPSO algorithm performs the best, followed by SAPSO, and in the

final result, DSLPSO wins by a narrow margin, and the VPPSO algorithm performs relatively

general, but if we look at the overall energy consumption, the three algorithms end up with

results differing by around 1%, and we believe that all three algorithms are efficient algorithms.

A detailed numerical comparison of the three algorithms is shown in Table 3:

Fig 5. Results of 100 runs of the three PSO-based algorithms.

https://doi.org/10.1371/journal.pone.0297066.g005
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Through the iteration figure and statistical results, we believe that: the VPPSO can converge

faster when the number of iterations is small, but it can not converge further in the later stage

because there is no restriction and the particles wander randomly. The SAPSO algorithm,

which is a one-weighted self-limiting algorithm, has a smoother convergence process and the

overall iteration is better than VPPSO. The DSLPSO algorithm the algorithm has a good con-

vergence effect in the early stage. It converges further in the later stage, which guarantees the

overall convergence effect and is the best-performing one.

Finally, to verify the reasonableness of using the number of evaluation function calls fe as

an iterative metric, we counted the call time share of different functions in MATLAB, as

shown in Table 4, where Fitness is the fitness evaluation function, pdist2 is a function that cal-

culates and ranks the distance between the IoT devices and the UAV. The result demonstrates

the main function as well as the two functions with the highest run time share of DSLPSO for a

particular run, which was a total of 119.035 seconds for this experiment.

The percentage of computation of the fitness evaluation function to the overall amount of

computation is 92.12%, and the computation of the process of finding the correspondence

between the IoT device and the stopping point accounts for about half of the computation in

the fitness evaluation function. From this perspective, it is reasonable to use the number of

calls to the fitness evaluation function as an iteration metric.

4.3 Comparison of DSLPSO with other algorithms on energy consumption

In this phase, we compare the DSLPSO algorithm with a wide range of other algorithms in this

research area, which is used to verify the performance of the algorithm proposed in this paper.

The comparison algorithms include five algorithms, DEEM [33], JADE [34], SSA [35], IDA

[15], DEVIPS [17], and BSADP [18].

The running results of JADE, DEEM, and DEVIPS algorithms are obtained from reference

[17], the running results of SSA are obtained from reference [35], and the running results of

BSADP are obtained from reference [18], and the comparisons are summarized in Table 5,

where the results of the DSLPSO algorithm proposed in this paper are the averages of 100

runs.

The experimental results show that: The average energy consumption obtained by the

DSLPSO algorithm is better than the other five algorithms on each test case. The advantage of

DSLPSO algorithm over the other algorithms increases as the size of the data collection task

increases.

Table 3. Energy consumption comparison of the three proposed PSO algorithms.

VPPSO SAPSO DSLPSO

mean 1.3930E+6 1.3856E+6 1.3854E+6

std 6.0972E+3 6.5423E+3 6.4521E+3

https://doi.org/10.1371/journal.pone.0297066.t003

Table 4. Statistics on the number of function calls and CPU time consumed.

Function main Fitness pdist2

Number of Calls 1 1000416 1000416

Running time (s) 119.035 109.653 59.708

Self-use time (s) 7.688 49.945 46.316

Percentage of time spent on own account 6.46% 41.96% 38.91%

Caller - main Fitness

https://doi.org/10.1371/journal.pone.0297066.t004
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In our experiments, we further investigated the DEVIPS and IDA algorithms, in which the

DEVIPS algorithm solves the results with a high probability of not being locally optimal (We

will show in Section 4.4), and the IDA algorithm adopts the seeding radius strategy to limit the

movement range of the individuals, but the updating mechanism which is superior to that of

the seeding radius is exponential, and therefore the radius will decrease very fast during the

optimization process, which results in the IDA algorithm not having a good ability to perform

global searches.

In addition, we also recognize that the difference in the overall optimization results between

DEVIPS, BSADP, SSA, IDA, and DSLPSO algorithms is not very large, and all of them can be

regarded as effective algorithms in practical applications. Therefore, we are curious whether

the optimization algorithms have reached a relatively optimal result for the current problem,

and we have counted the results of the DSLPSO algorithm. The optimal result for 100 runs is

shown in Table 6.

It can be seen that the overall average is not much different from the optimal optimization

gap, therefore, we believe that DEVIPS, BSADP, SSA, and the DSLPSO algorithm are all effec-

tive algorithms for the UAV mission planning, and the DSLPSO has the best performance.

Finally, we give the trajectory example of the UAV corresponding to one solution for

m = 100 as shown in Fig 6 (We used LKH algorithm [36] to solved this trajectory).

4.4 Impact of region size changes and number of IoT devices changes

In this phase, we focus on the impact of the size of data collection task on results, using the

DEVIPS algorithm as a comparison algorithm, we test the performance of the two algorithms

in data collection tasks with different numbers of IoTs and different mission ranges, where

range denotes the range size of the data collection task: range = Xmax = Ymax, the experimental

results are shown in Table 7, in which each algorithm is executed independently 100 times for

each test case.

Table 5. DSLPSO algorithm and other algorithms of the same type comparison of energy consumption.

m JADE DEEM SSA DEVIPS BSADP IDA DSLPSO

100 1.4837E+06 1.3507E+06 1.2508E+06 1.2525E+06 1.2492E+06 1.2695E+06 1.2420E+06

200 2.9912E+06 2.7035E+06 2.5101E+06 2.5045E+06 2.5003E+06 2.5350E+06 2.4764E+06

300 4.3166E+06 3.8755E+06 3.5982E+06 3.5809E+06 3.5788E+06 3.6150E+06 3.5321E+06

400 6.0787E+06 5.3782E+06 5.0008E+06 5.0016E+06 4.9937E+06 5.0422E+06 4.9149E+06

500 7.4686E+06 6.5991E+06 6.1136E+06 6.1248E+06 6.1143E+06 6.1802E+06 6.0218E+06

600 9.2240E+06 8.0769E+06 7.5436E+06 7.5628E+06 7.5408E+06 7.6325E+06 7.4234E+06

700 1.0434E+07 9.1732E+06 8.5631E+06 8.5702E+06 8.5525E+06 8.6610E+06 8.3973E+06

https://doi.org/10.1371/journal.pone.0297066.t005

Table 6. Average and minimum values of the DSLPSO algorithm over 100 runs.

m Mean Min

100 1.2420E+6 1.2292E+6

200 2.4764E+6 2.4555E+6

300 3.5321E+6 3.5032E+6

400 4.9149E+6 4.8880E+6

500 6.0218E+6 5.9834E+6

600 7.4234E+6 7.3868E+6

700 8.3973E+6 8.3646E+6

https://doi.org/10.1371/journal.pone.0297066.t006
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The result shows that DSLPSO has lower average energy consumption in every test case of

the experiment, with only a few cases performing slightly worse in terms of stability (i.e., stan-

dard deviation comparisons), so DSLPSO has greater generality and can be applied to tasks in

different scenarios.

In order to verify the point that evolutionary algorithms such as DEVIPS, “the search ability

is not strong in the local range” as we mentioned above (Section 3.2), we designed a “rate”

indicator, which is a statistical value to measure whether the algorithms are optimized to a

local optimum or not, and its implementation is as follows: traverse each UAV stopping point

in the result of algorithm solving, move this point in four directions, up, down, left, right and

10 meters in each direction, and evaluate its adaptability, count the number of times that is

generated due to these four kinds of movement, and “rate” is the average number of times,

which can be seen that “rate” should be in the range of 0 to 4, and the smaller the value means

that the algorithm is more effective in the local. From the results of “rate”, it can be seen that

the DEVIPS algorithm is not as effective as the DSLPSO algorithm in local, and in many cases,

its solution is not the local optimal solution, which is mainly due to the fact that the evolution-

ary algorithm is not very sensitive to the positional information when solving the current prob-

lem, but at the same time, its global search ability is still very good, and has better solution

capability for problems of different sizes.

Looking at the relationship between energy consumption and range reveals that the variable

range does not have as much influence on the experiment as we initially expected, and in the

Fig 6. UAV trajectory example for m = 100.

https://doi.org/10.1371/journal.pone.0297066.g006
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experiment, the variable range does not show a significant impact on the experimental results:

e.g., for m = 100, the energy consumption of the DSLPSO algorithm for the solution at

range = 1000, 2000 and 3000 are 1.2737E+6, 1.2933E+6 and 1.2580E+6 respectively, and the

variation of the results of the DEVIPS is consistent with it, which implies that the distribution

of IoT devices has a greater impact on the results under the current conditions. We believe

that such results are reasonable due to the following two main reasons: The UAV flies at an

altitude of 200, and the range of the task is not particularly large. In addition, we also counted

the percentage of transmission energy consumption and hovering energy consumption, and

we found that in most cases transmission energy consumption accounted for less than 5% of

the overall energy consumption and that the total energy consumption in most cases consisted

of the hovering energy consumption of the UAVs.

4.5 Impact of the number of MSA executions

The experiments in this section focus on the relationship between qtime and the results in our

proposed MSA strategy.

Table 7. Optimization results of DEVIPS and DESLPSO in different experimental environments.

m range Algorithm Mean Std Rate

100 1000 DSLPSO 1.2737E+6 5.4226E+3 0.000

100 1000 DEVIPS 1.2811E+6 5.6992E+3 0.955

100 2000 DSLPSO 1.2933E+6 8.2249E+3 0.000

100 2000 DEVIPS 1.3014E+6 8.2024E+3 1.174

100 3000 DSLPSO 1.2580E+6 6.3638E+3 0.000

100 3000 DEVIPS 1.2678E+6 5.9323E+3 1.783

200 1000 DSLPSO 2.3792E+6 1.0461E+4 0.000

200 1000 DEVIPS 2.4083E+6 9.4983E+3 0.681

200 2000 DSLPSO 2.4093E+6 1.0013E+4 0.024

200 2000 DEVIPS 2.4405E+6 1.0109E+4 1.122

200 3000 DSLPSO 2.2351E+6 9.7541E+3 0.044

200 3000 DEVIPS 2.2658E+6 1.0182E+4 1.432

300 1000 DSLPSO 3.7658E+6 1.0660E+4 0.015

300 1000 DEVIPS 3.8217E+6 1.4498E+4 1.029

300 2000 DSLPSO 3.3558E+6 1.0293E+4 0.092

300 2000 DEVIPS 3.4093E+6 1.5076E+4 1.406

300 3000 DSLPSO 3.5174E+6 1.2446E+4 0.106

300 3000 DEVIPS 3.5697E+6 1.4334E+4 1.235

400 1000 DSLPSO 4.8872E+6 1.2951E+4 0.023

400 1000 DEVIPS 4.9696E+6 1.7630E+4 0.800

400 2000 DSLPSO 4.8850E+6 1.1152E+4 0.080

400 2000 DEVIPS 4.9602E+6 1.4983E+4 1.272

400 3000 DSLPSO 4.9657E+6 1.2763E+4 0.239

400 3000 DEVIPS 5.0530E+6 1.7109E+4 1.418

500 1000 DSLPSO 6.3732E+6 1.4062E+4 0.081

500 1000 DEVIPS 6.4860E+6 2.0845E+4 0.949

500 2000 DSLPSO 6.1328E+6 1.4510E+4 0.202

500 2000 DEVIPS 6.2474E+6 1.7261E+4 1.385

500 3000 DSLPSO 6.0265E+6 1.3649E+4 0.436

500 3000 DEVIPS 6.1394E+6 2.2565E+4 1.542

https://doi.org/10.1371/journal.pone.0297066.t007
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In the process of studying the MSA strategy, we found that the number of IoT devices and

the number of iterations (feMax) set for the algorithm have a certain effect on energy con-

sumption, and the specific relationship between the effects is uncertain, to further study the

relationship between the qtime, feMax and the size of the problem, we designed the present

experiment.

We change the size of the problem by changing the number of IoTs, setting the number of

IoTs as 100, 200, . . ., 600 for six sets of experiments, and the number of iterations for each set

of experiments are 100k, 200k, . . .,600k, and qtime is 2,3,4,5 respectively, for a total of 6 × 6 ×
4 = 144 experiments. The DSLPSO algorithm was run 10 times in each experiment. Some data

of the experimental results are shown in Table 8.

Due to the relatively large amount of experimental data, the relationship between the num-

ber of annealing and the results cannot be clarified from the experiments in Table 8, for this

reason we make the following considerations and plot the comparison figure: the most impor-

tant purpose of this experiment is to study the relationship between the number of qtime and

the problem complexity, but at the same time, we believe that the different number of feMax
has a certain impact on the algorithms, so we consider the DSLPSO with different number of

annealing as different algorithms, a total of 4 algorithms, fixing feMax and plot the effect of the

performance of the 4 algorithms with the change of the number of IoTs, but this will face

another problem: the difference in effect is not so significant (compared to the total energy

consumption) when DSLPSO is chosen with different qtime, the order of magnitude of the

energy consumption is large, and the plotted folds will be very close to each other, so we take

DSLPSO algorithms with qtime = 2 as a baseline and the energy consumption results for the

algorithms with qtime = 3, 4, 5 minus the energy consumption of the baseline plotted in Fig 7.

It can be seen from the figure: when the number of IoT devices is small (m = 100) using

qtime = 2 is a better strategy, and as the number of IoTs rises, an increase in qtime helps to

improve the effectiveness of the algorithm. We believe that: as the problem complexity and the

number of iterations increase, an appropriate increase in qtime could help to improve the per-

formance of the algorithm. When feMax> 300, increasing qitme does not change much since

the optimization reaches its limit.

5 Conclusion

In the UAV-based data collection system, the optimization of the problem is highly challeng-

ing because the number and position of the stopping points of the UAV are unknown. In this

study, we refer to the motion patterns of PSO and propose the SLR mechanism and MSA strat-

egy to improve the algorithm’s ability to local and global search.

Table 8. qtime, number of IoT devices, feMax effect on energy consumption (partial experimental results, the full results of the experiments can be found in the S1

Table).

qtime Indicator 100,100k 100,200k 100,300k 200,100k 200,200k 200,300k

2 mean 1.2791E+6 1.2789E+6 1.2817E+6 2.3097E+6 2.2949E+6 2.2990E+6

std 5.3809E+3 6.1552E+3 6.3736E+3 8.0107E+3 1.0445E+4 1.0518E+4

3 mean 1.2836E+6 1.2840E+6 1.2792E+6 2.3031E+6 2.2993E+6 2.2921E+6

std 8.0886E+3 6.0824E+3 5.6995E+3 1.2384E+4 9.4275E+3 7.7480E+3

4 mean 1.2774E+6 1.2835E+6 1.2771E+6 2.3074E+6 2.2995E+6 2.3003E+6

std 3.4114E+3 3.4915E+3 9.8202E+3 8.0799E+3 5.8099E+3 1.2511E+4

5 mean 1.2786E+6 1.2790E+6 1.2752E+6 2.3069E+6 2.3035E+6 2.2987E+6

std 7.3549E+3 4.5728E+3 6.4399E+3 1.2876E+4 9.4745E+3 9.2798E+3

https://doi.org/10.1371/journal.pone.0297066.t008
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Genetic algorithms, such as DEVIPS algorithm [17] have a strong global search capabil-

ity, but the local search capability is not strong due to the genetic inheritance among indi-

viduals, swarm algorithms, such as IDA algorithm [15] have a strong local search

capability, but the updating strategy of the seeding radius is too fast, resulting in a lack of

global search capability, whereas, our proposed SLR mechanism enhances the algorithm’s

local search capability and ensures the algorithm’s local search capability by using the MSA

strategy.

We found that there are some current studies on sensing networks focusing on data latency

[30], sensor lifetime [31], and wireless transmission protocols [32]. In our next study, we will

discuss these three issues based on the current research using environmental monitoring as an

application environment to construct an automatic monitoring framework.

Fig 7. Relationship between energy consumption and number of IoT devices for different number of iterations with the benchmark of qtime=2.

https://doi.org/10.1371/journal.pone.0297066.g007
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