
RESEARCH ARTICLE

Application of elastic net regression for

modeling COVID-19 sociodemographic risk

factors

Tristan A. MoxleyID
1,2*, Jennifer Johnson-LeungID

2,3, Erich SeamonID
3,

Christopher Williams2, Benjamin J. Ridenhour1,2,3

1 Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, United States of

America, 2 Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, United

States of America, 3 Institute for Modeling Collaboration and Innovation, Moscow, ID, United States of

America

* tmoxley@uidaho.edu

Abstract

Objectives

COVID-19 has been at the forefront of global concern since its emergence in December of

2019. Determining the social factors that drive case incidence is paramount to mitigating dis-

ease spread. We gathered data from the Social Vulnerability Index (SVI) along with Demo-

cratic voting percentage to attempt to understand which county-level sociodemographic

metrics had a significant correlation with case rate for COVID-19.

Methods

We used elastic net regression due to issues with variable collinearity and model overfitting.

Our modelling framework included using the ten Health and Human Services regions as

submodels for the two time periods 22 March 2020 to 15 June 2021 (prior to the Delta time

period) and 15 June 2021 to 1 November 2021 (the Delta time period).

Results

Statistically, elastic net improved prediction when compared to multiple regression, as

almost every HHS model consistently had a lower root mean square error (RMSE) and sat-

isfactory R2 coefficients. These analyses show that the percentage of minorities, disabled

individuals, individuals living in group quarters, and individuals who voted Democratic corre-

lated significantly with COVID-19 attack rate as determined by Variable Importance Plots

(VIPs).

Conclusions

The percentage of minorities per county correlated positively with cases in the earlier time

period and negatively in the later time period, which complements previous research. In con-

trast, higher percentages of disabled individuals per county correlated negatively in the ear-

lier time period. Counties with an above average percentage of group quarters experienced
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a high attack rate early which then diminished in significance after the primary vaccine roll-

out. Higher Democratic voting consistently correlated negatively with cases, coinciding with

previous findings regarding a partisan divide in COVID-19 cases at the county level. Our

findings can assist regional policymakers in distributing resources to more vulnerable coun-

ties in future pandemics based on SVI.

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has impacted the world

since its emergence in December of 2019, with a global case total of approximately 631 million

cases and global death total of approximately 6.6 million deaths as of November 2022 [1].

Effective measures to quell the pandemic and minimize hospitalizations and deaths have

included quarantining, mask mandates, social distancing measures [2], and vaccines [3]. The

COVID-19 pandemic is unusual in the typical epidemiological sense, as wealthier countries

with better health infrastructure have higher reported attack rates than their less wealthy coun-

terparts [4]. The heightened attack rate in the United States is a cause for concern. The U.S.

has the highest confirmed case count of any nation at 97.6 million cases (as of November

2022), more than doubling India (the second-highest total) [1]. Disparities in case reporting

may influence this trend. However, it is still reasonable to expect that nations with more wealth

and better access to prophylactic resources would have lower disease burden overall, given the

effectiveness of vaccines and other preventative tools [5].

From the perspective of the host-agent-environment model [6], social factors present as a

natural explanation for some of these discrepancies. When considering social factors, it is

important to make the distinction between intrinsic factors (i.e., factors that one cannot eas-

ily change; these may include race, ethnicity, socioeconomic status, etc.), and extrinsic fac-

tors (i.e., qualities and behaviors that one acquires or changes throughout their daily lives,

such as political ideology, occupation, etc.). In cases where intrinsic factors correlate with

cases, state or federal governments can allocate more resources to particular regions where

more disadvantaged individuals may live based on pre-existing county-level risk evaluation

metrics such as the Social Vulnerability Index (SVI) [3]. In cases where extrinsic factors cor-

relate with cases, state or federal governments can assist in improving infrastructure and pro-

tocols for at-risk demographics within more vulnerable regions, as well as informing the

public of proper pandemic responses through reputable sources such as the Centers for Dis-

ease Control (CDC).

Intrinsic social factors are multi-factorial in their impact on COVID-19 spread [7]. Studies

have shown an adverse relationship between being a racial or ethnic minority (e.g., African

American, Indigenous, Hispanic, etc.) and contracting COVID-19; this translates as higher

incidences of severe cases and deaths in certain demographics [8]. The increased disease bur-

den on racial/ethnic minorities has several contributing factors. Some of the underlying trends

stem from higher rates of comorbidity, living in more crowded living conditions [7], and

decreased ability to social distance due to working lower-paying, “essential” jobs in retail,

transportation, agriculture, etc. [8]. Many of these disparities have been well-documented

prior to COVID-19. African Americans are eight times more likely to contract HIV compared

to Caucasians on average, yet coverage of pre-exposure prophylaxis for treating HIV is seven

times higher in Caucasians than in African Americans [9]. Given the history of healthcare dis-

parity and comorbidity influencing epidemiological attack rate [7], it is important to identify

and prioritize these groups for prophylactic resource allocation.
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Political affiliation has been hypothesized to have affected the spread of COVID-19 in the

U.S., as pandemic response rapidly became a highly-politicized in the spring of 2020. This

politicization was accompanied by the rapid spread and endorsement of misinformation

regarding the severity and origin of SARS-CoV-2 [10]. At the state level, jurisdictions with

Democrat leadership had more aggressive responses to COVID-19 on average [11]. Some

states with Republican administrations—such as Idaho—were more socially lax with mask and

vaccine mandates, and subsequently suffered high spikes in cases and deaths from Delta and

Omicron [12]. Some ideological conservatives and religious fundamentalists “may see [scien-

tific] experts as threatening to their social identities” [13], and thus may respond to COVID-19

in a more lax and risk-prone manner. Furthermore, Trump’s higher-than-average approval

among conservative citizens may have had additional effects [14]. Conservative individuals

who cited former president Donald Trump and his task force as their primary information

outlet were far less likely to get vaccinated [15]. However, as vaccine hesitancy has historical

connections to both extremes of the political spectrum, a more formal analysis is necessary to

determine the extent to which political affiliation is a contributing factor towards COVID-19

spread or vaccine acceptance [16].

Our research looks into the effect of the combination of social forces, both intrinsic and

extrinsic, and demography on COVID-19 cases. The remainder of this paper is organized as

follows: A brief mention of model development is provided, along with elaboration on data

selection. Significant variables found through these analyses are shown and interpreted

through the lens of pandemic response at the county level. Our results can inform pandemic

resource allocation based on areas at higher social risk.

Materials and methods

We analyze the relationship of several measures of social vulnerability along with 2020 presiden-

tial voting preference on the incidence of COVID-19 at the county level. Data on social mea-

sures were obtained from the CDC’s Social Vulnerability Index (SVI) [17]. SVI is a percentage-

per-county metric which synthesizes 15 census variables into one vulnerability score. This index

is typically used to allocate necessary resources to vulnerable counties during disaster responses.

Democratic voting percentage from the 2020 presidential election [18] is used as a proxy for

political ideology. The full set of explanatory data is given in Table 1. Our response variable is

cumulative cases per 1000 individuals and was sourced from the New York Times [1].

Elastic net regression is chosen for this analysis [19]. Our exploratory analysis using multi-

ple regression revealed both multicollinearity and model overfitting, likely due to social factor

comorbidity and varying national-level testing efforts [7, 20]. Elastic net regression is capable

of overcoming both issues via regularization. We opted against using Variance Inflation Factor

(VIF) to correct collinearity due to concerns of removing variables of interest from the analy-

ses [21].

All analyses were performed using R version 4.1.3 [22]. The underlying model equation is

Y = X β + �. In the case of elastic net regression, the estimated regression coefficients β are

determined by minimizing a penalized sum of squares. Specifically, the sum of squares is

penalized by the elastic net penalty comprised of the l1 and squared l2 norm, and is dependent

on hyperparameters α and λ. Here, α controls the l1/l2 mixing percentage, and λ alters the

penalization weight. A more detailed explanation of the elastic net model is available in S1

Appendix. The caret package was employed for determining the optimal hyperparameters

necessary for constructing the elastic net models (S2 Fig displays an example of this penaliza-

tion process). Verification of these parameters is determined via 70/30 repeated cross-valida-

tion with 15 iterations.
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We model COVID-19 case rates at the county level for the ten Department of Health and

Human Services (HHS) regions and two time periods. The definition of the HHS regions is

given in Table 2 [23]. We utilize HHS regions for submodeling as a proxy to healthcare infra-

structure, as it is known to vary across the U.S. and will subsequently provide nuance into

region-based social risk factors [24]. The first time period analyzed is 22 March 2020–15 June

2021, which we will refer to as “pre-Delta” hereafter. The second time period is 16 June 2021–1

November 2021, which we will refer to “Delta” hereafter. Thus we have 20 different models of

case rates in the U.S. (10 regions × 2 time periods). For each model, we calculate the root mean

squared error (RMSE) for both multiple regression (as a baseline) and elastic net regression to

verify that elastic net is producing more robust models. In addition to RMSE, R2 coefficients

for both elastic net and multiple regression are presented to demonstrate elastic net’s ability to

mitigate model overfitting.

Variable Importance Plots (VIP) are used to determine coefficient significance due to elas-

tic net regression’s lack of theoretically derived p-values. Importance is calculated based on the

absolute value of the coefficients [25]. Plots include both the individual variable importance

values for each HHS region per time period, as well as box plots to view the average

Table 2. HHS region numbers and their member states used in all analyses.

Number States

1 CT, MA, ME, NH, RI, VT

2 NJ, NY

3 DE, MD, PA, VA, WV

4 AL, FL, GA, KY, MS, NC, SC, TN

5 IL, IN, MI, MN, OH, WI

6 AR, LA, NM, OK, TX

7 IA, KS, MO, NE

8 CO, MT, ND, SD, UT, WY

9 AZ, CA, NV

10 ID, OR, WA

https://doi.org/10.1371/journal.pone.0297065.t002

Table 1. Explanatory variable abbreviations and their descriptions for SVI and voting percentage.

Variable Description

POV Percentage of individuals below poverty estimate

UNEMP Percentage of unemployed individuals

NOHSDP Percentage of individuals with no high school diploma

AGE65 Percentage of individuals over the age of 65

AGE17 Percentage of individuals under the age of 17

DISABL Percentage of individuals with a non-institutionalized disability

SNGPNT Percentage of individuals who are single parents with a child below the age of 18

MINRTY Percentage of minorities (all persons except white, non-Hispanic)

LIMENG Percentage of individuals over the age of 5 who speak English “less than well”

MUNIT Percentage of housing in structures with 10 or more units

MOBILE Percentage of mobile homes

CROWD Percentage of occupied housing units with more people than rooms

NOVEH Percentage of households with no vehicle available

GROUPQ Percentage of persons in group quarters

pct Percentage voting Democratic in 2020 Presidential Election

https://doi.org/10.1371/journal.pone.0297065.t001
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importance of each explanatory variable. From the full set of 15 explanatory variables, the five

variables which exhibited the most noteworthy correlations with cases are isolated and inter-

preted. S1 and S2 Tables contain the full models with all 15 explanatory variables. Plots of the

observed data and the associated predicted regression line for each region are also provided to

assess individual model performance.

Results

All coefficient estimates are reported in their original scale, allowing for direct interpretation.

Overall, the RMSEs for elastic net models of the test data sets were lower than their multiple

regression counterparts in all but two of the regions (HHS region 5 for pre-Delta, HHS

region 6 for Delta); this reduction in RMSE indicates more robust model performance for

the elastic net models. Individual model attributes will be discussed in their respective

subsections.

The pre-Delta coefficient estimates and metrics are shown in Table 3. In regions 3, 6, and

10, elastic net regression removes several features from the regression model (see S1 Table).

The small difference in training/testing R2 for elastic net regression (Table 3) demonstrates

that this method of regression avoids the problem of model overfitting. Fig 1 displays the VIP

plot for the pre-Delta and Delta COVID-19 time periods. As shown in Fig 1a, we find that the

percentage of individuals living in group quarters has the highest overall variable importance

across all regions, with Democratic voting percentage and percentage of individuals in mobile

homes being the other most important variables, respectively (Fig 1a). Of the selected vari-

ables, percentage non-institutionalized disabled individuals is least significant.

The Delta coefficient estimates and metrics are shown in Table 4. While there is some

change in the features selected by the elastic net regression models in this time period, the R2

comparisons for the testing and training data sets show that the method effectively avoids the

problem of overfitting. Fig 1b displays the VIP plots for the Delta time period. The variable of

lowest importance in the Delta time period is the percentage of individuals living in group

quarters. Democratic voting percentage has the highest variable importance across all regions,

followed by the percentage of households living in mobile homes and the percentage of

Table 3. Coefficients and metrics for the 10 HHS regions for the pre-Delta COVID-19 time period, recorded from March 22, 2020 to June 15, 2021.

Coefficients

Region 1 2 3 4 5 6 7 8 9 10

(Intercept) 65.14 87.20 85.06 109.20 106.13 107.57 106.38 113.58 88.21 71.52

Disability −2.95 – – – 3.21 – −0.84 −4.60 −6.11 –

Minority 3.71 4.59 – 5.07 8.18 – −1.13 – 24.01 –

Mobile Housing −12.5 −7.95 – −6.16 −3.67 −2.85 −6.61 −7.19 – −1.03

Group Quarters −0.59 −3.61 11.00 6.66 5.29 6.43 6.21 17.06 13.59 4.11

Voting Percentage −5.68 −3.99 −8.33 −9.38 −10.50 −0.87 −1.07 −1.77 −11.21 −9.85

Metrics

α 0.10 0.19 0.50 0.91 0.36 0.54 0.73 0.81 0.27 0.42

λ 4.31 2.61 0.46 0.20 0.09 2.10 0.37 0.99 0.81 3.58

ENR Train R2 0.78 0.78 0.44 0.20 0.41 0.28 0.35 0.40 0.71 0.66

ENR Test R2 0.78 0.78 0.42 0.15 0.37 0.24 0.35 0.37 0.64 0.64

MR Train R2 0.82 0.84 0.50 0.22 0.39 0.30 0.38 0.48 0.73 0.75

MR Test R2 0.76 0.63 0.34 0.11 0.32 0.20 0.30 0.25 0.46 0.60

ENR Test RMSE 15.48 11.52 12.88 20.00 15.68 23.95 21.05 28.11 26.79 19.27

MR Test RMSE 17.49 16.66 13.12 20.09 15.67 33.60 21.10 29.25 28.43 19.52

https://doi.org/10.1371/journal.pone.0297065.t003
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disabled individuals per county. Fig 1b shows that voting percentage has the highest individual

variable importance in seven of the ten HHS regions for the Delta time period. Of the selected

variables, group quarters has the largest shift in importance, going from most important to

least important, whereas disability percentage increases dramatically in significance from pre-

Delta to Delta.

Fig 2 displays the model fit for both pandemic time periods across each region, with each

individual point having opacity and size based on population density (e.g., a county with low

population density will have a small, transparent data point, and vice versa for a county with

high population density). Regions 1, 2, 3, 9, and 10 (i.e., regions along the coast) present much

better overall model fit when compared to the other five HHS regions (i.e., the inland regions),

Fig 1. Variable importance plots for both pre-Delta and Delta time periods, organized from lowest to highest

overall importance. A: Pre-Delta. B: Delta.

https://doi.org/10.1371/journal.pone.0297065.g001
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as shown through each model’s R2 coefficient. Overall, most models fit the data well, being

able to explain a fair proportion of the variation within noisy case data.

Discussion

Elastic net regression improves the prediction of COVID-19 cases when compared to multiple

regression. All but two of the HHS regions across both the pre-Delta and Delta time periods

have a lower testing set RMSE when compared to their multiple regression counterparts.

Model fit and R2 coefficients vary based on region, with inland regions having lower R2 values.

The regions with lower R2 values also happen to be ones with more counties of lower popula-

tion density. Regions 1, 2, 3, 9, and 10 have a combined average population density of about

467 people per square mile, whereas Regions 4, 5, 6, 7, and 8 have a combined population den-

sity of about 115 people per square mile. This implies that, using our methods, relationships

between the social vulnerability measures and disease burden are more difficult to observe in

regions with lower population density. This is important to consider when planning for future

mitigation of health emergencies.

It was known early on in the pandemic that close-quarters such as cruise ships were epicen-

ters of COVID-19 spread [26]. Similarly, increasing the county-wide percentage of people liv-

ing in group quarters, such as nursing homes and prisons, has also been shown to increase risk

[27, 28]. Our results show that this continued to be important through the pre-Delta time

period of the pandemic. For the pre-Delta time period, the percentage of individuals in group

quarters has the highest average variable importance across all regions. In all but regions 1 and

2, there is a strong positive association with cases. However, group quarters has the lowest

average variable importance for the Delta time period. There are several possible explanations

for this. Vaccination roll-out early on in 2021 was shown to mitigate disease spread [29]. In

many locales, scarce vaccination doses were prioritized for these populations and vaccine

acceptance among the elderly and institutionalized was relatively high [3]. Additionally, the

lower association between the percentage of residents living in group quarters and COVID-19

cases during the Delta time period could be explained by a larger initial attack rate within

Table 4. Coefficients and metrics for the 10 HHS regions for the Delta COVID-19 time period, recorded from June 15, 2021 to November 1, 2021.

Coefficients

Region 1 2 3 4 5 6 7 8 9 10

(Intercept) 23.50 24.60 49.69 61.08 40.32 49.07 36.03 39.92 40.47 46.76

Disability 1.31 – – 2.20 3.77 – 3.76 6.64 2.57 4.16

Minority −0.53 −0.69 −2.30 −2.34 0.85 −1.91 −1.34 −4.76 −4.99 –

Mobile Housing 0.49 −0.72 5.21 1.81 2.35 1.37 1.83 4.74 −2.61 3.37

Group Quarters – −0.45 −0.29 0.19 0.13 −0.98 – −1.73 −1.46 0.14

Voting Percentage −1.37 −2.23 −7.18 −9.78 −8.09 – – −1.45 −7.64 −5.91

Metrics

α 0.30 0.84 0.71 0.66 0.67 0.90 0.95 0.12 0.14 0.20

λ 1.94 0.19 1.76 0.14 0.07 0.78 0.60 0.98 0.98 1.18

ENR Train R2 0.47 0.62 0.72 0.46 0.55 0.16 0.24 0.28 0.73 0.60

ENR Test R2 0.46 0.55 0.72 0.41 0.51 0.16 0.27 0.25 0.69 0.59

MR Train R2 0.61 0.72 0.84 0.47 0.57 0.21 0.31 0.30 0.76 0.70

MR Test R2 0.15 0.29 0.57 0.37 0.45 0.07 0.22 0.18 0.62 0.46

ENR Test RMSE 7.04 4.49 12.33 13.09 9.15 15.21 9.96 15.05 9.30 14.09

MR Test RMSE 12.05 4.77 14.83 13.16 9.18 14.92 10.36 16.04 9.79 14.86

https://doi.org/10.1371/journal.pone.0297065.t004
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these counties. Indeed, many prisons were severely unequipped to mitigate COVID-19 trans-

mission and thus suffered mass infections during the pre-Delta time period [30].

The percentage of non-institutionalized disabled persons per county was one of the least

important variables in the pre-Delta time period and one of the most important variables in

the Delta time period. The spectrum of what is considered disability is quite broad and encom-

passes many conditions (e.g., impairment of hearing, sight, mobility, or cognition) and thus

the percentage of disabled people can be quite high (15.4%). Because the definition of disability

by the American Community Survey (ACS) is broad, it makes our findings with respect to the

percentage of disabled persons harder to interpret. The pre-Delta finding indicates the per-

centage of disabled people did not correlate with overall case counts. This is somewhat surpris-

ing; not only were many governments devoid of any resources for disabled individuals in their

Fig 2. Observed versus predicted COVID-19 case rate plot for both pandemic time periods, used to visualize model performance. The “perfect”

correlation line shows a perfect one-to-one relationship between the observed data and the fitted data, whereas each time period-specific line shows

the observed correlation for each respective pandemic time period.

https://doi.org/10.1371/journal.pone.0297065.g002
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pandemic responses, but several factors put disabled individuals at an increased risk for infec-

tion, such as dependence on caretakers creating often unavoidable exposure [31] and non-

accessible hygiene and informational resources for individuals with visual, auditory, and cog-

nitive disabilities [32]. However, the lack of relationship could either be due to the broad classi-

fication being used, or it could be that the fraction of individuals actually requiring specialized

care is low enough that it did not affect the overall spread of COVID-19. We did observe the

aforementioned trend of percentage of disabled persons predicting case counts in the Delta

time period. It unclear why this would become a significant predictor later in the pandemic,

however, it may be due to increased population mixing/reduced social distancing that

occurred during this time period. If reduced social distancing is the cause, it might reflect that

this population generally remained healthy early and thus acted as an influx of susceptible indi-

viduals later. It should be pointed out that looking at COVID-19 related deaths might have

stronger relationship with the size of the disabled population, as the underlying comorbidities

for disabled individuals present a higher likelihood of increased deaths rather than cases [33].

Percentage of minorities per-county was important across both pandemic time periods,

with slightly higher importance in the Delta time period when transmissibility increased and

mandated quarantining decreased. For the pre-Delta time period, all coefficients held positive

values, which coincides with previous county-level research citing positive correlations with

COVID-19 cases and minority proportions per county [34]. This is complementary to previ-

ous research citing a disproportionate impact of COVID-19 on minority individuals due to

heightened levels of comorbidity, general inability to distance, and worse living conditions on

average [8]. However, the trend reverses in the Delta time period, with many of the HHS

regions having negative coefficient values. Like with group quarters, this could be due to a dis-

proportionately high attack rate during the first major wave of the pandemic. Much like with

disabled individuals, an analysis that takes into account COVID-19 deaths and hospitalizations

may give more credence to the disproportionate toll of COVID-19 on counties with a higher

proportion of minorities, given that many comorbidities minorities experience result in more

severe infections regardless of SARS-CoV-2 variant [7].

Democratic voting percentage had highly significant negative correlations with cases across

both pandemic time periods. This is supported by previous studies which cite a county-level

partisan correlation (as determined by voting percentage) with respect to COVID-19 distanc-

ing [35], cases [36], and deaths [37]. Additionally, these findings complement previous

research which cites a partisan divide with respect to trust in pandemic information resources

and the effect it had on COVID-19 attack rates [38]. Given that vaccines were highly effective

in reducing case incidence up through the Delta variant [39] and that Republican individuals

reportedly had 90% lower odds of vaccination when compared to Democrats [40], disease

behavior along partisan lines appears to have a significant effect on disease spread at the

county level. Presidential voting is not the most foolproof proxy for the overall effect of politi-

cal leaning; it fails to capture much of the extrinsic social effects caused by such factors as local

legislature, personal risk evaluation, and media influence. However, it is still useful for poten-

tial policy inferences due to its availability and census-level information.

When considering previous literature, an important contribution of this approach is our

submodeling structure through HHS regions. The purpose of HHS regional offices is to allow

for better aid in local- and state-level healthcare facilities within their respective regions [23].

COVID-19 attack rate was known to vary across the United States due to differences in health

infrastructure [24], which we observed through submodeling. An example of this can be visu-

alized in Table 3, which shows a negative correlation between group quarters and COVID-19

case rate in Regions 1 and 2 and positive correlations elsewhere. Even without significance

testing for elastic net, a change in the sign of a predictor’s coefficient is significant enough to
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assume spatial differences in pandemic response infrastructure. From a literature perspective,

we know that differences in group quarters infrastructure and infection measures can affect

the risk of secondary transmission [41]. Thus, our submodels are capable of capturing spatial

variation in certain social risk factors that otherwise would not have been noticed. This both

gives a retrospective into which areas of the US had better infrastructure and prophylactic

response to COVID-19, as well as provides the framework for regional-level policy adjust-

ments in future pandemics. Using categorical variables specific to region (e.g., state, HHS

region, time zone, etc.) can only serve to tell us if spatial variation exists, but cannot tell us how
it varies. Thus, not only did we use census data that observes county-level social burden for

specific use in emergency situations, but we also give insight into spatial variation that can be

evaluated by entities like the HHS to modify pandemic policy at a regional level [17, 23].

Additionally, our research expands the scope of social risk and its impact on COVID-19,

both across a more representative time period and with more sophisticated methodology. The

research done by [27, 28] share the most similarities to the analyses done here, with both uti-

lizing SVI to determine disease burden. However, both attempts only represent COVID-19

cases through the first 3 to 4 months of the pandemic (the former only gathered data through

July 29, 2020, and the latter through June 12, 2020). Our retrospective analyses give insight

into COVID-19 social risk factors across not only a more representative period of the initial

wave of COVID-19, but also of how those factors changed in the wake of new variants. Our

methodology is also unique to social risk factor analysis due to its usage of regularization tech-

niques to handle the implicit collinearity of SVI data. We know not only that social risk fac-

tors are often comorbid [7], but that all individual SVI metrics are potential variables of

interest due to their inclusion in emergency and disaster response [17]. Both [27, 28] opted

for negative binomial regression, which was appropriate for at the time given the zero-inflated

distribution of early COVID-19 case data (e.g., many counties had 0 reported cases across the

first few months of the COVID-19 pandemic) [1]. Importantly, our retrospective application

considers the effect of collinearity in SVI variables, which was not part of the univariate

regression models in [27]. Lastly, the use of elastic-net regression improves upon the practice

of manually removing explanatory variables based on, e.g., Variance Inflation Factors or step-

wise regression (as in [28]). Recent research [21] has shown that manual exclusion of variables

introduces unwanted bias into final model result, and thus using regularization via elastic-net

might preferable for model fitting because it can potentially retain collinear variables using

shrinkage estimators [19].

Limitations

Although our methods and data were carefully chosen, some limitations still exist. The analysis

conducted on the pre-Delta time period had a much larger pool of data when compared to the

Delta model, since the pre-Delta model contained 15 months worth of cumulative COVID-19

data, whereas the Delta model only contained five months. Further subdivision of COVID-19

time periods may be an appropriate approach for refining this research by separating the mod-

els out into the original strain, Alpha, Delta, Omicron, etc. Additionally, many social factors

were not considered in this research. As alluded to when discussing political influences, vac-

cine hesitancy is a highly-important extrinsic social factor that has clear implications on local-

level COVID-19 attack rates. Inclusion of vaccine hesitancy (or, at minimum, a proxy for this

factor), would likely yield significant results. Another potential confounding variable is popu-

lation density. Model fit discrepancies according to population density (Fig 2) may imply pop-

ulation density as an influential variable in spite of response variable standardization.

However, healthcare infrastructure and subsequent differences in testing efforts likely
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contribute to this effect, which is much more difficult to overcome via statistical methods

alone [20, 24]. A more robust analysis using our modeling techniques would include more

social factors of perceived importance as well as confounders such as population density. The

addition of more explanatory factors (e.g., social factors, population density, healthcare mea-

sures) would most likely improve the predictive capabilities of our models; however, the goal

of this work was to apply elastic-net regularization to collinear SVI measures at the administra-

tive level of the HHS region to produce a robust, predictive model of disease burden.

We chose to use case rates (i.e., case count per 1000 people) as our response variable for the

elastic net regression models. Standardizing the response variables in this method allows for

use of standard multiple regression along with elastic net regression, as the case rates approxi-

mately follow a normal distribution (S1 Fig). Previous analyses by [27, 28], use similarly scaled

COVID-19 cases/deaths (with [27] using cases per 100,000 and [28] using adjusted case-fatal-

ity rate). However, both of these analyses opt for using negative binomial regression via gener-

alized linear models as the response variable is count data at its core. Thus, this analysis takes a

different modeling approach when compared to other prior analyses. The net effect of choos-

ing to use a normally distributed error versus some other model is a shift in parameter confi-

dence intervals. Because we use variable importance to judge the reliability of our predictors,

confidence intervals of parameters are not relevant.

Finally, we believe that these analyses may benefit from using deaths or hospitalizations as

the response variable, rather than case counts. As seen with group quarters and minorities per

county, the overall course of case spread does not necessarily display the broader picture of dis-

ease severity according to the pre-existing research [8, 26]. Cases can only predict so much;

vaccine and natural immunity can suppress the perceived effect on individuals who are either

at-risk of infection due to their environment, or are at-risk of severe illness due to autoimmune

disorders or comorbidities. The application of this type of method to hospitalizations and

deaths can help to enhance these results. In general, more consideration in using additional

nuanced predictors along with repeating the analyses with hospitalizations and/or deaths

would be valuable when thinking about future disease response.

Conclusion

Understanding the relationship between COVID-19 case rates and existing measures of social

vulnerability can help inform future pandemic planning. We found a mixture of intrinsic (dis-

ability and minority percentages in counties) and extrinsic (Democrat voting, mobile housing,

and group quarters percentages) social factors. Policy decisions for emerging pandemics have

two avenues: resource allocation (e.g., vaccines, masks, etc.) to areas that have higher attack

rates due to intrinsic factors, and implementing measures (e.g., information campaigns) prior

to disease outbreaks to better prepare vulnerable areas with higher extrinsic risk factors. In

other words, our results suggest physical pandemic resources should be allocated toward coun-

ties with higher social vulnerability measures such as those with larger proportions of minori-

ties or disabled individuals. Conversely, it has been observed that the political climate within

the United States diminished the trustworthiness of many public information outlets like CDC

[38]. Our findings, as well as those of others, suggest an appropriate prophylactic measure

would be establishing trusted information sources in preparation for future outbreaks. Provid-

ing a unified, trusted, non-partisan outlet for pandemic information can ensure the public

receives accurate messages regarding disease prevention. Future research may involve either

expanding the feature set provided in the analysis to better understand the county-level corre-

lations present in COVID-19 case data, or in looking more deeply into the significant variables

found within this analysis to better understand the correlations.
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