
RESEARCH ARTICLE

Impacts of hurricanes and disease on

Diadema antillarum in shallow water reef and

mangrove locations in St John, USVI

Renee D. GodardID
1*, C. Morgan Wilson1, Caleb G. Amstutz2☯, Natalie Badawy1☯,

Brittany Richardson1☯

1 Departments of Biology and Environmental Studies, Hollins University, Roanoke, Va, United States of

America, 2 Community School, Roanoke, Va, United States of America

☯ These authors contributed equally to this work.

* rgodard@hollins.edu

Abstract

The 1983–1984 mortality event of the long-spined sea urchin Diadema antillarum reduced

their population by up to 99% and was accompanied by a phase shift from coral dominated

to algal dominated reefs in the Caribbean. Modest rebounds of D. antillarum populations in

the Caribbean have been noted, and here we document the impacts of two major hurricanes

(2017, Irma and Maria) and the 2022 disease outbreak on populations of D. antillarum found

by targeted surveys in the urchin zone at nine fringing reef and three mangrove sites on

St. John, USVI. D. antillarum populations at the reef sites had declined by 66% five months

after the hurricanes but showed significant recovery just one year later. The impact of recent

disease on these populations was much more profound, with all reef populations exhibiting

a significant decline (96.4% overall). Fifteen months after the disease was first noted, D.

antillarum at reef sites exhibited a modest yet significant recovery (15% pre-disease den-

sity). D. antillarum populations in mangrove sites were impacted by the hurricanes but

exhibited much higher density than reef sites after the disease outbreak, suggesting that at

D. antillarum in some locations may be less vulnerable to disease.

Introduction

Prior to the early 1980s, long-spined urchins, Diadema antillarum, were abundant macroalgae

grazers in the Caribbean [1–3] with common densities ranging from of 3 up to 71 urchins m-2

[4]. So numerous were these organisms in some areas, localized removal was once considered

for the establishment of underwater marine trails [5]. This species consumes benthic algae that

can compete with coral for space and plays a critical role in preventing algal overgrowth on

reefs [6–9], a role that became obvious when the species collapsed in the early 1980s [3, 4, 10].

In early 1983, populations of D. antillarum adjacent to the Panama Canal first exhibited signs

of disease, and within 13 months populations across the breadth of the Caribbean had experi-

enced mass mortality (96–99%) by an unknown pathogen that likely spread along ocean cur-

rents and in the ballast water of boats [3, 11, 12]. This decimation of D. antillarum was
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associated with a phase shift in the Caribbean from coral-dominated reefs to those occupied

primarily by macroalgae [3, 7, 13–16].

After the mass mortality event in the mid-1980s, rapid recovery of D. antillarum was antici-

pated as the phase shift to macroalgae released the species from food limitations and its repro-

ductive potential (a female can produce millions of eggs per spawn) was impressive [13, 17].

However, D. antillarum populations have, overall, shown only modest recovery, with most

populations remaining at least an order of magnitude lower than pre-1983 [2, 3, 9, 18–23]. Sev-

eral non-mutually exclusive hypotheses have been proposed to explain the limited recovery of

D. antillarum and include: suppressed recruitment resulting from low population density and

their asynchronous spawning behavior [3, 24], increased competition from vertebrate reef her-

bivores [25], reduced populations of mutually beneficial heterospecific echinoids [3], increased

vulnerability to disease due to decreased immune function [26], increased predation pressure

[27], and the loss of structural complexity which reduces the availability of daytime refugia

[28]. Though the Caribbean-wide recovery has been limited, several studies have reported a

more modest recovery of D. antillarum populations associated with a localized return towards

a more coral dominated community [9, 15, 29–32].

The reported impacts of hurricanes on D. Antillarum populations in the Caribbean have

been variable. Hurricane Allen (cat 5, 1980) significantly reduced D. antillarum density on

shallow reefs (5–8 m) in Jamaica but did not impact populations in deeper (10–20 m) water

[33]. Similarly, Hurricane Irma (cat 4, 2017) caused a significant decline in already depleted D.

antillarum populations in the Florida Keys [34]. However, the increased mortality associated

with Hurricanes Hugo (cat 4, 1989) and Earl (cat 4, 2010), did not result in significant declines

in density of D. antillarum in Lameshur Bay, St. John, U. S. Virgin Islands (USVI) [2]. And

after Hurricane Dean (cat 5, 2007), density in a robust Southern Mexico D. antillarum popula-

tion remained stable [29].

In late January 2022, another die-off of D. antillarum was noted, this time originating near

a harbor in St. Thomas, USVI. Within four months, signs of disease similar to those of 1983 (a

lack of tube feet control, slow spine reaction and loss, followed by epidermal necrosis) had

occurred in populations throughout the Caribbean (1,300 km N to S and 2,500 km E to W)

[35]. Current molecular techniques, combined with a veterinary pathology approach, led to

the identification of a scuticociliate that resembled Philaster apodigitiformis as the causative

agent of the 2022 disease outbreak [36]. While the full extent of the 2022 die-off is not yet

known, a closely monitored D. antillarum population at Saba (Caribbean, Netherlands) exhib-

ited a 99% mortality rate [35]. Similarly, Levitan and colleagues [32] reported that D. antil-
larum populations followed since 1983 in Greater and Little Lameshur Bays, St John, USVI,

had exhibited a 98% decline.

Before the 1983 disease episode, this well-studied Lameshur Bay population of D. antil-
larum had averaged 14.39 m-2 but collapsed to 0.08 m-2 by 1984 [13]. While the population

here did recover, the Diadema density never rose above 1.15 m-2 [2]. Given the modest recov-

ery in this bay in St. John, we became interested in comparing population patterns with other

sites on the island. As such, in 2017 we surveyed D. antillarum populations at shallow-water

reef sites on both the north and south sides of the island, as well as along the fringes of man-

groves (Rhizophora mangle). This initial survey occurred nine months before the island was

severely impacted by two category 5 hurricanes. On September 6, the western eyewall of Hurri-

cane Irma tracked over St. John with estimated sustained wind speeds of 185 mph (161 kt),

gusts over 220 mph (191 kt), and an atmospheric pressure of 916 mb [37–39]. Two weeks later,

Hurricane Maria passed 60 miles south of St. John with an estimated wind speed of 155 mph

(135kt) and an atmospheric pressure of 920 mb [38, 40]. We continued to follow patterns in D.

antillarum density at these reef and mangrove sites through 2023 (Fig 1). Given that two major
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perturbations occurred during that time interval, we were able to: 1.) compare the impacts of

hurricanes and disease on D. antillarum populations; 2.) explore recovery patterns following

these perturbations; and 3.) examine D. antillarum populations in multiple reef and mangrove

locations.

Methods

From 2017 to 2023 (except for 2021 due to COVID restrictions, Fig 1), we surveyed the abun-

dance of D. antillarum at nine fringing reef sites (1–9) and three mangrove sites (M1-M3) in

St. John, USVI (see Fig 2). The nine reef sites occurred within the boundaries of the Virgin

Islands National Park and were originally chosen because of 1) their accessibility from land, 2)

their coverage of both the north (sites 1–4) and south (sites 5–9) sides of the island, 3) inclu-

sion of two areas surveyed on St. John since 1983 (site 5 is within the site “SQST” and 6 mirrors

“DOBI” reported by Levitan [13]), and 4) their distance from one another (no two sites closer

than 0.35 km). The three mangrove sites (Fig 2: M1-M3), separated by a minimum of 0.4 km,

were in Hurricane Hole in the Virgin Islands Coral Reef National Monument and, prior to the

Fig 1. Timeline. Dates (month/yr) of Diadema antillarum surveys noted above the blue timeline, with dates of the two

major hurricanes (month/day/yr) and the disease outbreak (month/yr) noted below the timeline.

https://doi.org/10.1371/journal.pone.0297026.g001

Fig 2. Map STJ. Survey sites in St John, USVI. Blue marks the numbered reef sites (1–9) and green marks the mangrove sites (M1-M3). The blue x’s mark the

two reef locations in Hurricane Hole that were anecdotally surveyed in 2022 and 2023 where urchin density remained high (2022 and 2023). Diadema Survey

Map produced by Kristen Bell (Zenodo. https://doi.org/10.5281/zenodo.8372679).

https://doi.org/10.1371/journal.pone.0297026.g002
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2017 hurricanes, were considered among the most diverse mangrove sites in the Caribbean

[39, 41].

Our surveys were conducted by snorkel, and like Carpenter and Edmunds [15], we targeted

the “urchin zone” at each site. Specifically, before collecting data, we surveyed each site for 30

minutes, noting locations of D. antillarum aggregations. After the 30 min survey was com-

pleted, we counted all D. antillarum in three different 10 x 2 m transects. Each transect was

separated by at least 15 m and selected for high aggregation. Because it is more difficult to

safely place a weighted transect by snorkel in a way that avoids damaging benthic organisms,

transects were established by a 10 m nylon rope stretched between two snorkelers above the

substrate. All D. antillarum (juvenile and adult) within 1 m of either side of transect were then

counted, including those hidden under rocks and crevices within the transect (see Fig 3A).

The depth at each end of the transect was measured (to nearest 0.25 m) and the transect loca-

tion was marked with a handheld global positioning system (GPS) unit (Garmin GPS 72H) in

a waterproof bag. Mangrove sites were linear by nature, and the prop root fringe extended

1.5–2.5 m from the shoreline before the hurricanes. After the hurricanes, the mangrove fringe

remained linear but at sites M2 and M3 the substrate was eroded and the prop root fringe was

compressed. The transects included most of the urchin habitat within the prop roots given the

distance of the fringe from the shoreline. Unlike the hard pavement that characterized the reef

sites, the benthos of the mangrove fringe was primarily sand with scattered scleractinian coral

heads.

After the 2022 disease outbreak, D. antillarum populations were extremely depleted at our

sites (Fig 3B), prompting the establishment of transects whenever an urchin was encountered

during the 30 min survey period. If more than three transects at a site were surveyed, the three

transects with the highest counts were used for analysis. Water conditions (wave action and

turbidity) and time limitations prevented population assessment at the following sites (year): 1

(2020); M1 (2019, 2020); M2 (2023); M3 (2023).

For each year at each reef site, we calculated the density (D. antillarum m-2) by averaging

the urchin counts from the three transects. As we were interested in comparing the impacts of

the hurricanes and the disease outbreak on D. antillarum, we conducted two separate analyses

Fig 3. Photos. A) D. antillarum reef site 6 (2016, pre-hurricane) B) D. antillarum reef site 7, spines and test (2022) C)

D. antillarum mangrove site M1 (2022) D) D. antillarum shallow reef adjacent to M1 (2022).

https://doi.org/10.1371/journal.pone.0297026.g003
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of the data from the reef sites. To assess the impact of the hurricanes on and subsequent recov-

ery of D. antillarum populations, we compared the density in 2017 to that found in 2018 and

2019 using a repeated measure ANOVA with a Greenhouse-Geisser correction, as the data

were normally distributed (Shapiro-Wilks p>0.05). Because we were unable to sample in

2021, we compared the data collected in 2020 to that collected in 2022 and 2023, a timeline

that mimics that of the hurricanes (Fig 1). As these data were normally distributed, we used a

repeated measures ANOVA with a Greenhouse-Geisser correction. All analyses were per-

formed using IBM SPSS statistics Version 27 [42]. D. antillarum densities at the three man-

grove sites in each sampling year were also calculated. The mangrove sample size prevented

statistical comparisons, but patterns at reef sites were compared to those at mangrove sites

graphically.

Results

All our reef and mangrove transects were in shallow water (0.25–3.0 m), with most D. antil-
larum occurring at depths of 0.25–1.5 m and typically wedged into, or under, crevices gener-

ated by rubble, rocky pavement, and living scleractinian coral (Fig 3A, 3C and 3D).

Occasionally, D. antillarum were found sheltering in the open in aggregations > 5 individuals,

a pattern that was more likely to occur at mangrove sites and at reef sites before the hurricanes

Irma and Maria. While we did not collect and measure D. antillarum, we did note variation in

the size of adults across sites and years and consistently noted that the population at all sites

was composed primarily of adults (>95%).

Prior to the hurricanes, D. antillarum density varied between reef sites (Fig 4). Some

locations (sites 2, 4, 9) had fewer than 0.2 m-2 while others ranged from 1.6 m-2 (site 3) to

8.5 m-2 (site 7, Fig 3A and 3C). After the hurricanes (2018), the average D. antillarum den-

sity dropped 66%, from the pre-hurricane (2017) average of 2.97 (S.E. ±0.98) m-2 to 1.05

(±0.98) m-2. Seven sites experienced moderate to dramatic declines in D. antillarum abun-

dance, while two (sites 3 and 4) showed modest increases in abundance (Fig 5). By 2019, the

density had increased at all sites, with two (sites 5 and 7) exhibiting relatively robust popula-

tions (> 3.5 m-2). A repeated measures ANOVA revealed a marginally significant impact of

time from hurricane on Diadema density (F (1.184,7) = 4.479, p = 0.057). Pairwise compari-

sons indicated a significant increase in D. antillarum density only between 2018 and 2019

(p = 0.042).

Populations in 2020 continued to increase at five sites (2, 3, 6, 7, 9; Fig 5), but five months

after the disease event (2022), D. antillarum populations declined dramatically (96.4% reduc-

tion), from a site average of 2.51 (S.E. ±0.61) m-2 to 0.09 (S.E. ±0.03) m-2 (Fig 4). Though

numerous D. antillarum tests and spines were found at each site (Fig 3B), no living urchins

were found at site 2, density was less than 0.1 m-2 at five locations (sites 1, 3, 5, 7, 9) and no

locations had densities > 0.3 m-2 (Fig 5). Eleven months later (2023), D. antillarum density

had increased to 15% of the pre-disease average (0.39 ± 0.05 m-2), with> 0.2 m-2 found at all

locations and> 0.4 m-2 found at four sites (1, 2, 5, 8). A repeated measures ANOVA revealed a

strongly significant impact of disease on urchin density (F (1.015,7) = 13.439, p = 0.006). Pair-

wise comparisons indicated significant differences in urchin density between all three sam-

pling periods (2020:2022 p = 0.015; 2020:2023 p = 0.026; 2022:2023 p = 0.005).

D. antillarum populations in the mangroves appeared to exhibit a different pattern than

those of the reef sites over the same sampling time period (Fig 6). Prior to the disease outbreak,

mangrove sites had lower D. antillarum densities than reef sites; however, after the disease

event (2022), one mangrove site (M1) had D. antillarum populations that were 7.5 times higher

(2.1 ± 0.85 m-2) than any reef site, and this high density persisted 16 months later (2023).
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Discussion

Given that D. antillarum aggregate [43] and prefer to seek shelter in crevices [28] that can vary

over small distances [44], we chose to survey D. antillarum in the aggregation areas which we

determined by a standardized preliminary survey. As such, our density values represent a max-

imum abundance and don’t lend themselves to comparison to values from studies using ran-

domly placed transects. However, this method allows for reliable comparisons within sites and

between years.

Prior to the back-to-back hurricanes of 2017, D. antillarum density at two thirds of our reef

sites were similar to density patterns reported from the “urchin zones” sampled in Jamaica,

St. Croix, Barbados, Belize, Bonaire, and Grenada [15]. Our overall site average of 2.97 (S.E.

±0.98) m-2 indicated that, at least in pockets, D. antillarum were at densities that might support

more successful reproduction in this prolific, yet asynchronous broadcast spawner. Five

months after Hurricanes Irma and Maria, D. antillarum populations at the reef sites declined

by 66%, like the losses reported after Hurricanes Hugo (1989) and Earl (2010) for D. antil-
larum at different depths (2–9 m) in Lameshur Bay [2]. And 17 months later, D. antillarum
populations were increasing in density at all our sample sites in contrast to D. antillarum pop-

ulations in the Florida Keys that exhibited a significant decline after Irma passed through at

lower wind speeds (cat 4 in the Keys). Unlike populations in St. John, D. antillarum in the Flor-

ida Keys have remained at very low density and have shown very few signs of growth [45],

Fig 4. Box-whisker overall reef sites. Box-and-whisker plots of D. antillarum m-2 at the nine reef sites in St. John

sampled 2017–2023. The median value is indicated by the horizontal bar and the X marks the mean value.

https://doi.org/10.1371/journal.pone.0297026.g004
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potentially leaving them more vulnerable to the impacts of hurricanes. A reduction of reef

complexity because of a decrease in scleractinian coral health and abundance has been associ-

ated with reduced D. antillarum density [9, 46]. This reduction in reef crevices could reduce

refugia for D. antillarum, making them more vulnerable to sediment abrasion, predation, and

dislodgement [34, 47]. D. antillarum populations on reefs in southern Mexico remained robust

after Hurricane Dean (2007), which could be attributed to the relatively high coral cover,

which increases habitat complexity [28, 29]. The threat of hurricanes on struggling D.

Fig 5. Average individual reef sites. Average (± S.E.) D. antillarum m-2 (3 transects per site) for the 9 reef sites in

St. John, USVI, sampled in 2017–2023. Wave action prevented sampling at Site 1 in 2020. Original data available

(https://zenodo.org/records/8395238).

https://doi.org/10.1371/journal.pone.0297026.g005

Fig 6. Mangrove sites. Average (± SE) D. antillarum m-2 at the three mangrove sites (M1, M2, M3) 2017–2023. The

diamond indicates the average D. antillarum m-2 of the nine reef sites in each year. M1 was not sampled in 2019 or

2020 due to turbidity and debris, and in 2023 time constraints prevented sampling at M2 and M3. Original data

available (https://zenodo.org/records/8395238).

https://doi.org/10.1371/journal.pone.0297026.g006

PLOS ONE Impact of hurricanes and disease on Diadema antillarum

PLOS ONE | https://doi.org/10.1371/journal.pone.0297026 February 15, 2024 7 / 12

https://zenodo.org/records/8395238
https://doi.org/10.1371/journal.pone.0297026.g005
https://zenodo.org/records/8395238
https://doi.org/10.1371/journal.pone.0297026.g006
https://doi.org/10.1371/journal.pone.0297026


antillarum populations remains of significant concern, as models predict that anthropogenic

changes to the atmosphere are likely to increase the strength of hurricanes [48].

The 2022 disease outbreak devastated the rebounding D. antillarum population by 96.4%

reduction, just slightly less than that reported for Saba, Caribbean Netherlands (99%) [35] and

for deeper water sites in the Lameshur Bays, St. John, USVI (98%) [32]. These differences may

be attributable to the fact that we targeted our samples to the “urchin zone” rather than along

randomly placed transects, and all our sites were in shallow water (< 3 m). In 2023, we found

modest but significant increases in D. antillarum density at all nine reef sites sixteen months

after the disease outbreak was first noted. Overall, the D. antillarum population had increased

to 0.39 m-2, a mere 15% of the pre-disease density outbreak. While these density values remain

low compared to pre-disease values, and remain at levels that challenge population growth, the

increase in density at all reef sites was encouraging. We are aware of no other published studies

that have reported patterns of D. antillarum density in 2023.

D. antillarum density at mangrove locations in Hurricane Hole appear to have followed a

different pattern. Prior to the hurricanes, only one of the three mangrove sites (M1) had D.

antillarum densities >1 m-2. The western eye wall of Irma passed directly through Hurricane

Hole and though the track of Maria was further south, this hurricane had a larger fetch area,

which models suggest resulted in 2–3 m waves near the entrance of Hurricane Hole [38]. The

combination of waves and winds from these two hurricanes uprooted mangrove trees, toppled

coral, scoured the prop root communities, and transported rocks into shallow nearshore areas

[39]. The wind and wave action also deposited human-made debris (e.g., boats, mooring lines,

gasoline motors, etc.) in Hurricane Hole which further damaged many mangrove trees

(authors’ personal observations). Deposition of debris under the prop roots in the nearshore

shallows of Otter and Water Creeks (M2 and M3, respectively) was more dramatic than at M1

and likely reduced habitat for organisms including D. antillarum [39]. Though damage was

severe, D. antillarum density at M2 and M3 did not show dramatic declines post-hurricane,

perhaps because pre-hurricane density was relatively low (< 1 m -2). D. antillarum density at

M1 exhibited a more dramatic decline (1.7 m-2 to 0.1 m-2). However in 2022, D. antillarum
populations at M1 were remarkably high (> 2 m-2) and populations at M2 and M3 were higher

than at most reef sites. Unlike at reef sites, we did not observe clusters of D. antillarum tests

and spines at the mangrove sites, but several dying D. antillarum (dropping spines) were noted

beside an isolated coral head in the grassbed adjacent to M1, suggesting the disease was present

in Hurricane Hole. Remarkably, D. antillarum density at M1 remained stable when resurveyed

in 2023, suggesting that this population was somehow more resistant to the disease. In addi-

tion, we also noted robust populations of D. antillarum at two shallow water fringing reef sites

located between grassbeds in Hurricane Hole (locations noted with an x in Fig 2). These two

sites had notably less macroalgae than at any of our surveyed reef sites.

It is not clear why D. antillarum is faring so much better in Hurricane Hole than in other

locations in St. John. Recent research has shown that extensive seagrass ecosystems can reduce

the bacterial pathogen load in the water column and are associated with improved coral health

[49]. Perhaps the extensive grassbeds in Hurricane Hole and Coral Bay (comprised primarily

of Thalassia testudinum, Syringodium filiforme, and Halophila stipulacea) reduced the concen-

tration of the scuticociliate that has been associated with the 2022 disease outbreak [36]. Scuti-

cociliates are ubiquitous marine organisms and have not previously been associated with mass

disease outbreaks in D. antillarum. Given that the disease first appeared near calm water ports

and harbors, it is possible that these nutrient-rich environments may have fostered an explo-

sive growth of a Philaster-like ciliate, which then dispersed rapidly throughout the Caribbean

[36]. Much more research is needed to understand how ocean conditions, host factors, and
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other ecosystem actions might impact this pathogen and D. antillarum populations, both at

local and Caribbean-wide levels.

The full extent of the impacts of the 2022 scuticociliate disease on D. antillarum populations

remains to be seen. While some populations rebounded from the 1983 disease outbreak, the

rebound was modest and remained an order of magnitude lower than pre-disease density in

most locations. However, there has been an increase in restoration efforts Caribbean-wide,

and artificial structures have been shown to support and maintain D. antillarum populations

[12, 16]. This suggests that, if remaining D. antillarum find adequate refugia and nearest-

neighbor density can be increased, it is possible that D. antillarum may rebound from this dis-

ease-outbreak. However, given the degraded state of Caribbean reefs and the increasing fre-

quency of hurricanes, it is also possible that the remaining corals will continue to decline as

algal-free zones disappear, further reducing the habitat viability for D. antillarum [50]. Only

time will tell what the ultimate impact of this disease will be on D. antillarum populations.
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