
RESEARCH ARTICLE

Probabilistic causal reasoning under time

pressure

Ivar R. KolvoortID
1,2,3*, Elizabeth L. FisherID

1,4, Robert van Rooij2, Katrin Schulz2,

Leendert van Maanen3

1 Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands, 2 Institute for Logic,

Language, and Computation, University of Amsterdam, Amsterdam, The Netherlands, 3 Department of

Experimental Psychology, Utrecht University, Utrecht, The Netherlands, 4 Turner Institute for Brain and

Mental Health, School of Psychological Sciences, and Cognition & Philosophy Laboratory, Monash

University, Clayton, Australia

* ivarrenzokolvoort@gmail.com

Abstract

While causal reasoning is a core facet of our cognitive abilities, its time-course has not

received proper attention. As the duration of reasoning might prove crucial in understanding

the underlying cognitive processes, we asked participants in two experiments to make prob-

abilistic causal inferences while manipulating time pressure. We found that participants are

less accurate under time pressure, a speed-accuracy-tradeoff, and that they respond more

conservatively. Surprisingly, two other persistent reasoning errors—Markov violations and

failures to explain away—appeared insensitive to time pressure. These observations seem

related to confidence: Conservative inferences were associated with low confidence,

whereas Markov violations and failures to explain were not. These findings challenge exist-

ing theories that predict an association between time pressure and all causal reasoning

errors including conservatism. Our findings suggest that these errors should not be attrib-

uted to a single cognitive mechanism and emphasize that causal judgements are the result

of multiple processes.

1. Introduction

Humans are expert causal reasoners, even though they might not be explicitly aware of it. The

point that causal judgements play a role in many decisions, has been made many times before

[e.g. 1, 2]. Nevertheless, it is a point worthy of reiterating here: Most actions are based on per-

ception of and reasoning about causes and effects in the world. How will your colleagues react

if you are late for that meeting? What are the chances of getting the flu knowing your flatmate

has it? The answers to these and most similar questions depend on your beliefs about how

events are causally related.

Numerous experiments have shown that causal reasoning affects categorization, category-

based inferences, learning, prediction, as well as decision making [2–5]. Beliefs about causal

structures are crucial in decision making. Someone who planned to go mountaineering next

week might decide to stay at a hotel to decrease the risk of catching the flu from a flatmate.
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However, had she believed that catching the flu is not caused by exposure to the flu virus, then

she would have decided to stay at home. This is just one example of how beliefs about causal

relationships impact decision-making. Causality ties into most of what we do and think, which

is why the topic of causality has received more and more attention from cognitive scientists in

the last decades.

Causal Bayesian Networks (CBN; also known as Causal Graphical Models) have become

the dominant framework for modelling probabilistic causal phenomena. CBNs have been used

in many scientific disciplines as a normative framework to make predictions about causal phe-

nomena [6–8]. Besides being used as a normative framework, CBNs have also been used as

psychological models of causal reasoning [9–18], of causal learning [19–26], and of categoriza-

tion [27–31]. CBN is a normative theory in that, under the assumption that the structure and

parametrization of a graph correspond truthfully to the world, the inferences the model allows

for correspond truthfully to the world. CBN provides a reasonable description of human causal

judgements [2, 11]. CBN accurately predicts that people are susceptible to subtle changes in

graph structure and parametrization [2, 9, 10, 18, 32, 33]. However, human causal judgments

do not appear to be fully in line with the normative model. Instead, they deviate persistently

and systematically from the normative CBN prediction.

1.1 Reasoning errors

There are three specific reasoning errors (i.e. deviations from CBN predictions) people are

known to commit: violations of Markov independence, failures to explain away, and conserva-

tive inferences [2, 33]. These deviations from the CBN model are important as they can pro-

vide insight in the cognitive processes involved in causal judgments. In the remainder of this

section and the rest of this manuscript we will restrict our focus on binary causal variables

with generative causal relationships. Such a setting has been used as the standard in the litera-

ture on causal judgments and simplifies our discussion.

People have been found to systematically violate the principle of Markov independence

(‘Markov violations’) in a variety of experimental paradigms and regardless of how they learn

about a causal network [2, 4, 9, 18, 32–38]. Markov independence refers to the independence

of certain events within a causal structure. For instance, with a common cause structure

X1 Y!X2 (Fig 1A) people often think that the state of X1 is relevant in any situation when

inferring X2. However, X1 is only relevant here when Y is unknown. When Y is known, infor-

mation about X1 does not provide additional information about X2, as Y completely mediates

the effect of X1 on X2. The exact same holds for a chain structure (Fig 1B).

In these cases we can state Markov independence formally as

PðXi ¼ xjY ¼ y;Xj ¼ 0Þ ¼ PðXi ¼ xjY ¼ y;Xj ¼ 1Þ ¼ PðXi ¼ xjY ¼ yÞ, where the subscripts

i and j refer to the two X variables, and the values 0 and 1 refer to a variable being absent or

Fig 1. Three-variable causal network structures. The circles represent causal variables and the arrows the causal relationships

between them.

https://doi.org/10.1371/journal.pone.0297011.g001
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present respectively (we will use this notation throughout this paper). Markov independence

also holds in a common effect structure (Fig 1C), where the causes are independent when the

effect is not known, such that PðXi ¼ xjXj ¼ 1Þ ¼ PðXi ¼ xjXj ¼ 0Þ ¼ PðXi ¼ xÞ. Instead of

adhering to the principle of Markov independence, people tend to judge that PðXi ¼ 1jY ¼
y;Xj ¼ 1Þ > PðXi ¼ 1jY ¼ yÞ > PðXi ¼ 1jY ¼ y;Xj ¼ 0Þ in common cause and chain struc-

tures, and PðXi ¼ 1jXj ¼ 1Þ > PðXi ¼ 1Þ > PðXi ¼ 1jXj ¼ 0Þ in the common effect structure

[2, 4, 9, 18, 32, 33, 36–38]. In common cause and chain structures this is also known as ‘failures

in screening-off’, which refers to the fact that the dependence between two variables is

‘screened-off’ by a third variable, namely Y in our notation. A second reasoning error is related

to the principle of explaining away (also known as ‘discounting’). Explaining away is involved

in situations where multiple causes can independently bring about an effect and a judgment is

required about the actual cause of the effect. Imagine a situation in which a friend has a head-

ache and you know that the (only) two possible causes for this are alcohol consumption and

the flu (a common effect structure, Fig 1C). Now, upon learning that your friend consumed

alcohol last night it becomes less likely that they have the flu. This is because alcohol consump-

tion ‘explains away’ the presence of a headache. Reversely, if you learn that your friend did not

consume alcohol, it makes it more likely that they have the flu, as some other cause than alco-

hol consumption must have brought about the headache.

Put more generally, explaining away refers to cases in which a target cause (flu in the previ-

ous example) becomes less (more) likely after learning about the presence (absence) of another

cause (alcohol consumption in the previous example, we refer to this as the non-queried

cause). Referring to the common effect structure in Fig 1C, we can state explaining away for-

mally as PðXi ¼ 1jY ¼ 1;Xj ¼ 0Þ > PðXi ¼ 1jY ¼ 1Þ > PðXi ¼ 1jY ¼ 1;Xj ¼ 1Þ. Multiple

studies have found that people engage in insufficient explaining away compared to the CBN

prediction or that they do not explain away at all [2, 33, 38–42].

The third persistent reasoning error, conservatism, refers to a tendency of people to not give

‘extreme’ responses, but rather to respond somewhere near the middle of a response scale. For

probability judgements this means that extreme responses near 0% or 100% are often avoided

and that people prefer to respond closer to 50%. In their review of experiments on inferences

from causal networks, Rottman and Hastie [2] concluded that many inferences were conserva-

tive relative to the CBN prediction [see 41, 43–45]. They found that responses are generally

between 50% and the CBN prediction, which indicates that participants are not sensitive

enough to the parameters of causal networks. In later work Rottman and Hastie [33] found

that judgements were particularly close to 50% when the state of one variable in the network

was unknown (‘ambiguity trials’, such as PðXi ¼ 1jY ¼ 1Þ) or when the two other variables

provided conflicted cues (‘conflict trials’, such as PðY ¼ 1jXi ¼ 1;Xj ¼ 0Þ).

It is important to investigate in what situations these reasoning errors are prominent and

how they come about as this can shed light on the processes underlying causal reasoning. One

fruitful way to investigate these errors and accuracy in causal judgements more generally is by

utilizing time pressure.

1.2 Time pressure

It stands to reason that when participants have less time available to provide causal judgments,

behavior will deteriorate in specific ways. In other domains within the larger field of judge-

ment and decision making, the analysis of response time (RT) and the explicit use of time pres-

sure manipulations has led to a better understanding of the cognitive processes involved.

Examples include perceptual decision-making [46–48], economic decision-making [49–52],
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judgement under uncertainty [53–56], probabilistic reasoning [57, 58], and syllogistic reason-

ing [59, 60].

In contrast, within the causal reasoning literature RT, measurements and time pressure

manipulations have received little attention. While the effect of time on causal structure learn-

ing has been studied a few times [e.g. 21, 61], we are aware of only one study involving time

pressure that directly pertains to causal probabilistic inferences. Experiment 2 in [18] asked

participants to judge under time pressure in which causal network a certain variable value was

more likely, but no relevant effects of RT or time pressure were found. Importantly though, it

was pointed out that this study could only be considered preliminary [62]; the time pressure

manipulation was possibly ineffective and the specific task they used was complex and did not

generalize to other paradigms as it required the comparison of two causal configurations.

As time pressure manipulations and RT analysis have enabled significant development in

other domains of cognitive science, we here aim to use these methods to spur similar develop-

ment in our understanding of causal reasoning. Before getting to the application of these meth-

ods, let us first discuss some important aspects of them.

1.2.1 Speed-accuracy tradeoff (SAT). A crucial phenomenon used in the study of time

pressure is the speed-accuracy tradeoff (SAT) [63–66]. The SAT refers to the common obser-

vation that accuracy tends to covary with response times [64]. The typical observation is that

faster responses are less accurate. This pattern has been observed across individuals [67–69],

across conditions (macro-SAT) [70, 71], and within conditions (micro-SAT) [72, 73].

While the SAT is often used to refer to the overall accuracy of responses, we can apply the

same idea to different ways of measuring accuracy. In the case of causal judgments, we can

apply notions of micro- and macro-SAT to the three reasoning errors discussed previously.

That is, we can investigate whether the magnitude of these errors changes under an external

time pressure manipulation (macro-SAT), and whether they are associated with RTs within

conditions (micro-SAT), i.e. the passing of time or ‘internal’ time pressure.

The effects of time pressure, including micro- and macro-SATs, on causal reasoning have

not been explicitly studied. Therefore, the main aim of Experiment 1 was to explore how

macro- and micro-SAT manifest in a causal judgment task. As Experiment 1 did not address

the sources of reasoning errors, we conducted a follow-up experiment, Experiment 2, which

included confidence measures to elucidate the underlying processes responsible for reasoning

errors.

2. Experiment 1

To test the effects of time pressure on causal probability judgments, we used an established

causal inference task. In this task participants were asked to make judgments about events that

are part of a known causal structure. This ‘reasoning from a known structure’ entails the apply-

ing knowledge of causal relationships to judge the probability of an event conditional on the

state of other events in the structure. Besides the implementation of time pressure, the proce-

dure and materials were based on multiple studies by Rehder and colleagues [32, 38, 62, 74].

The experiment was approved by the local ethics committee of the University of Amsterdam

(nr. 2019-PML-10019).

2.1 Participants

41 individuals participated in the study for course credits (21 female, mean age 21.0) which

took 41 minutes on average. All participants provided informed consent before participation

in the study. We used an a priori exclusion criterion of an overall mean error above 18%. As

the task uses a percentage response format, this criterion meant that participants with
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responses on average more than 18 percentage points removed from the normative answer

were excluded. This criterion was chosen before seeing the data and was based on the follow-

ing logic: If a participant responds with ‘50%’ on every single trial (a strategy clearly indicating

non-compliance), they will have an average response error of 18%. This is due to the distribu-

tion of the normative responses (see green dashes in Fig 7), which are on average 18 percentage

points removed from 50%. Hence, if a participant has an error lower than 18%, we can assume

that on average they respond on the correct side of 50%, i.e. if the correct answer is higher

(lower) than 50%, they tend to respond higher (lower) than 50%. This indicates compliance

and understanding of the task. We cannot be sure of compliance or understanding for a partic-

ipant with an average error larger than 18%. Such a participant could be systematically

responding on the wrong side of 50%, that is, responding higher than 50% when the correct

response is below 50% and vice versa. Therefore, using an exclusion criterion of 18% ensures

that the participants included in the analysis did not engage in random responding or guess-

ing. This led to the exclusion of 15 participants (see S1 Appendix for a supplementary analysis

of these excluded participants). In addition, we removed responses faster than 1.5 seconds,

which amounted to 1.8% of responses. In previous causal reasoning experiments, response

times ranged between 5.5 and 23 seconds on average [18]. As each trial requires the processing

and integration of five cues (three variable values and their causal relationships, see below),

responses faster than 1.5 seconds are a clear indication of non-compliance.

2.2 Experimental design and procedure

The experiment was conducted in the behavioral sciences lab of the University of Amsterdam.

The task consisted of three experimental domains, each consisting of a learning phase and a

testing phase. In the learning phase participants learned a specific causal structure, about

which they were asked to make inferences in the testing phase. Each testing phase consisted of

three blocks with different response deadlines. Each of these blocks consisted of 27 trials. All

participants completed 27 trials per domain and deadline condition, for a total of (27 x 3 x 3 =)

243 trials.

The three domains about which participants had to reason concerned meteorology, sociol-

ogy, and economics (see Rehder, 2014). We tested three 3-variable causal structures (see

Fig 1): a common cause, a chain, and a common effect structure. Each participant saw all three

domains and all three causal structures. The order of the causal structures and which structure

was paired with what domain was counterbalanced across participants (e.g. some participants

had a common cause structure in the domain of economics, while others had a chain or com-

mon effect structure in the economics domain). The variables in the causal structures were

binary, each with a “normal” and a non-normal value [38], which we will refer to in equations

with 0 and 1 respectively. The non-normal value for each variable was either “high” or “low”

and these values were counterbalanced across participants to control for effects of prior knowl-

edge about the domains [18].

2.2.1 Learning phase. Each domain started with a learning phase. First, participants stud-

ied several computer screens with verbal information regarding the domain and how the vari-

ables are causally related in the specific causal structure. For example, participants that had the

economics domain paired with a common effect structure, were taught that low interest rates

(cause 1) and high trade deficits (cause 2) independently cause low retirement savings (effect).

For the causal relationships it was always the case that non-normal values of variables caused

the non-normal value of another variable. The causal structure and relationships was first

described to participants in words (e.g.: “High interest rates cause small trade deficits”). For a

complete description of all variables and causal relationships used see Appendix A in [18].
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After these descriptions participants viewed a graphical representation of the causal network,

as in Fig 1, but with each node described as the relevant causal variable (e.g. “high interest

rates” instead of “X1”, see Fig 2).

Next, participants received quantitative information by experience as has been done in pre-

vious studies [33, 38]. This method involves participants experiencing the causal relationships

and their strengths by viewing case data, which is more comparable to how we learn causal

information in daily life than to provide participants with written probabilities. For each of the

eight possible combinations of variable values participants were presented with a separate

screen showing a certain number of cases (each screen corresponded to one row in Table 1,

see Fig 2 for an example of such a screen where all variables have a normal value). The quanti-

tative information regarding the causal networks is learned by the relative number of cases for

each possible combination of variable values. This method of teaching participants the net-

work parametrization has been used successfully before [33, 38]. The network parametrization

of the structures (and thus the number of cases on each sample screen) was taken from Experi-

ment 1a in [33] and intended to be theoretically neutral. The chain and common cause struc-

ture had the same parametrization, with base rates of .5 for all variables, where we use ‘base

rate’ to refer to the marginal probability of a variable across all cases, e.g. P(X1 = 1). The effects

in the network had a probability of .75 when their parent cause was present and .25 when it

Fig 2. Overview Experiment 1. Overview and screenshots of one domain in Experiment 1. Participants start each domain by learning qualitative and

quantitative information about the causal network (panels 1 and 2). The first panel shows a screenshot of how participants learned about the qualitative

structure of the causal scenario. The second panel is a screen with learning samples that provided quantitative information. This was one of eight such screens

participants saw in each learning phase. Here all variables had the ‘normal’ value (bottom row Table 1), on the 7 other screens the variables had different

combinations of values. Each sample was numbered (e.g. ‘Weather #23’) to emphasize that they represented individual instantiations of the causal variables.

The last panel is a trial in the meteorology domain. The blue bar on the right slowly decreased in size indicating the deadline. Participants had to judge the

probability of the variable (here ‘humidity’) with the three green question marks being in its non-normal state (here ‘low’). Participants moved a cursor from

the center of the part-circle at the bottom of the screen over the edge of the part-circle to indicate their response.

https://doi.org/10.1371/journal.pone.0297011.g002
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was not. In the common effect structure, the two causes combined by way of a Noisy-OR gate

[75] with causal strengths of .5 and with base rates of .5. This meant that the effect had 0 proba-

bility if no causes were present, .5 when one cause was present, and .75 when both causes were

present (hence the base rate was .43 for the effect). This parametrization was shown as cases on

the sample screens according to Table 1. The CBN predictions, i.e. the correct response, for

each inference is completely determined by this parametrization and obtained using probabil-

ity calculus [7].

2.2.2 Testing phase. The testing phase immediately followed each learning phase of a par-

ticular domain. Participants judged the probability of a specific variable being in their non-

normal state (e.g. “what is the probability of retirement savings being low?”), while the other

two variables are presented as in one of three states: unknown, or having their normal or non-

normal value (e.g. “trade deficits are normal and interest rates are low”, see Fig 2). We asked

all (3 choices for the queried variable x 3 possible states of first conditional variable x 3 possible

states of second conditional variable =) 27 possible questions three times, each under a differ-

ent level of time pressure, resulting in 81 inferences per domain.

The testing phase of each domain was split up into three blocks which had response dead-

lines of 6, 9, and 20 seconds (henceforth referred to as DL6, DL9, and DL20). The choice of

deadlines was based on pilot studies, given the lack of experimental findings on the effect of

deadlines on causal probabilistic judgments. The presentation order of the blocks was counter-

balanced across domains. At the start of each block a screen indicated the response deadline

for the next 27 trials. On each trial a blue bar on the right indicated how much time was left to

respond (Fig 2). When participants failed to answer before the deadline, which happened on a

total of 19 trials over all participants, a screen was presented for 5 seconds before starting the

next trial that told participants that they had to respond as accurately as possible while not

missing the deadline.

Participants responded on a probability scale ranging from 0% to 100% using a joystick.

This setup enabled fast, intuitive responses and reduced variance in RTs due to response exe-

cution (see for other uses of joysticks in psychological experiments [76, 77], and for the validity

of using a joystick for continuous responses see [78]). The 0%-100% range was presented on

the edge of part of a circle around the starting point of the cursor controlled by the joystick

(see Fig 2, bottom of third panel). Participants were instructed to move the joystick in one

swift movement so that the cursor would cross the edge of the circle at the location responding

to their answer.

Table 1. Parametrization of causal networks by cases.

Causal system state Number of cases

X1 Y X2 Chain and common cause Common effect

1 1 1 9 6

1 1 0 3 4

1 0 1 1 2

1 0 0 3 4

0 1 1 3 4

0 1 0 1 0

0 0 1 3 4

0 0 0 9 8

Note. Parametrization of causal networks used in experiments, implemented as cases viewed by participants. X1, Y,

and X2 refer to causal variables as presented in Fig 1. In the first three columns the 1s and 0s refer the to presence or

absence respectively of a causal variable

https://doi.org/10.1371/journal.pone.0297011.t001
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2.2.3 Analyses. For our main analyses we applied mixed-effects regression models using

the lme4 package in R [79]. As predictors we included the theoretically relevant variables and

their interactions, i.e. RT and deadline condition for all regressions, and for analyses testing

specific errors this included variables indicating the state of the causal variables relevant for

that error. We included crossed random intercepts for participants and the different inferences

[80].

We used linear regressions for RTs and probability judgments, where the judgments were

rounded to percentage points. The response error of a judgment was defined as the absolute

difference between a response and the normative answer (i.e., lower values indicate a less

error). Response error is strictly non-negative and positively skewed, and so we used a Gamma

distribution with a log link function for the regressions on error. Because of this, for the regres-

sions on error, the effects need to be interpreted multiplicatively (instead of additively in stan-

dard regression). We added 0.01 to all observations to avoid responses with an error of 0

(there were 13 such responses in total), as the Gamma distribution is only defined for positive

values.

Both probability judgments and response error are coded on a percentage scale (from 0 to

100), and RT is z-scored within participants. As the common cause and chain structures have

an identical normative joint distribution (see Table 1), both response error and the systematic

reasoning errors are measured in exactly the same way for these structure (e.g. the inferences

relevant to Markov violations are exactly the same). Hence, we analyze these structures

together.

We report estimates and statistics from regression models with insignificant higher-order

interactions removed. To test for this significance of effects we use Satterthwaite adjusted F-

tests for the linear mixed regression models [81]. Where we applied a Gamma regression for

non-normally distributed dependent variables, we use Wald Chi-square tests. Where relevant

we also report estimated marginal means, i.e. estimations of the dependent variable based on

the regression model for a predictors of interest while averaging over other predictors in the

model. Post-hoc contrasts will be reported with p-values adjusted for multiple comparisons

using the Tukey method.

2.3 Results

The Results section is structured as follows. We first check whether the deadline manipulation

was effective, next we look at the effects of time pressure on overall error (overall SAT), and

then we investigate the effects of time pressure on the three systematic reasoning errors (Mar-

kov violations, failures to explain away, and lastly, conservatism).

2.3.1 Manipulation check. To test whether the time pressure manipulation impacted

response times we regressed the Deadline factor on RTs and found that the effect of Deadline

is indeed significant (F(2, 6153) = 668, p< .001, Fig 3). This is reassuring considering the lack

of existing information on time pressure manipulations in this domain.

2.3.2 Overall response error. Next, we investigated the overall SAT, that is, the influence

of RT and deadline conditions on overall error. We found a significant main effect of Deadline

(χ2(2) = 23.8, p< .001), indicating a macro-SAT (Fig 4A): Participants were more accurate

when there was less time pressure. Post-hoc contrasts revealed that this is due to participants

having less response error in the DL20 condition (M = 12.6, SE = 0.680, zDL6-DL20 = 4.56,

p< 0.001, zDL9-DL20 = 3.54, p = .0012), while we do not find a difference between the DL6

(M = 14.5, SE = 0.818) and DL9 (M = 13.8, SE = 0.737) conditions (z = 1.73, p = .195). We also

found a significant interaction effect of RT and Deadline (χ2(2) = 8.84, p = .012, Fig 4B),

revealing a micro-SAT. While the interaction indicated that the effect of RT is less strong with
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longer deadlines, we found that the effect of RT is significant for each of the deadlines (DL6:

M = 1.16, SE = 0.0432, z = 3.72, p< .001; DL9: M = 1.07, SE = 0.0241, z = 3.09, p = .002; DL20:

M = 1.03, SE = 0.0131, z = 2.43, p = .015). This means that participants were less accurate the

closer they got to the deadline, and that this effect was strongest for the shorter deadlines.

Notably, the micro-SAT is in the opposite direction of the macro-SAT: within deadline condi-

tions a longer RT is associated with being less accurate (micro-SAT), while over deadline con-

ditions we see that people are most accurate in the conditions with longer RTs (macro-SAT).

In other words, the direction of the relationship between RT and error depends on whether

one looks within or across deadline conditions.

2.3.3 Markov violations and explaining away. To test the effect of the deadlines and RT

on Markov violations we performed more mixed model regressions. Here we analyzed only

those inferences relevant to Markov independence, that is, inferences about a terminal variable

(X1 or X2), while the middle variable was known (either Y = 0 or Y = 1) for the common cause

and chain structures, or while the middle variable was unknown for the common effect struc-

ture. The dependent variable was the response in percentage points. We included a variable as

fixed effect indicating whether the other terminal event (the screened off variable, X2 or X1)

was absent, unknown, or present (coded as -1, 0, 1). A significant effect of this factor (hence-

forth referred to as ScreenedOff) thus indicates a violation of Markov independence.

Fig 3. Mean response times per deadline. Mean response times per deadline condition. Dots represent the mean

response times of each participant. Bars indicate standard error of the mean.

https://doi.org/10.1371/journal.pone.0297011.g003
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Additional fixed effects for the status of the middle variable (values: Y = 0 or Y = 1, MidVar,

only for the common cause and chain structures), RT, Deadline, and their interactions with

ScreenedOff were included in the model.

2.3.3.1 Markov violations in common cause and chain structures. As expected, we found a

significant main effect of ScreenedOff (F(2, 1800) = 128, p< .001), indicating that participants

did not screen off, and thus violated Markov independence. The interactions of ScreenedOff

with Deadline (F(4, 1801) = 0.641, p = .633) and RT (F(2, 1809) = 1.68, p = .186) were both not

significant, indicating that the violations of Markov independence were not impacted by time

pressure nor response times (Fig 5A and 5B). While these results (and Fig 5) are rather con-

vincing, the lack of a significant effect does not provide direct evidence for the absence of such

an effect. As this result is surprising and important for our aims, we additionally computed

Bayes factors for the effects of time pressure and RT on reasoning violations and conservatism,

both here and in subsequent sections. Bayes factors provide strong evidence against an effect

of both deadlines (BF01 > 100) and RT (BF01 = 23.0). We did find a significant interaction

between ScreenedOff and MidVar (F(2, 1801) = 15.7, p< .001)), indicating that the violations

of Markov dependence were larger when the middle variable was present than when it was not

(Fig 5A and 5B).

2.3.3.2 Markov violations in common effect structure. We performed a similar analysis for

the common effect structure, the only difference being that the model did not include the vari-

able MidVar. Hence the initial model included fixed effects for ScreenedOff, Deadline, RT,

and the interactions of the latter two with ScreenedOff. We again only found a significant

main effect of ScreenedOff (F(2, 415) = 29.4, p< .001), indicating that participants violated

Markov independence here. The interactions with ScreenedOff were not significant for both

Deadline (F(4, 415) = 1.65, p = .161, BF01 = 5.85) and RT factors (F(2, 419) = 0.0105, p = .9896,

BF01 = 24.0, Fig 5C).

2.3.3.3 Explaining away. To test the effect of the deadlines and RT on explaining away, we

conducted another mixed model regression using only the data from inferences relevant to

Fig 4. Overall response error. Estimated response error from mixed-effects regression. A. Error in each deadline condition. Error is on the Y-axis, defined as

the absolute difference in percentage points between response and normative answer (hence, lower values indicate that participants are more accurate). Dots

indicate mean error for each participant. The bars represent standard errors. B. Interaction effect of deadline and RT on error. Error is on the Y-axis, Z-scored

RTs are on the X-axis. The lines are estimated marginal means, the ribbons represent the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0297011.g004
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explaining away. That is, those inferences in the common effect structure about one of the

causes, while knowing that the effect (the middle variable) is present. We computed a variable

(AwayVar) indexing whether the non-queried terminal event (Xj above) was absent, unknown,

Fig 5. Markov violations and explaining away per deadline in Experiment 1. Y-axis indicates response on a percentage scale. Colored lines indicate mean

responses, the error bars indicate their standard errors. The black crosses indicate the normative response. The X-axis indicates the specific inference.

Symmetric inferences are collapsed, e.g. ‘Xi | Xj = 0’ refers to both ‘P(X1 = 1| X2 = 0)’ and ‘P(X2 = 1| X1 = 0)’. A. Markov violations in common cause and chain

structures where the middle variable is present (Y = 1). B. Markov violations in common cause and chain structures where the middle variable is absent (Y = 0).

C. Markov violations in common effect structure. D. Explaining away in common effect structure.

https://doi.org/10.1371/journal.pone.0297011.g005
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or present (coded as -1, 0, 1 respectively). Next, we computed a new dependent variable by

recoding participants’ responses on these trials such that in our regression model the effect of

AwayVar would be zero if participants respond correctly on each trial. The correct responses

for PðXi ¼ 1jY ¼ 1;Xj ¼ 0Þ; PðXi ¼ 1jY ¼ 1Þ, and PðXi ¼ 1jY ¼ 1;Xj ¼ 1Þ are 1, .714, and

.6 respectively. To compute the recoded dependent variable we subtracted .286 from responses

to the inference where Xj = 0, and added .114 to the responses on trials where Xj = 1. We did

this such that for this recoded response variable the correct responses for the explaining away

inferences are all 0.714 (since 1–0.286 = 0.714, and 0.6 + 0.114 = 0.714). This means that we

can interpret the effect of AwayVar as deviations from the normative pattern of explaining

away. Our model included AwayVar, Deadline, RT, and the interactions of Deadline and RT

with AwayVar.

We found a significant main effect of AwayVar (F(2, 426) = 432, p< .001), indicating that

participants did not engage in the normative explaining away pattern (clearly visible in Fig

5D). When participants learn that the non-queried cause is absent compared to when it is

unknown, participants should increase their response by 28.6% (i.e.

PðXi ¼ 1jY ¼ 1;Xj ¼ 0Þ � PðXi ¼ 1jY ¼ 1Þ ¼ :286), see black line in Fig 5D). However,

post-hoc contrasts reveal that participants only increased their response by 0.46% (SE = 2.80)

on average. Similarly, when learning that the non-queried cause is present compared to it

being unknown, they should decrease their estimate by 11.4%

(PðXi ¼ 1jY ¼ 1;Xj ¼ 1Þ � PðXi ¼ 1jY ¼ 1Þ ¼ � :114), but participants only changed their

judgement with +4.88% (SE = 2.89). In sum, participants failed to properly ‘explain away’.

Next, let us regard the effects of time pressure on explaining away. There was no influence

of the deadlines on how participants explained away (F(4, 426) = 1.27, p = .280, BF01 = 11.0).

However, we did find mixed evidence of an interaction of AwayVar with RT (F(2, 433) = 3.64,

p = .0270, BF10 = 1.09). We plotted the estimated interaction in Fig 6. From this interaction we

can see that RT impacted responses on trials where the non-queried cause is present (t(435) =

-3.36, p< .001), while RT had no effect when the non-queried cause is absent (t(432) = -0.79, p
= .43), or when its status is unknown (t(434) = -0.21, p = .83). The responses on trials where

the non-queried cause is present got closer to 50% percent as participants took longer to

respond. It is possible that this effect is not related to explaining away, but rather to conserva-

tive inferences. The inference where the RT has an effect is where responses are most extreme

and so we would expect conservatism to be more pronounced for this inference. We return to

this in the discussion.

2.3.4 Conservatism. We now look at the last persistent reasoning error, namely the ten-

dency for reasoners to be conservative. Participants tended to respond conservatively with

responses being on average 4.9 percentage points (SE = 0.84, t = 5.85, p< 0.001) closer to 50%

than the normative response (see Fig 7). To quantify the relationship between time pressure

and conservative responses, we computed a variable that measured the distance that a response

moved from the normative answer towards 50% for all conflict (e.g. PðY ¼ 1jXi ¼ 1;Xj ¼ 0Þ)

and ambiguous (e.g. PðY ¼ 1jXi ¼ 1Þ) inferences. Positive values for this variable indicate that

a response was in between 50% and the normative answer (or at 50%). Positive values thus

indicate conservative inferences. Negative values indicate that a response was more extreme

(closer to 0% or 100%) than the normative response. Because this variable cannot represent

responses for which the normative response is exactly 50% these trials were excluded from this

analysis (21.9% of all trials). Additionally, we removed responses that were on the opposite

side of 50% from the normative response (12.6% of all trials). For example, if the normative

response was larger than 50%, but a participant gave a response below 50%, that trial was

removed.
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To test the impact of time pressure on conservatism, we employed a regression model using

the metric of conservative responding as dependent variable. We found a significant interac-

tion effect of Deadline and RT on conservatism (F(2, 2673) = 6.89, p = .001, BF10 = 6.48, Fig 8).

Using post-hoc contrasts, we found that the effect of RT is significant in the 6s (β = 1.90,

SE = 0.679, t(2676) = 2.79, p = .0054) and 9s deadlines (β = 1.49, SE = 0.378, t(2672) = 3.95,

p< 0.001), but not for the 20s deadline (β = 0.132, SE = 0.215, t(2672) = 0.612, p = .54). Pair-

wise contrasts revealed that the effects in the 6s and 9s conditions are not significantly different

(t(2672) = 0.520, p =. 86), while they were different from the 20s condition (versus 6s: t(2676)

= 2.48, p = .036; versus 9s: t(2672) = 3.14, p = .0049). Hence there seemed to be a micro-SAT

for conservative inferences in the 6s and 9s conditions, but not in the 20s condition. This is in

line with a main effect of RT (F(2, 2678) = 18.5, p< .001, BF10 = 4.59). We found mixed evi-

dence for a main effect of Deadline (F(2, 2668) = 4.40, p = .012, BF01 = 9.34) which could indi-

cate a macro-SAT. Contrasts indicate that there is more conservatism in the 6s deadline

condition (M = 6.39, SE = 1.43) compared to the deadlines of 9s (M = 4.93, SE = 1.39, t(2670)

= 2.74, p = .017) and 20s (M = 4.95, SE = 1.39, t(2670) = 2.67, p = .020).

Fig 6. Interaction of explaining away with response time. Estimated responses from mixed-effects regression in common effect structure based on RT

and AwayVar in Experiment 1. This plot visualizes the interaction effect AwayVar x RT on responses, i.e. the interaction between RT and explaining away,

where horizontal lines would indicate no effect of RT and differently sloped lines indicate an interaction. AwayVar here refers to the status of the non-

queried cause in the inference on the common effect structure, where -1 indicates the non-queried cause is absent, 0 that its status is unknown, and 1 that

the non-queried cause is present. The Y-axis indicates responses on percentage scale, the X-axis indicates RT (z-scored). The grey ribbons represent 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0297011.g006
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2.4 Discussion

Taken together, the results from Experiment 1 indicate that there is an overall macro-SAT in

causal probability judgements. Time pressure decreases the accuracy of responses as compared

to the normative CBN point prediction. In addition, we found evidence for a micro-SAT.

Responses with longer RTs are generally less accurate, and this micro-SAT is stronger in the

conditions with more time pressure. The micro- and macro-SATs are in opposite directions,

meaning that whether longer RTs are associated with improved accuracy depends on whether

one looks within or across conditions [64].

With regard to the systematic reasoning errors, the results of Experiment 1 reveal that Mar-

kov violations and failures to explain away are not impacted by time pressure. Of the infer-

ences relevant for explaining away, the only effect of time pressure we found was an effect of

RT on the inference where the non-queried cause is present (Fig 6). However, it seems that

this is due to conservative responding, as we do not see the effect on the other inferences rele-

vant for explaining away. For the single inference where we find an effect of RT, participants

provided estimates closer to 50% when RTs were longer. This could indicate that participants

Fig 7. Mean responses per inference. This figure indicates conservatism in both Common cause and Chain (top) and Common effect structures (bottom). Y-

axis represents the response (in %), X-axis indicates the type of inference. We collapsed over the symmetry between X1 and X2. The violin plots indicate the

response distribution of all participants, the red dot is the mean response. The green bars indicate the normative (CBN) response. The horizontal dashed black

line indicates responses at 50%. Conservatism can be seen by red dots that are closer to 50% than the green bars (for inferences where the normative response is

not 50%).

https://doi.org/10.1371/journal.pone.0297011.g007
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grasped the idea that the non-queried cause being present should not increase the probability

of the queried cause when they took more time to respond, i.e. participants grasped explaining

away when they took more time. If this were the case, however, the question remains why we

do not see the opposite effect of RT for those trials where the non-queried cause is absent,

which we would expect if the effect of RT is related to grasping the idea of explaining away.

Therefore, a more plausible explanation for the effect of RT is not related to explaining away,

but to conservatism. If the passing of time affects conservative responding, we would most

clearly see this on trials where responses are farther away from 50% and this is what we find

here.

This conjecture is bolstered by the fact that we do find that conservative responding is

impacted by time: Both a shorter deadline as well as the passing of time increase conservative

responding. This latter effect is strongest in the conditions with short deadlines. This is the

same pattern found for overall response error, and so it seems that changes in accuracy associ-

ated with time pressure and RTs are due to changes in conservative responding.

The observation that conservative responding is differently related to time pressure than

Markov violations and failures to explain away is an indication of different cognitive processes.

In particular, an interesting hypothesis is that the conservatism is the result of an increased

probability to respond at or near 50% when time increases, effectively guessing [82]. This

would entail that slow responses are associated with low confidence, reflecting that participants

Fig 8. Effect of deadlines and response time on conservatism. Estimated movement towards 50% based mixed-

effects regression in Experiment 1. This plot visualizes the Deadline x RT interaction on conservatism. The Y-axis

represents conservatism, that is, the distance a response moved from the normative answer towards 50%. The X-axis

represents RT (z-scored). The colored lines indicate the predictions, separated per deadline. The grey ribbons

represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0297011.g008
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were unsure of those answers [83]. Hence conservative responding might not be an error spe-

cific to causal reasoning, but the result of a more general cognitive principle related to uncer-

tainty. This hypothesis is tested in Experiment 2.

3. Experiment 2

Experiment 2 tests the hypothesis that the increase in conservative inferences under time pres-

sure is related to a decrease in confidence. In addition, Experiment 2 serves as a replication of

Experiment 1, which seems opportune given the scarcity of experimental findings on time

pressure effects in causal judgments. Moreover, there was a sizeable dropout rate (37% of par-

ticipants) in Experiment 1 due to the a priori exclusion criterion we set on the overall error of

responses (see S1 Appendix for an analysis of the excluded participants). Such a sizable drop-

out is not uncommon for demanding causal reasoning tasks like ours. For example, in a set of

experiments on causal attribution the dropout rate ranged from 29% to 44% [84], in a set of

studies on diagnostic inference it has been consistently around 30% [16, 85], and a set of exper-

iments on the effect of prescriptive norms on causal inferences had dropout rates of up to 37%

[86]. But, while a dropout rate like in Experiment 1 is not uncommon, it still behooves us to

replicate our findings.

3.1 Confidence

Besides replication another goal for Experiment 2 was to study the relationship between confi-

dence and conservatism. Confidence has been considered an important component of reason-

ing and decision-making more generally [83, 87–90]. Confidence tends to correlate negatively

with RT, and higher confidence is associated with more accurate judgments [83]. An impor-

tant consequence of employing time pressure manipulations is that participants need to make

responses with varying levels of confidence [88, 91, 92], which we also expect to observe. With

regard to causal reasoning, one recent study has shown that confidence can predict verbal

causal ratings [93], indicating that we can expect confidence to be relevant in understanding

causal judgments. Additionally, confidence has been used to test theories of memory retrieval

[89, 94], sensory processing [95], and decision-making [96, 97], suggesting that confidence rat-

ings can indeed reflect differences in cognitive processing.

3.2 Methods

3.2.1 Participants. 37 individuals participated in the study (9 female, mean age 28.3) for a

monetary reward of £5.63 via the Prolific platform (www.prolific.co). We selected participants

that had a 100% approval rating for previous studies they participated in on Prolific. All partic-

ipants provided informed consent and the experiment took around one hour to complete. We

used the same exclusion criteria as in Experiment 1. This resulted in the exclusion of 20 partic-

ipants due to a mean error above 18% (we return to this in the discussion, see also S1 Appendix

for an analysis of the excluded participants), and the removal of 2.2% of responses with an RT

of lower than 1.5 seconds.

3.2.2 Design and procedure. The experimental design of Experiment 2 was almost identi-

cal to Experiment 1, but differed from it in three ways: (1) the experiment was conducted

online rather than in a physical laboratory, (2) participants responded using their mouse or

trackpad instead of a joystick, and (3) at the end of each trial participants reported their confi-

dence. The use of a mouse or trackpad required an additional screen after each response where

participants were presented with their current cursor position and were asked to move it back

to the middle of the screen. The crucial difference between the experiments was that, in addi-

tion to participants’ probability estimates, we now also asked participants after each trial to
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report the confidence they had in their response. Identical to the probability judgments, partic-

ipants moved a cursor over the edge of part of a circle, which here ranged from ‘not confident

at all’ to ‘completely confident’.

3.2.3 Analyses. We used the same mixed effects regression approach as in Experiment 1.

For the analyses regarding confidence we added z-scored confidence reports as an additional

predictor. Data and analysis code are publicly available at https://osf.io/bz9vj/.

3.3 Results

3.3.1 Replication of findings from Experiment 1. We largely replicated the effects on

overal response error and the systematic reasoning errors from Experiment 1. Hence, we only

briefly report here the main results related to the systematic reasoning errors (additional analy-

ses are reported in S2 Appendix).

3.3.1.1 Markov violations and explaining away. We found no effect of deadlines (F(4, 1171) =

0.960, p = .43, BF01 = 48, Fig 9A and 9B) or RT (F(2, 1180) = 2.73, p = .065, BF01 = 3.13) on Mar-

kov independence violations in common cause and chain structures, nor did we find an effect on

these violations in the common effect structure (Deadline: F(4, 262) = 1.08, p = .37, BF01 = 9.93,

Fig 9C; RT: F(2, 265) = 1.73, p = .18, BF01 = 3.89). For explaining away we found no effect of dead-

lines (F(4, 271) = 1.18, p = .32, BF01 = 11.7, Fig 9D), but similar to Experiment 1 we found an indi-

cation of an effect of RT (F(2, 279) = 6.29, p = .002, BF10 = 0.986). This latter effect seems again to

be due to conservative responding as in Experiment 1. We found that the effect of RT is significant

for the inferences where the non-queried cause is present (PðXi ¼ 1jY ¼ 1;Xj ¼ 1Þ, β = -6.58,

SE = 1.44, t(280) = -4.56, p< .001) or unknown (PðXi ¼ 1jY ¼ 1Þ, β = -4.30, SE = 1.64, t(275) =

-2.63, p = .009). For these inferences participants responded closer to 50% when RTs were longer.

There was no effect of RT on the inferences where the non-queried cause is absent

(PðXi ¼ 1jY ¼ 1;Xj ¼ 0Þ, β = 1.77, SE = 1.57, t(276) = 1.12, p = .263).

3.3.1.2 Conservatism. Lastly, we found mixed evidence of an interaction of Deadline and

RTs on conservative responding (F(2,1676) = 4.55, p = .011, BF10 = 0.739). Focusing on main

effects, we find that there is no effect of Deadline on conservatism (F(2,1673) = 1.93, p = .15,

BF01 = 21.3), but we find a large effect of RT (F(1,1681) = 21.5, p< .001, BF10 > 100) indicating

that conservatism is sensitive to internal time pressure.

Having replicated the main findings of Experiment 1, let us now look at confidence as a pre-

dictor of overall response error and systematic reasoning errors.

3.3.2 Confidence and overall response error. Regression analysis showed there was a

main effect of confidence on error (χ2(1) = 24.0, p< 0.001, β = -6.14, SE = 1.25), indicating

that more accurate responses were associated with higher confidence. This result gives cre-

dence to the use of confidence as an index of participant’s uncertainty about their inference.

We also found an interaction effect of confidence and RT on response error (χ2(1) = 5.15, p =

.023, β = -2.62, SE = 1.16). For responses associated with low confidence longer RTs imply

larger errors, while for responses with high confidence longer RTs imply smaller errors. The

most likely interpretation for this finding is that we find longer RTs for two reasons. Some-

times long RTs reflect more deliberation, leading to more accurate responses and higher confi-

dence. But sometimes long RTs reflect that the problem is difficult, resulting in less accurate

and less confident responses. There was no interaction of confidence with the deadlines (χ2(2)

= 0.822, p = .66). In addition, the main effect of Deadline on overall error remains significant

(χ2(2) = 6.47, p = .0394).

3.3.3 Confidence in Markov violations and explaining away. To test the role of confi-

dence in Markov violations and explaining away, we included confidence as an additional pre-

dictor in our regression analyses and inspected its interactions with the violations.
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3.3.3.1 Common cause and chain structures. For the common cause and chain structures we

find a significant three-way interaction effect of confidence with the screened off variable

(ScreenedOff) and the status of the middle variable (MidVar; F(2, 1160) = 6.21, p = .003, BF10

Fig 9. Markov violations and explaining away per deadline in Experiment 2. Markov violations and explaining away per deadline in Experiment 2. Y-axis

indicates response on a percentage scale. Colored lines indicate mean responses, the error bars indicate their standard errors. The black crosses indicate the

normative response. The X-axis indicates the specific inference. Symmetric inferences are collapsed, e.g. ‘Xi | Xj = = 0’ refers to both ‘X1 | X2 = = 0’ and ‘X2 | X1

= = 0’. A. Markov violations in common cause and chain structures where the middle variable is present (Y = 1). B. Markov violations in common cause and

chain structures where the middle variable is absent (Y = 0). C. Markov violations in common effect structure. D. Explaining away in common effect structure.

https://doi.org/10.1371/journal.pone.0297011.g009
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= 1.99) as well as a significant two-way interaction of confidence with ScreenedOff (F(2, 1164)

= 4.13, p = .016, BF10 = 4.78). To understand the relationship between these Markov violations

and confidence, we plotted the response estimates at different levels of confidence in Fig 10.

Firstly, post-hoc testing indicates that there is no violation of Markov independence when the

middle variable is absent (Y = 0), as there are no differences between the levels of ScreenedOff

(ΔScreenedOff -1 vs 0 = 1.86, SE = 1.48, t(1155) = 1.26, p = .419; ΔScreenedOff 0 vs 1 = 3.04, SE = 1.49, t
(1155) = 2.04, p = .103). In the case when the middle variable was present (Y = 1), there were

significant Markov violations (ΔScreenedOff -1 vs 0 = 12.6, SE = 1.43, t(1155) = 8.23, p< .001;

ΔScreenedOff 0 vs 1 = -5.36, SE = 1.74, t(1159) = -3.09, p = .0059). For this case where the middle

variable was present, we can see from the slopes of the colored lines in Fig 10A that the Markov

violations were stronger when confidence is high (the red lines are the steepest) when compar-

ing the inferences where Xj is absent versus when it is unknown. There seems no change in

magnitude of the violation comparing the inference where Xj is unknown versus when it is

present (colored lines have the same slope). This is confirmed by looking at the effect of confi-

dence on these inferences, as the effect is larger when Xj is unknown compared to when it is

absent (Δ = 4.04, SE = 1.64, t(1163) = 2.47, p = .037, first two columns Fig 10A), but it is not

different when compared to when Xj is present (Δ = 0.107, SE = 1.65, t(1163) = 0.065, p = .998,

second and third columns Fig 10A). So higher confidence seems to lead to a larger indepen-

dence violation exclusively when comparing the PðXi ¼ 1jY ¼ 1;Xj ¼ 0Þ and PðXi ¼ 1jY ¼
1Þ inferences, and seemingly not for the other inferences (Fig 10).

Fig 10. Effect of confidence on Markov violations. Effect of confidence on Markov violations in common cause and chain structures. Colored lines are

estimated responses based on regression model, error bars indicate 95% confidence interval. The estimates are based on different levels of confidence, low

(-1SD), medium (mean), and high (+1SD). Black crosses and solid black lines indicate normative answers. Dashed line indicates 50%. This plot visualizes the

three-way interaction effect of confidence with the screened off variable (ScreenedOff) and the status of the middle variable (MidVar).

https://doi.org/10.1371/journal.pone.0297011.g010
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3.3.3.2 Common effect structure and explaining away. We did not find an effect of confi-

dence on Markov violations in common effect structure (F(2, 263) = 0.123, p = .88, BF01 =

11.0), nor did we find an effect on explaining away (F(2,273) = 0.563, p = .57, BF01 = 15.4). All

in all, it seems that Markov violations or failures to explain away are not systematically related

to the confidence participants have in their responses.

3.3.4 Confidence and conservatism. To analyze the role of confidence in conservative

inferences, we again used the same metric of conservatism as in Experiment 1, which indexes

how much a response moved from the normative answer towards 50%. Fig 11A plots partici-

pants responses against confidence, which indicates that more extreme responses were associ-

ated with higher confidence.

We conducted a regression on conservatism using RT, Deadline, confidence and all interac-

tions as predictors. We found mixed evidence for a three-way interaction (F(2, 1668) = 3.16, p
= .043, BF10 = 0.328, Fig 11B). From Fig 11B it seems that participants responded more conser-

vatively the closer they got to a deadline, and this effect is strongest for the shorter deadline

conditions. Tentatively, this effect seems to be moderated by confidence. Responses with low

confidence were generally already conservative regardless of RT and time pressure, while those

Fig 11. Confidence and conservatism. A. Scatterplot of responses and confidence. Responses are colored from red through grey to blue based on the distance

they moved towards 50% from the normative answers (i.e. conservatism). Green transparent dots represent responses that either moved beyond 50% or for

which the normative answer was 50%, and so cannot be color-coded based on their movement towards 50%. B. Plots of interaction effect of deadline, RT, and

confidence on response movement towards 50%. Based on regression model discussed in text. Grey ribbons indicate 95% confidence interval.

https://doi.org/10.1371/journal.pone.0297011.g011
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responses with high confidence moved further towards 50% the closer they got to the deadline

(see Fig 11B). Most importantly, we found strong evidence for a main effect of confidence (F(1,

1675) = 236, p< 0.001, BF10 > 100, β = -3.46, SE = 0.436), indicating that responses with lower

confidence tended to be closer to 50%. This last point is visible from the colors in Fig 11A,

which indicate how much responses moved towards 50%.

3.4 Discussion

We replicated the main findings of Experiment 1 in an online replication experiment. We

again found that Markov violations and failures to explain away are not impacted by time pres-

sure. We did find an effect of RTs on explaining away, but this, like in Experiment 1, seems to

be better explained by conservative responding. Participants decreased their response, getting

closer to 50%, with longer RTs on the inferences where the non-queried cause was present and

when it was unknown. Conservatism on these inferences should be more pronounced than for

the inference where the non-queried cause is absent as the mean responses are more extreme

for the former. Additionally, as the mean responses to the inference were below the normative

response (Fig 9C), the effect of RT means that these responses are further away from the nor-

mative response when RTs are longer. If the effect of RT was due to participants more properly

explaining away, we would expect this inference to increase, which is the opposite of what we

find.

We also replicated the effects of time pressure on conservatism. Participants respond more

conservatively when pressure to respond increases (i.e. they approach the temporal deadline).

In agreement with Experiment 1, it seems that conservative responses are qualitatively differ-

ent from Markov violations and failures to explain away.

Such a conclusion is corroborated by our analysis of confidence reports, which showed that

low confidence is associated with conservative responding, while not being systematically

related to Markov violations or failures to explain away. We did find an effect of confidence on

Markov violations but only when comparing the PðXi ¼ 1jY ¼ 1;Xj ¼ 0Þ and PðXi ¼ 1jY ¼
1; Þ inferences in the common cause and chain structures (Fig 10). The difference between

these inferences was larger when confidence was high. However, this effect was not present for

the other inferences in the common cause and chain structures, nor for the Markov related

inferences in the common effect structure. If higher confidence was truly related to larger Mar-

kov violations we would expect the effect of confidence to be present for all Markov violations,

not just the aforementioned two inferences.

We did find a systematic relationship between confidence and conservatism. Low confi-

dence was associated with increased conservatism, regardless of time pressure (see Fig 11B).

Responses high in confidence, however, seemed to vary in conservatism (red lines in Fig 11B).

Lastly, it is notable that there was a substantial drop-out rate as in Experiment 1 due to the

exclusion criterion on overall error. As discussed in the introduction to Experiment 2, while

such dropout rates are not uncommon for demanding reasoning tasks [e.g. 16, 84–86], it was a

reason for us to replicate the findings from Experiment 1. Experiment 2 had a larger dropout

rate than Experiment 1, which can be expected given the possibility of lower task compliance

when conducting online experiments [98–101]. A supplementary analysis of the excluded par-

ticipants indicates that they did not comply with task instructions or did not understand the

task (see S1 Appendix). Most importantly, we replicated the main findings from Experiment 1

using an online task. Moreover, as the participants included in the analysis have an overall

error below 18% due to the a priori exclusion criterion, we know that they are performing

above chance. This means that they understand the task to a certain degree and are engaged in
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causal inference as intended. Thus, at minimum, our findings are stable for the subpopulation

of people that understand the task and comply with task instructions.

4. General discussion

4.1 Summary of findings

Our experiments were aimed at elucidating the cognitive effect of time pressure on causal rea-

soning. To this extent we asked participants to draw causal inferences from known causal

structures and manipulated the available time to respond while measuring RT.

We found that time pressure led to quicker and less accurate responses, i.e. we found an

overall macro-SAT, in line with numerous studies on other types of reasoning and decision-

making [63, 64]. We also established that overall performance decreased with response time, a

micro-SAT [64]. Generally, the micro-SAT can take different forms, sometimes slower RTs

are associated with being less accurate and sometimes they are associated with being more

accurate [64]. In our case we find that slow responses are less accurate, indicating that the pos-

sible benefit of having more deliberation time is outweighed by an increase in time pressure

due to the passing of time. This leads to the micro- and macro-SATs being in opposite direc-

tions, meaning that whether longer RTs are associated with improved accuracy depends on

whether one looks within or across conditions [64]. In summary, while participants were over-

all less accurate when presented with shorter deadlines, within each deadline condition their

least accurate responses were those that took the longest amount of time.

Additionally, we investigated the effect of time pressure on persistent patterns of non-nor-

mative responding: Markov violations, failures to explain away, and conservative inferences

[2, 32, 33, 38]. We found that overall, the magnitudes of neither Markov violations nor failures

to explain away are affected by time pressure, neither on the macro- nor on the micro-SAT

level. This is in line with the conclusion in [18] that such violations can be the result of careful

and deliberative reasoning.

In contrast, the magnitude of conservatism is impacted by time pressure. These conserva-

tive responses were more common under stronger time pressure and conservatism increased

when participants approach the response deadline. This effect is stronger for shorter deadlines.

As this response pattern appears similar to the overall SAT effects, it is plausible that the overall

SAT is due to changes in the amount of conservatism. This is corroborated by our analysis of

confidence in Experiment 2, where we find that both conservative responding and overall

accuracy are related to participants’ confidence in their judgments. Conservatism in respond-

ing was most severe when participants were uncertain about their judgments. Hence, we con-

jecture that the pattern of conservative responding we found is due to uncertainty and

experienced time pressure. This would explain why participants respond more conservatively

the closer they get to a deadline, and why this effect is substantially smaller in the longest dead-

line condition, where participants rarely responded close to the deadline.

4.2 Potential explanations of causal reasoning

What are the implications of these findings for existing theoretical accounts? The first thing to

note is that the finding that Markov violations and failures to explain away are not sensitive to

time pressure is surprising for a number of reasons. Firstly, accuracy in judgement and deci-

sion-making typically decreases under time pressure [63, 64]. Secondly and more importantly,

it seems that promising explanations of exactly these violations predict that they would

increase; this includes the Mutation Sampler [62], and heuristic-based explanations [18, 33,

38] including the Quantum Probability theory [102].
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4.2.1 Sampling theory. Davis and Rehder [62, 103] proposed a theory of causal reasoning

that accounts for the normative violations based on a sampling procedure. This work built

upon recent developments in cognitive science that propose sampling schemes to underlie a

variety of probabilistic judgements in different domains [104–107]. The model, termed Muta-

tion Sampler, proposes that people engage in sampling over states of a causal network to make

inferences. Subsequently, people compute inferences based on the relative frequencies of

events in the generated samples.

The Mutation Sampler mechanism posits that Markov violations and failures to explain

away are due to a biased and limited sampling procedure. Deadline-induced time pressure

would further limit this sampling procedure, making the bias more pronounced, leading to

larger violations. Similarly, longer RTs would indicate a longer sampling procedure, reducing

bias and hence these violations. In this way the model would predict that the effect of delibera-

tion time would overcome that of internal time pressure. However, neither of these predictions

is borne out in our experiments.

Consistent with our findings, the Mutation Sampler does predict an increase in conserva-

tive responding due to time pressure. The prediction is not directly due to the bias in sampling

but relates to the probability of sampling from the causal states necessary to calculate the

required relative frequency. If these states are not sampled, the Mutation Sampler predicts a

default response of 50%. When presented with less sampling time (e.g., due to a response dead-

line), the number of trials on which these critical states are not yet sampled increases. This

would result in an increase of responses centered at 50%. In both our experiments we find

spikes at 50%; participants responded with 50% on 5.1% of all trials. To test if the spikes change

due to the deadlines, we conducted a repeated-measures ANOVA using the frequency of

response between 49.5% and 50.5% as dependent variable. We find that the deadlines have no

effect on the size of the spikes (F(2,84) = 1.46, p = .239, BF01 = 4.03). This suggests that the

effect of time pressure on conservative responding cannot be attributed to an increase of

responses at 50%. It should be noted, however, that the Mutation Sampler is not the only possi-

ble implementation of a sampling approach to causal reasoning [62]. For instance, the Muta-

tion Sampler could be modified by incorporating a prior probability distribution that weights

responses near 50% more strongly, which would be able to predict conservatism not just by

spikes of responses at 50%. This idea is elaborated upon in Section 4.3.

4.2.2 Heuristics and biases. There exist multiple bias- and heuristic-based explanations

of the normative violations we have discussed in this article, including an associative reasoning

bias [18], the rich-get-richer bias [38], the monotonicity assumption, conflict aversion, ambi-

guity aversion [33], and the Quantum Probability model [102]. Except for the associative bias

[18], the authors of these explanations have not explicitly considered predictions related to

time pressure as they present their theories as descriptive (in contrast with the Mutation Sam-

pler, which is a process model). However, typically the reliance on heuristics and biases

increases when people are under time pressure [108–112]. Hence, if these proposed heuristics

and biases function as typical heuristics and biases do (the authors provide no reasons for why

we should not expect them to), we would expect that the increased reliance on them due to

time pressure would result in larger normative violations. For example, Rehder and Wald-

mann conclude that people’s inferences are “a product of an interaction between the norma-

tive model and the rich-get-richer principle” [38]. Assuming that the richer-get-richer bias

functions as a typical bias, we would expect the relative contribution of the richer-get-richer

bias to increase under time pressure. On the other hand, when there is little time pressure, par-

ticipants would be able to engage in more deliberative strategies that would decrease the reli-

ance on heuristics and biases, and thus decrease violations. Similarly, a dual-systems

perspective that attributes the reasoning errors to System I responses (such as discussed in
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[18]), would also wrongly predict an increase of these errors under time pressure as time pres-

sure is known to increase intuitive responding [60, 113]. Again, these accounts, like the sam-

pling account, predict that the effect of an increase in deliberation time would outweigh the

negative effect of internal time pressure on accuracy.

While we do find an effect of time pressure on overall accuracy, we do not find a systematic

effect on Markov violations and failures to explain away, which is not consistent with this per-

spective on the working of biases and heuristics under time pressure. We could speculate that

some heuristics are more affected by time pressure than others. Heuristics and biases that

explain Markov violations and failures to explain away by inducing correlations between vari-

ables (the associative bias [18]; the richer-get-richer principle [38]; the monotonicity assump-

tion [33]) could be more resilient to time pressure. These heuristics can be implemented by

the simple tallying of positive and negative cues in the stimulus, i.e. a tallying strategy [114],

which could be such a fast and automatic strategy that it is not affected by time pressure.

Rehder [18] discusses the idea that associative reasoning might not be affected by more exten-

sive deliberation, especially when reasoners are not confronted with a cue that they are wrong,

because associative responses are so easy to generate. In addition, he raised the possibility that

while being able to reason causally, people might often lack the metacognitive awareness that

associative and causal reasoning might result in different responses. A possible explanation is

then that the heuristics accounting for conservatism, like ambiguity and conflict aversion [33],

might be more sensitive to time pressure as they are directly related to uncertainty which is

affected by time pressure. However, these heuristics also partly predict Markov violations and

failures to explain away. Hence it is unclear whether they are part of the right explanation,

since if these heuristics are truly responsible for conservatism and are affected by time pres-

sure, we should have observed a systematic impact of time pressure on Markov violations and

failures to explain away.

4.3 Different classes of violations and implications for theories of causal

reasoning

None of the theories just discussed seem to be consistent with all our observations. Neverthe-

less, our results do point to a way forward. Our results indicate that not all systematic non-nor-

mative reasoning patterns in causal reasoning are the result of a single cognitive process or

mechanism.

The sensitivity of conservative inferences to time effects and their relationship to confidence

suggest that they have a different source than Markov violations and failures to explain away.

This seems probable considering that these errors are of different types. While Markov viola-

tions and failures to explain away refer to the not adhering to normative (in)dependence rela-

tionships between certain causal variables, conservative inferences are not related to such (in)

dependencies stipulated by CBNs. Moreover, Markov violations and failures to explain away

are relational in the sense that they require the comparison of multiple judgments, while con-

servatism is measured only in comparison with a normative response. In light of these theoret-

ical considerations and our results, it seems clear that we should view Markov violations and

failures to explain away as belonging to a different class of errors than conservatism. This is at

odds with existing theories of causal reasoning that attempt to explain all three errors partly

with the same mechanism (the Mutation Sampler in [62]; Beta Inference, Conflict, and Ambi-

guity Aversion in [33]).

Our findings suggest that conservative inferences could be the outcome of a more general

phenomenon related to uncertainty. Indeed, conservatism has been found in a wide variety of

tasks in which participants have to judge probabilities [115–119]. When participants are

PLOS ONE Probabilistic causal reasoning under time pressure

PLOS ONE | https://doi.org/10.1371/journal.pone.0297011 April 11, 2024 24 / 31

https://doi.org/10.1371/journal.pone.0297011


uncertain, as evidenced by confidence judgments, they might use ‘default’ or safe response

options, such as the middle of the scale [35]. This ties into a larger issue concerning the

interpretation of probabilities [120, 121]. Simply put, a response of ‘50%’ can represent a

strong belief of a participant that the correct answer is ‘50%’, but such a response can also

represent the lack of a strong belief, i.e. epistemic uncertainty. That we found conservatism

to be related to uncertainty provides evidence for the latter interpretation: participants

seem to respond near 50% because they are uncertain about the correct answer, not because

they necessarily believe the correct answer to be near 50%. Following this line of reasoning,

we can view participants’ probability responses as an expression of second-order probabili-

ties, i.e. the probability that a probability (judgement) is correct or ‘epistemic reliability’

[122]. This interpretation of responses around 50% is bolstered by recent findings in non-

probabilistic causal judgements tasks. In these tasks, participants are asked to rate to what

extent one factor caused another, and participants were found to use the middle of the scale

when they were uncertain [93].

We conjecture that the conservatism we observe is due to participants using priors on the

inference [123]. Priors on causal parameters (in particular causal strengths) have been pro-

posed before [25, 33, 124, 125]. One problem with such an approach is that it can’t explain dif-

ferences in conservatism across inferences [33]. However, what we propose is that participants

could include prior knowledge about good responses to a query. When people are presented

with a stimulus, they integrate the evidence they gain from the stimulus with prior informa-

tion. In Bayesian terms, the stimulus is the ‘likelihood’. If they are unable to gather much evi-

dence for a response from a stimulus, e.g. in the case of a conflict or ambiguous trial, the prior

will dominate. Conversely, if the stimulus is clear-cut, providing consistent cues (as in e.g.

PðXi ¼ 1jY ¼ 1;Xj ¼ 1Þ, its influence will dominate the posterior (that is, the judgment). This

explanation would be in line with recent trends modelling cognition using Bayesian principles

[126–129]. Such a mechanism could explain conservatism overall, and additionally the effect

of time pressure on conservatism; with more time pressure less evidence can be gained from

reasoning based on the stimulus and hence the effect of the prior on the judgment increases.

In the case of extreme uncertainty, when there would be no to little incorporation of informa-

tion from the stimulus, this might result in responding at exactly 50%. This could explain the

spikes of responses at 50% in causal judgement studies, if we assume that the prior knowledge

that participants incorporate puts an emphasis on 50%. Our results are in line with viewing

confidence judgements as an indication of the relative contribution of a prior to people’s

judgements.

5. Conclusion

Our study for the first time shows that causal reasoning mechanisms are systematically affected

by both external (deadlines) and internal (passing of time) time pressure. This revealed a com-

plex pattern of macro- and micro-SAT, which can be used to test and inform theories of causal

reasoning. It seems that conservative inferences are the result of a different cognitive mecha-

nism than that responsible for Markov violations and failures to explain away, as the former is

related to time pressure and confidence while the latter are not. This study therefore also

emphasizes the need for a wider range of behavioral phenomena than just plain mean

responses to be incorporated into theories and computational models of causal reasoning.

Incorporating more detailed phenomena–like the (in)sensitivity to time pressure, confidence

[93], but also between- [33, 62] and within-participant [35] variability–will lead to better theo-

ries. Other domains of judgment and decision-making have benefitted enormously from such

a turn.
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