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Abstract

This study aimed to separately compare and rank the effect of various living-low and train-

ing-high (LLTH) modes on aerobic and anaerobic performances in athletes, focusing on

training intensity, modality, and volume, through network meta-analysis. We systematically

searched PubMed, Web of Science, Embase, EBSCO, and Cochrane from their inception

date to June 30, 2023. Based on the hypoxic training modality and the intensity and duration

of work intervals, LLTH was divided into intermittent hypoxic exposure, continuous hypoxic

training, repeated sprint training in hypoxia (RSH; work interval: 5–10 s and rest interval:

approximately 30 s), interval sprint training in hypoxia (ISH; work interval: 15–30 s), short-

duration high-intensity interval training (s-IHT; short work interval: 1–2 min), long-duration

high-intensity interval training (l-IHT; long work interval: > 5 min), and continuous and inter-

val training under hypoxia. A meta-analysis was conducted to determine the standardized

mean differences (SMDs) among the effects of various hypoxic interventions on aerobic

and anaerobic performances. From 2,072 originally identified titles, 56 studies were

included in the analysis. The pooled data from 53 studies showed that only l-IHT (SMDs:

0.78 [95% credible interval; CrI, 0.52–1.05]) and RSH (SMDs: 0.30 [95% CrI, 0.10–0.50])

compared with normoxic training effectively improved athletes’ aerobic performance. Fur-

thermore, the pooled data from 29 studies revealed that active intermittent hypoxic training

compared with normoxic training can effectively improve anaerobic performance, with

SMDs ranging from 0.97 (95% CrI, 0.12–1.81) for l-IHT to 0.32 (95% CrI, 0.05–0.59) for

RSH. When adopting a program for LLTH, sufficient duration and work intensity intervals

are key to achieving optimal improvements in athletes’ overall performance, regardless of

the potential improvement in aerobic or anaerobic performance. Nevertheless, it is essential

to acknowledge that this study incorporated merely one study on the improvement of anaer-

obic performance by l-IHT, undermining the credibility of the results. Accordingly, more

related studies are needed in the future to provide evidence-based support. It seems difficult

to achieve beneficial adaptive changes in performance with intermittent passive hypoxic

exposure and continuous low-intensity hypoxic training.
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Introduction

The hypoxic training techniques of “Live High-Train High” (LHTH) and “Live High-Train

Low” (LHTL), which necessitate athletes to spend daily prolonged durations in high altitudes,

have been used for over half of a century [1, 2]. This camp-style hypoxic technique is often

employed by individual and team-sport athletes during the pre-season training phase to gain a

competitive edge. However, research has suggested that such long-term hypoxic exposure

training can potentially cause a range of detrimental effects in athletes (such as muscle cell

deterioration and immunological disruptions etc.) [3–8]. In recent years, with the evolution of

hypoxia equipment and to mitigate the drawbacks associated with chronic hypoxia [9], most

studies have focused on LLTH modes that expose athletes to only discrete hypoxia during spe-

cific training or rest periods [10–12]. Recent reviews have introduced updated panorama for

hypoxia training [13, 14] and divided LLTH into two major categories (active and passive)

based on the parameters of the training regimen. The passive hypoxic paradigm is intermittent

hypoxic exposure (IHE), where athletes are exposed to short (<3 hours) yet intense passive

hypoxia during rest periods [15]. The active hypoxic paradigm encompasses continuous hyp-

oxia training (CHT), which is a moderate-intensity training that lasts for approximately 30

minutes [16], and intermittent (moderate-high intensity) hypoxia training. According to the

training duration and ratio of work to rest, intermittent training can be divided into repeated

sprint training in hypoxia (RSH; work interval: 5–10 s and rest interval: approximately 30 s)

[17], interval sprint training in hypoxia (ISH; work interval: 15–30 s) [18], high-intensity inter-

val training (IHT; short duration: 1–2 min [19] and long duration: > 5 min [20]). In addition,

some studies have combined continuous and intermittent hypoxia training aimed at optimiz-

ing aerobic and anaerobic capabilities concurrently [21–23].

Current literature has suggested that LLTH variants cannot trigger adequate hypoxic sti-

muli to induce related hematological alterations [24–26]. The associated primary mecha-

nism is to induce muscular and peripheral adaptations [15, 27] by adding extra hypoxic

load during training. However, the ongoing discourse about the effectiveness of various

LLTH variants remains unresolved [28–31]. Critics argue that restriction of oxygen avail-

ability could substantially decrease absolute training intensity [31, 32]. This could poten-

tially induce degenerative changes, subsequently limiting the enhancement of sea-level

performance. The first meta-analysis conducted by Bonetti and Hopkins (2009) on hypoxic

training suggested that compared with normoxic training, LLTH does not significantly

enhance athletes’ performance. However, some perspectives have highlighted that previous

studies did not consider the potential impact of variable training prescriptions [10, 14].

Recent meta-analyses have also suggested that high-intensity interval training [33] or

repeated sprint training [34] in a hypoxic condition can effectively improve performance or

aerobic capacity in athletes. Training at different duration and intensities has been shown

to place diverse physiological demands on the body, leading to potential differences in sub-

sequent adaptive changes, irrespective of whether the environment is normoxic or hypoxic

[28, 35]. Hence, discerning the disparities in performance outcomes across diverse training

modalities of LLTH is crucial for its practical application.

Compared with the usual meta-analysis used in previous studies, network meta-analysis

(NMA) can generate a clear hierarchy between various interventions by synthesizing the

results of direct and indirect comparisons to derive more comprehensive and definitive com-

parison results [36, 37]. Therefore, LLTH variants were meticulously divided based on their

various training parameters. Subsequently, we conducted an NMA to comprehensively com-

pare and rank the performance (i.e., aerobic and anaerobic) enhancement effects of various

hypoxic training modes in athletes.
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Methods

This meta-analysis was conducted in accordance with the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses NMA (S1 Checklist and S1 File) [38]. Additionally, the

study protocol has been registered with PROSPERO under registration number

CRD42023421683.

Data source and search

The following English electronic databases were searched systematically: PubMed, Web of Sci-

ence, Embase, EBSCO, and Cochrane from their inception date to June 30, 2023. The follow-

ing search syntax was utilized: (“altitude” OR “hypoxia”) AND (“high-intensity interval

training” OR “repeated sprint training” OR “interval sprint training” OR “continuous train-

ing” OR “intermittent exposure” OR “performance”) (S1 Table). we manually searched all

review articles related to altitude or hypoxic training and traced additional possible studies by

reviewing their reference lists.

Study selection

The standards were based on the PICOS approach (participants, interventions, comparators,

outcomes, and study design). The participants were athletes who had received training but had

not been exposed to hypoxia in the last 6 months. There were no criteria regarding the sport

type and training level of the participants (youth teams, university teams, national teams, pro-

fessional club teams, etc.). We categorized LLTH into seven modes based on the training type,

intensity, and volume (duration of work interval) (for detailed classification and definition, see

Fig 1 and Table 1 in S2 File) (Table 1). All the training plans for the control group are imple-

mented in a normoxic environment. In the face-to-face studies included in the selected sys-

tematic reviews, the comparator should be any of the seven hypoxic modes. At least one test

result of interest should have been obtained in the study. The results were mainly divided into

Table 1. Definition of LLTH modes.

Hypoxic training mode Definition

Repeated sprint training in hypoxia

(RSH)

the repetition of several short “all-out” exercise bouts (�15 s) in hypoxia

interspersed with incomplete recoveries (30 s, exercise-to-rest ratio <1:4)

Interval sprint

training in hypoxia

(ISH)

Several “all-out” sprints bouts (usually 30 s) in hypoxia interspersed with

recoveries (2–5 min)

Short-duration

high-intensity

Interval training

(s-IHT)

Several short-term high-intensity exercise bouts (1–3 min) in hypoxia

interspersed with recoveries (2-5min)

Long-duration

high-intensity

interval training

(l-IHT)

Several long-term high-intensity exercise bouts (>3 min) in hypoxia

interspersed with recoveries (2-5min)

Continuous

hypoxic training

(CHT)

Moderate-high intensity continuous training (30-60min) in hypoxia

Continuous and Interval training

under Hypoxia

(C+I)

1) One session consisting of continuous and interval training

2) Interval and continuous training sessions were conducted separately during

a week

Intermittent

Hypoxic exposure

(IHE)

intermittent exposure to a severe hypoxia during rest

1) Alternatively receiving normoxia and hypoxia exposure

2) Persistently receiving hypoxia exposure

https://doi.org/10.1371/journal.pone.0297007.t001
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two categories according to the metabolic characteristics in the test: aerobic and anaerobic per-

formances. The reference indicators for aerobic and anaerobic performances include some test

results that have been proven to be highly correlated. We have chosen the Incremental Tread-

mill Test (Time to exhaustion (min) etc.), 3 min All-Out Test (average power output (W) etc.),

YYIR test level I and II (Ddistance Covered (m)), Run test (distance� 1000 m; duration (sec-

onds or minutes)), Cycle test (durations� 10 min; duration (seconds or minutes)), Swiming

test (distance� 400 m; duration (seconds or minutes)) and constant-load test (Time to

exhaustion (seconds or minutes) etc.) as the reference indicatorfor aerobic performance, and

the Wingate Test (average power output (W) etc.), RAS test (peak power output (W)), Maxi-

mal anaerobic test (duration (seconds or minutes)), Supramaximal time to fatigue test (dura-

tion (seconds or minutes)), Run test (distance� 800 m, or durations� 2 min; duration

(seconds or minutes)) and Swiming test (� 200 m; duration (seconds or minutes)) as the stan-

dard for anaerobic performance, for details on the selection of reference indicators, S4 File. In

designing this study, we mainly considered randomized controlled studies (including the front

and back parts of crossover randomized controlled studies) and conducted a meta-network

analysis of studies on various types of hypoxic and normoxic training. We excluded studies on

a single exercise in an acute hypoxia condition. In addition, studies that included special train-

ing interventions (i.e., cold, hot, or humid environments, blood flow restriction intervention,

etc.) or special nutritional supplements (i.e., nitrate, caffeine, etc.) were excluded.

Data extraction and quality evaluation

All relevant articles retrieved from the aforementioned electronic databases were stored in

EndNote X9 reference manager, and three investigators reviewed and selected the retrieved

articles based on the aforementioned reference criteria. Subsequently, relevant data was

extracted from the qualified articles. Information extracted included publication information

(author and year), research participants (sample size, gender ratio, participants’ sports, and

training level), experimental design (type of experiment), intervention measures (hypoxia

mode and hypoxia dosage [km/h]; details of the hypoxic dose model are provided in S3 File),

duration and frequency of training (training plan and supplementary training), and test results

(the outcome measures selected per study are shown in the Table 2). The hypoxic dosage

between different hypoxic types was coordinated using the “kilometer hours” model [39]. The

dosage model was defined as km�h = (m/1000)× h (“m” represents the altitude of the exposure

environment; “h” represents the total exposure duration).

The methodological quality of the Included articles was evaluated by two independent

reviewers using the Physiotherapy Evidence Database (PEDro) scale [40]. The PEDro scale

includes 11 items made up of three items from the Jadad scale and nine items from the Delphi

list. The PEDro scale score for randomized controlled trials ranges from 0 (low quality) to 10

(high quality), and a score of�6 represents high-quality research. The first item on the PEDro

scale (eligibility criteria specified) is used to establish external validity; thus, the score is not

included in the total score. Any disagreement during the above process was resolved by a

review group within the team (HY, YH, TS and XM) through consensus and arbitration.

Statistical analysis

We used the R software (version 3.6.3) package netmeta (www.rproject.org) to perform the

NMA, combining direct and indirect comparisons in a frequency model [41, 42]. The stan-

dardized mean difference (SMD) and 95% credible interval (CI) was used as effect size indica-

tors. We used the random effects NMA model to collate the size of the study effect. The circle

size in the network evidence graph represents the sample size, and the lines between the circles
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represent direct comparisons between two types of physical activities or interventions. The

width of the connecting line reflects the number of studies that directly compared the two

interventions. If no connecting line is established between the two types of physical activities,

we performed indirect comparisons using NMA. In addition, the SMD and 95% CI of all

paired comparisons are reported, and the effect of each physical activity intervention on maxi-

mal oxygen uptake compared with that observed in the control group is reported in a league

table using a forest plot. We ranked the types of physical activities using P scores based on the

degree of improvement in maximal oxygen uptake among athletes. The P score ranges from 0

to 1, with a higher score indicating a greater improvement in aerobic capacity [43]. We used

the tau squared (τ2) test and p-value to qualitatively analyze heterogeneity between the studies

[44, 45]. The larger the τ2 and the smaller the p-value, the bigger the heterogeneity. Conversely,

the smaller the τ2 and the bigger the p-value, the smaller the heterogeneity. In addition, we

used I2, which is distributed between 0% and 100%, to quantitatively analyze the heterogeneity

between the study results. An I2 less than 25% indicated low heterogeneity, ranging from 25%

to 50% indicated medium heterogeneity; and>75% indicated high heterogeneity. Therefore,

when I2 was >50%, the heterogeneity was significant. We used global and local methods to test

for inconsistency in the study results. For global inconsistency, we used the design-by-treat-

ment test to evaluate inconsistency [46]. In addition, we used the node-splitting method in the

R netmeta package for the local inconsistency test [47]. We conducted network meta-regres-

sion analysis using the R gemtc package to analyze potential sources of heterogeneity (publica-

tion year, sample size, mean age, percent male, exercise duration, exercise frequency, and total

time per session). We compared adjusted funnel plots to evaluate the risk of publication bias

under specific circumstances. Additionally, we analyzed the funnel plots using the Egger

method. A p<0.05 indicated publication bias. We evaluated the sensitivity of our study by

repeating each NMA after excluding studies with high risk of bias.

Results

Study characteristics and quality assessment

The search process of the systematic reviews is shown in Fig 1. After excluding 2,292 reports

based on the title and abstract, 444 full-text articles were retrieved. During the examination of

the full texts, we selected and included 56 studies with interesting results (the citations

included studies are provided in S3 Table). A total of 1,040 participants, most of whom were

male (n = 964/92.69%), were included in the 56 studies. Additionally, most participants were

endurance athletes (n = 770/74.04%). All the participants in the included studies, except two

who were boxing and tennis players, were team-sports athletes (n = 270/25.96%). The sample

size for the studies ranged from 4 to 25. The training period ranged from 5 to 56 days (average,

28.9 days, standard deviation [SD] = 13.214), and the weekly exercise training frequency ran-

ged from 2 to 7 (average frequency, 3.44, SD = 1.67). The specific parameters of the training

programs in each study are shown in Table 2 (the scoring details per study are provided in

S2 Table). The PEDro scale was used to determine the quality of the included study, with

results showing an average score of 6.327±1.203 and indicating a generally high methodologi-

cal quality. Only three studies had scores below the predetermined threshold of 5 points.

Network meta-analysis

Aerobic performance. Fig 2 displays a network diagram of the qualified aerobic perfor-

mance comparisons; all hypoxic training methods were compared with normoxic training at

least once. A total of 53 studies reported changes in their primary outcome, aerobic perfor-

mance among 1,021 participants (98.17%). The forest plot (Fig 3) shows that only l-IHT and
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Fig 1. Search terms and outcomes.

https://doi.org/10.1371/journal.pone.0297007.g001
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RSH were significantly more effective than normoxic training in improving athletes’ aerobic

performance, with SMDs of 0.78 (95% credible interval [CrI], 0.52–1.05) for l-IHT and 0.30

(95% CrI, 0.10–0.50) for RSH. Based on the P scores, l-IHT had the best effect (P score: 1.00).

The league plot (Table 3) results showed that l-IHT can improve an athlete’s aerobic perfor-

mance better than all the other hypoxic modes, with an SMD ranging from 0.49 and 0.78. The

I2 value for aerobic performance was 8% (low heterogeneity). The global Q score for inconsis-

tency was 0.55 with a p-value of 0.6774 (Statistical methods in details, evaluation of heteroge-

neity and inconsistency in S5 and S6 Files).

Anaerobic performance

Fig 4 shows the network graph of anaerobic performance comparisons, where only RSH and

ISH were directly compared. 29 studies reported changes in anaerobic performance in the

main results of 568 participants (54.62%). Compared with conventional oxygen training, all

intermittent hypoxia training methods (l-IHT, ISH, s-IHT, and RSH) showed significant

Fig 2. Network plot of aerobic performance. The size of the nodes corresponds to the number of participants

randomized to each hypoxic training. Exercise type with direct comparisons are linked with a line; its thickness

corresponds to the number of trials evaluating the comparison. IHE “intermittent hypoxic exposure”; CHT

“continuous hypoxic training”; RSH “Repeated sprint training in hypoxia”; ISH “Interval sprint training in hypoxia”; s-

IHT “Short-trem high-intensity Interval training”; l-IHT “Long-term high-intensity interval training”; C+I

“Continuous and Interval training under Hypoxia”; CON “control group (normoxic training)”.

https://doi.org/10.1371/journal.pone.0297007.g002
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improvements in anaerobic performance, with SMDs (95% CrI) ranging from 0.97 (0.12–1.81)

for l-IHT to 0.32 (0.05–0.59) for RSH, and l-IHT ranks first with a P-score of 0.95 (Fig 5). In

addition, the NMA results (Table 4) showed that all intermittent hypoxic training could

improve anaerobic performance better than continuous and interval training under hypoxia

and normoxic training. However, it should be noted that this study only included one study

Fig 3. Forest plot change in effect of aerobic performance. Various LLTH modes are ranked according to the surface under

the curved cumulative ranking probabilities. Treatments crossing the y-axis are not signifcantly diferent from CON. The n value

represents the number of studies that were directly compared to the control group. SMD “standardized Mean Diference”; CrI

“Credible Interval”; IHE “intermittent hypoxic exposure”; CHT “continuous hypoxic training”; RSH “Repeated sprint training

in hypoxia”; ISH “Interval sprint training in hypoxia”; s-IHT “Short-trem high-intensity Interval training”; l-IHT “Long-term

high-intensity interval training”; C+I “Continuous and Interval training under Hypoxia”; CON “control group”.

https://doi.org/10.1371/journal.pone.0297007.g003

Table 3. League table for changes in aerobic performance associated with various LLTH modes.

l-IHT . . . . . . 0.78

(0.52;1.05)

0.49

(0.15;0.82)

RSH . . . . -0.03

(-1.25;1.19)

0.31

(0.10;0.51)

0.55

(0.09;1.00)

0.06

(-0.36;0.48)

s-IHT . . 0.18

(-0.49;0.85)

. 0.20

(-0.18;0.58)

0.60

(0.19;1.01)

0.11

(-0.26;0.49)

0.05

(-0.44;0.54)

C+I . . . 0.18

(-0.13;0.50)

0.64

(0.27;1.01)

0.15

(-0.18;0.48)

0.09

(-0.36;0.54)

0.04

(-0.37;0.4)

IHE . . 0.15

(-0.11;0.40)

0.69

(0.20;1.17)

0.20

(-0.25;0.65)

0.14

(-0.35;0.62)

0.09

(-0.43;0.6)

0.05

(-0.43;0.53)

CHT . 0.07

(-0.36;0.49)

0.76

(0.22;1.30)

0.28

(-0.23;0.78)

0.21

(-0.39;0.81)

0.16

(-0.41;0.73)

0.12

(-0.41;0.66)

0.08

(-0.55;0.7)

ISH -0.03

(-0.54;0.48)

0.78

(0.52;1.05)

0.30

(0.10;0.50)

0.24

(-0.14;0.61)

0.18

(-0.13;0.5)

0.15 (-0.11;0.40) 0.10

(-0.31;0.5)

0.02

(-0.45;0.49)

CON

All results are presented in the form of SMD (95% CrI). various LLTH modes are ranked according to the surface

under the curve cumulative for overall effect starting with the best from left to right. The results of the network meta-

analysis are showed in the lower left part, and results from pairwise comparisons in the upper right half (if available).

Cells shown in bold indicate signifcant results. IHE “intermittent hypoxic exposure”; CHT “continuous hypoxic

training”; RSH “Repeated sprint training in hypoxia”; ISH “Interval sprint training in hypoxia”; s-IHT “Short-trem

high-intensity Interval training”; l-IHT “Long-term high-intensity interval training”; C+I “Continuous and Interval

training under Hypoxia”; CON “control group (normoxic training)”.

https://doi.org/10.1371/journal.pone.0297007.t003
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on the improvement of anaerobic performance by l-IHT. The I2 value for anaerobic perfor-

mance was 20.5% (low heterogeneity). The global Q score for inconsistency was 0.14 with a p-

value of 0.7037 (Statistical methods in details, evaluation of heterogeneity and inconsistency in

S5 and S6 Files).

Discussion

This study classified LLTH into several specialized hypoxic modes according to the type, inten-

sity, and volume of training prescription and subsequently used NMA to comprehensively

compare and rank the effects of the various hypoxic modes on athletes’ aerobic and anaerobic

performances. The results showed that only active intermittent hypoxic modes (l-IHT, s-IHT,

RSH, and ISH) compared with normoxic training were effective in improving athletes’ perfor-

mance. Of these, for both aerobic and anaerobic performances, l-IHT with a high volume (lon-

ger duration of training interval) and intensity showed the best results. It seems difficult to

achieve beneficial adaptive changes in performance with intermittent passive hypoxic exposure

and continuous low-intensity hypoxic training.

Fig 4. Network plot of anaerobic performance. The size of the nodes corresponds to the number of participants

randomized to each hypoxic training. Exercise type with direct comparisons are linked with a line; its thickness

corresponds to the number of trials evaluating the comparison. IHE “intermittent hypoxic exposure”; CHT

“continuous hypoxic training”; RSH “Repeated sprint training in hypoxia”; ISH “Interval sprint training in hypoxia”; s-

IHT “Short-trem high-intensity Interval training”; l-IHT “Long-term high-intensity interval training”; C+I

“Continuous and Interval training under Hypoxia”; CON “control group (normoxic training)”.

https://doi.org/10.1371/journal.pone.0297007.g004
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The pooled data indicates that among various LLTH modes, only intermittent modes with

high-intensity and large-volume training had significant large effects on enhancing aerobic

performance. The findings substantiate the perspective that high intensity is integral to

enhancing an athlete’s endurance during hypoxic training [10, 15, 35]. In a hypoxic environ-

ment, the diminished oxygen content inevitably affects arterial oxygen pressure (SaO2), reduc-

ing oxygen availability to muscle and brain tissues and constraining aerobic metabolic

function [48]. Such physiological responses could notably impair performances during train-

ing with high aerobic components [49–51]. Additionally, it has been confirmed that high-level

Fig 5. Forest plot change in effect of anaerobic performance. Various LLTH modes are ranked according to the surface under

the curved cumulative ranking probabilities. Treatments crossing the y-axis are not signifcantly diferent from CON. The n value

represents the number of studies that were directly compared to the control group. SMD “standardized Mean Diference”; CrI

“Credible Interval”; IHE “intermittent hypoxic exposure”; CHT “continuous hypoxic training”; RSH “Repeated sprint training in

hypoxia”; ISH “Interval sprint training in hypoxia”; s-IHT “Short-trem high-intensity Interval training”; l-IHT “Long-term high-

intensity interval training”; C+I “Continuous and Interval training under Hypoxia”; CON “control group (normoxic training)”.

https://doi.org/10.1371/journal.pone.0297007.g005

Table 4. League table for changes in anaerobic performance associated with various LLTH modes.

l-IHT . . . . . 0.97

(0.12;1.81)

0.56

(-0.36;1.48)

ISH . 0.32

(-0.97;1.61)

. . 0.38

(0.01;0.76)

0.65

(-0.24;1.54)

0.09

(-0.36;0.54)

s-IHT . . . 0.32

(0.05;0.59)

0.64

(-0.23;1.52)

0.08

(-0.33;0.50)

-0.01

(-0.36;0.35)

RSH . . 0.32

(0.10;0.56)

0.87

(-0.09;1.82)

0.30

(-0.26;0.87)

0.21

(-0.30;0.73)

0.22

(-0.27;0.71)

IHE . 0.10

(-0.33;0.53)

2.13

(0.72;3.54)

1.57

(0.38;2.75)

1.48

(0.32;2.64)

1.49

(0.37;2.63)

1.26

(0.06;2.47)

C+I -1.16

(-2.29;-0.04)

0.97

(0.12;1.81)

0.40

(0.04;0.76)

0.32

(0.05;0.59)

0.32

(0.10;0.55)

0.10

(-0.33;0.53)

-1.16

(-2.29;-0.04)

CON

All results are presented in the form of SMD (95% CrI). various LLTH modes are ranked according to the surface

under the curve cumulative for overall effect starting with the best from left to right. The results of the network meta-

analysis are showed in the lower left part, and results from pairwise comparisons in the upper right half (if available).

Cells shown in bold indicate signifcant results. IHE “intermittent hypoxic exposure”; CHT “continuous hypoxic

training”; RSH “Repeated sprint training in hypoxia”; ISH “Interval sprint training in hypoxia”; s-IHT “Short-trem

high-intensity Interval training”; l-IHT “Long-term high-intensity interval training”; C+I “Continuous and Interval

training under Hypoxia”; CON “control group (normoxic training)”.

https://doi.org/10.1371/journal.pone.0297007.t004
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athletes are likely to encounter greater impairments [52, 53]. Absolute exercise intensity in the

hypoxic group that is not only markedly lower than the normoxic group but also falls short of

the threshold that could invoke beneficial adaptations is observed when CHT, requiring a rela-

tively lesser intensity, is implemented [10, 54]. Conversely, matching a higher training inten-

sity (VT2/anaerobic threshold/80% VO2max) during intermittent hypoxia training can

mobilize a larger proportion of anaerobic metabolism to participate in energy supply [55], lim-

iting the decrease in absolute exercise intensity [56]. Presently, it is understood that CHT

exhibits a strong correlation with the amplification of aerobic performance and metabolic

adaptations in active muscles. Hypoxic training with adequate intensity may enhance muscle

oxidative capacity by optimizing substrate selection and augmenting mitochondrial function

[57–59]. As high-intensity training continues, a large amount of lactic acid gradually accumu-

lates in the tissues, which strongly stimulates the buffering capacity of the muscles [27]. Previ-

ous reports have indicated that after high-intensity hypoxic training, compared with normoxic

training, the monocarboxylate transporter (MCT-1/4) related to H+ management shows sig-

nificant adaptive changes [23, 60, 61], and the density of the capillaries in the working muscles

(the ratio of muscle fibers to capillaries) also increases significantly [54, 62].

In addition to high intensity, longer work-interval duration (higher volume of training and

hypoxic dose) is closely related to the improvement of endurance and aerobic capability [63–

66]. Our results support this hypothesis, as both ISH and s-IHT did not show superiority over

normoxic training. Adequate training volume cannot only pose greater challenge to aerobic

metabolism and pH regulation but can also trigger special adaptations with more hypoxic dose

application. A decrease in tissue Fraction of Inspired Oxygen (FiO2) catalyzes the accumula-

tion of Hypoxia-Inducible Factor 1 (HIF-1) [67–69], a transcription factor that decays rapidly

in normoxic environments [70]. This transcription factor has been validated to effectively acti-

vate regulatory factors related to the aforementioned metabolic adaptations [71, 72]. Further-

more, after high-intensity hypoxic training, various adaptation mechanisms closely related to

aerobic performance (such as myoglobin concentration, citrate synthase, exercise economy,

etc.) have been widely reported [9, 59, 73, 74]. Moreover, several studies have enhanced the

comprehension of these physiological adaptations following l-IHT by evaluating related

mRNA [9, 72, 75]. However, no studies have directly explored the impact of specific training

variables (intensity and volume) on the amplification of aerobic performance in athletes dur-

ing hypoxic training.

Beyond training intensity and volume, the degree of hypoxia is also a significantly vital ele-

ment of training prescription. Studies on acute hypoxia have evidenced that exposure to mod-

erate altitudes significantly impairs SaO2 and disturb dynamic balance [76]. The degree of

stimulation increases with increasing altitude [77]. However, Karayigit et al. (2022) conducted

separate investigations into the acute impacts of moderate and high hypoxia levels on the

high-intensity intermittent performance of athletes. The studies revealed no substantial differ-

ences between both conditions, and no significant detriments were observed compared with

that observed in the normoxic group. Additionally, Warnier et al.’s research found no notable

variation in performance enhancement (measured according to incremental test results)

across the 2000 m, 3000 m, and 4000 m hypoxic groups following a six-week course of hypoxia

training [78]. However, given the scarcity of studies and small sample size, these findings are

insufficient to conclusively assert any uniform impact of varied hypoxia levels in high-intensity

training on athletes’ aerobic capacity. Finally, the physiological responses and adaptations

post-hypoxia demonstrate discernible individual variations, which cannot be ignored [53].

Several studies have indicated that elite athletes, compared with athletes at the lower training

levels, endure more significant damage in hypoxic conditions, primarily due to the restrictions

in pulmonary gas exchange [52]. This finding is corroborated by the strong correlation
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between sea-level and hypoxic VO2max [79]. While the oxidative capacity of elite athletes may

have reached its limit after extensive years of training, Ponsot et al. reported that post-IHT, the

skeletal muscles of high-level athletes exhibit qualitative adaptation (increased Km for ADP)

rather than a quantitative one [58]. These adaptations can contribute to improved endurance

performance through the better integration of energy demand and utilization. This re-empha-

sizes that, especially for elite athletes with extended years of training experience, sufficient

duration of work intervals is the key to enhancing aerobic performance.

This is the first study attempting to explore the impact of various LLTH variants on athletes’

anaerobic performance using meta-analysis. The results show that all active intermittent hyp-

oxic modes compared with normoxic training can effectively improve athletes’ anaerobic per-

formance. Further, Although the results demonstrated that hypoxic training with high-

intensity and long-duration working interval (l-IHT) has the best improvement effect on

anaerobic performance [19], it is regrettable that this study only included one related research,

which greatly reduced the statistical power and result credibility. As highlighted, athletes striv-

ing to match the same external work rate (absolute exercise intensity) under hypoxic condi-

tions, equivalent to normoxic conditions, require the considerate use of anaerobic metabolism

for energy. The training intensity executed directly correlates with the stimulation of anaerobic

metabolism—the higher the intensity, the greater the stimulation, and the longer the duration,

the more profound the buffering capacity stimulation. Studies on IHT indicate significant cor-

relation between enhancement of anaerobic performance and adaptation of glycolytic enzyme

capacity (phosphofructokinase) [63, 65, 80], MCT-1/4 [23], and capillary density. Moreover,

the current literature substantiates that moderate acute hypoxia does not curtail athletes’

anaerobic function [81]. A noticeable but substantial reduction in resting SaO2, from 95% to

92%, occurs when athletes train above sea level (ambient PIO2 = 159 mmHg) to a moderate

altitude (3000 m, ambient PIO2 = 110 mmHg). The situation intensifies at higher altitudes

(5000 m, ambient PIO2 = 85 mmHg), where SaO2 plummets to 80% or lower [32]. The signifi-

cant decrease in SaO2 implies greater demand for and stimulation of anaerobic metabolism.

Nevertheless, caution is needed as the more severe the hypoxia, the greater the interference

with autonomic nervous system activity [82, 83], leading to the accumulation of fatigue and

stress. Therefore, the real-time monitoring of physiological characteristics and training inten-

sity is vital in ensuring the successful execution of hypoxia training.

Czuba et al. (2017) highlighted the essential role of supplementary strength training in

enhancing anaerobic performance. Some studies have suggested that hypoxic exposure can

have harmful effects on muscle tissue, reducing protein synthesis [54, 84, 85] and leading to

muscle fiber atrophy. However, short-term hypoxic exposure, particularly when combined

with resistance training, could have a reverse effect through the stimulation of muscle protein

synthesis [86, 87], which is beneficial for improving anaerobic performance.

Interestingly, the combination of both continuous and intermittent training in a hypoxic

condition has not shown significant enhancement in either aerobic or anaerobic perfor-

mances. This type of combined hypoxia regimen can be divided into two as follows: 1) contin-

uous and intermittent training sessions that are performed separately each week [22, 88, 89]

and 2) continuous and intermittent training conducted during a session [21, 23, 90, 91]. The

result of comprehensive data indicates that engaging in additional continuous low-intensity

training under hypoxia will not produce additional effects and may even deepen fatigue. The

significant effects shown by some combined hypoxia programs may also be due to the contri-

bution of high-intensity intermittent training sessions. Pure passive hypoxic exposure com-

pared with IHE has not shown any enhanced effect on athletic performance, which is

consistent with most reviews. Our recent study also proves that IHE cannot improve the maxi-

mum oxygen uptake of athletes [15, 30, 92, 93]. Finally, it is worth mentioning that, apart from
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l-IHT, RSH is the only hypoxic technique that can simultaneously improve aerobic and anaer-

obic performances (though marginally). Compared with intermittent hypoxic training, RSH

has shorter but more intense work intervals with insufficient recovery in between workouts

[28]. This insufficiency stimulates special physiological reactions among athletes after an RSH

intervention, with type II muscle fibers displaying greater degree of recruitment and oxygen-

ation capabilities [28, 34]. The correlation between oxidative tendencies (a non-hematological

central and peripheral mechanisms) in fast muscle fibers and the enhancement in aerobic and

anaerobic performance presents a noticeable trend [17, 94, 95]. Nonetheless, several studies

emphatically assert that athletes’ VO2max and endurance test results did not improve subse-

quent to RSH [34, 96–98], but it is noteworthy that Galvin et al. proposed that the amplifying

impact of RSH on anaerobic or aerobic performance is closely related to the work-rest ratio

[17]. Nevertheless, the marginal enhancement of both aerobic and anaerobic performance

may merely constitute supplementary advantages of RSH. In practical application, the primary

aim of RSH is to bolster the repeated sprint ability (mixed-oxide metabolism) of team or rac-

quet-sports athletes [28, 34, 92].

Limitations

While this study confirms an impact of LLTH on aerobic and anaerobic performance based

on the intensity, volume, and type of hypoxic training, several confounding factors—

unquantifiable in this study—might affect the study outcomes. These include the degree of

hypoxia, the integration of additional normoxic training, training frequency, and overall

session volume. The effect of these particular arrangements on real-world applications is

significant and necessitates further investigation. Furthermore, the characteristics of the

research population are specific to males, as they were the majority (92.69%). Some studies

have postulated that females exhibit lower SaO2 sensitivity to hypoxic stimuli than that

observed in males [99, 100], insinuating minimal impact of hypoxic training on female ath-

letes’ performance. Consequently, we cannot definitively determine whether our conclu-

sions are applicable to female athletes. Although some reports have suggested that female

athletes can benefit from hypoxic training, the overall sample size is substantially small, and

the statistical power of the results is relatively weak. Besides gender, other characteristics

such as the sports athletes participate in and their competitive levels are also worthy of fur-

ther investigation. Unfortunately, the current number of studies included does not support

conducting methods like subgroup analysis (after grouping by characteristics, the limited

number of studies would severely compromise the credibility of the outcomes and the net-

work connectivity of meta-analysis).

Finally, it is important to note that while the results indicated that l-IHT had the most sig-

nificant impact on enhancing anaerobic performance, these findings should not be regarded

as conclusive due to the small number of pertinent studies analyzed. Further research is neces-

sary to investigate the effects of interval hypoxic training with longer work durations on anaer-

obic performance, which is vital for the effective practical implementation of hypoxic

technique.

Conclusion

Among the various LLTH strategies, only active intermittent hypoxic modes compared with

normoxic training have shown significant enhancements of athletic performance. Intermittent

hypoxic training with adequate work-interval durations demonstrated the most advantageous

effects on aerobic performances. Neither IHE nor CHT was proven effective.
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3. Schommer K, Menold E, Subudhi AW, Bärtsch P. Health risk for athletes at moderate altitude and nor-

mobaric hypoxia. Br J Sports Med. 2012; 46(11):828–32. Epub 2012/07/31. https://doi.org/10.1136/

bjsports-2012-091270 PMID: 22842235.

4. Roach GD, Schmidt WF, Aughey RJ, Bourdon PC, Soria R, Claros JC, et al. The sleep of elite athletes

at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

Br J Sports Med. 2013; 47 (Suppl 1):i114–20. Epub 2013/12/07. https://doi.org/10.1136/bjsports-

2013-092843 PMID: 24282197; PubMed Central PMCID: PMC3903309.

5. Green HJ, Sutton JR, Cymerman A, Young PM, Houston CS. Operation Everest II: adaptations in

human skeletal muscle. J Appl Physiol (1985). 1989; 66(5):2454–61. Epub 1989/05/01. https://doi.org/

10.1152/jappl.1989.66.5.2454 PMID: 2745306.

6. Mazzeo RS. Altitude, exercise and immune function. Exerc Immunol Rev. 2005; 11:6–16. Epub 2006/

01/03. PMID: 16385840.

7. Beidleman BA, Fulco CS, Cymerman A, Staab JE, Buller MJ, Muza SR. New metric of hypoxic dose

predicts altitude acclimatization status following various ascent profiles. Physiol Rep. 2019; 7(20):

e14263. Epub 2019/10/30. https://doi.org/10.14814/phy2.14263 PMID: 31660703; PubMed Central

PMCID: PMC6817994.

8. Milledge JS. Acute mountain sickness. Lancet. 1998; 100(6):494–8.

9. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol. 2001; 204(Pt 18):3133–9. Epub

2001/10/03. https://doi.org/10.1242/jeb.204.18.3133 PMID: 11581327.

10. McLean BD, Gore CJ, Kemp J. Application of ’live low-train high’ for enhancing normoxic exercise per-

formance in team sport athletes. Sports Med. 2014; 44(9):1275–87. Epub 2014/05/23. https://doi.org/

10.1007/s40279-014-0204-8 PMID: 24849544.

11. Hamlin MJ, Hellemans J. Effect of intermittent normobaric hypoxic exposure at rest on haematological,

physiological, and performance parameters in multi-sport athletes. J Sports Sci. 2007; 25(4):431–41.

Epub 2007/03/17. https://doi.org/10.1080/02640410600718129 PMID: 17365530.

12. Goods PS, Dawson B, Landers GJ, Gore CJ, Peeling P. No Additional Benefit of Repeat-Sprint Train-

ing in Hypoxia than in Normoxia on Sea-Level Repeat-Sprint Ability. J Sports Sci Med. 2015; 14

(3):681–8. Epub 2015/09/04. PMID: 26336357; PubMed Central PMCID: PMC4541135.

13. Millet GP, Faiss R, Brocherie F, Girard O. Hypoxic training and team sports: a challenge to traditional

methods? Br J Sports Med. 2013; 47 (Suppl 1):i6–7. Epub 2013/12/07. https://doi.org/10.1136/

bjsports-2013-092793 PMID: 24282210; PubMed Central PMCID: PMC3903151.

14. Girard O, Brocherie F, Goods PSR, Millet GP. An Updated Panorama of "Living Low-Training High"

Altitude/Hypoxic Methods. Front Sports Act Living. 2020; 2:26. Epub 2020/12/22. https://doi.org/10.

3389/fspor.2020.00026 PMID: 33345020; PubMed Central PMCID: PMC7739748.

15. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak perfor-

mance. Sports Med. 2010; 40(1):1–25. Epub 2009/12/22. https://doi.org/10.2165/11317920-

000000000-00000 PMID: 20020784.

16. Hendriksen IJ, Meeuwsen T. The effect of intermittent training in hypobaric hypoxia on sea-level exer-

cise: a cross-over study in humans. Eur J Appl Physiol. 2003; 88(4–5):396–403. Epub 2003/01/16.

https://doi.org/10.1007/s00421-002-0708-z PMID: 12527969.

17. Galvin HM, Cooke K, Sumners DP, Mileva KN, Bowtell JL. Repeated sprint training in normobaric hyp-

oxia. Br J Sports Med. 2013; 47 (Suppl 1):i74–9. Epub 2013/12/07. https://doi.org/10.1136/bjsports-

2013-092826 PMID: 24282212; PubMed Central PMCID: PMC3903144.

18. Richardson AJ, Gibson OR. Simulated hypoxia does not further improve aerobic capacity during sprint

interval training. J Sports Med Phys Fitness. 2015; 55(10):1099–106. Epub 2014/07/17. PMID:

25028984.

PLOS ONE Effects of living-low and training-high modes on sea-level performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0297007 April 18, 2024 22 / 27

https://doi.org/10.1152/jappl.1967.23.2.259
http://www.ncbi.nlm.nih.gov/pubmed/6033527
https://doi.org/10.1152/jappl.1997.83.1.102
http://www.ncbi.nlm.nih.gov/pubmed/9216951
https://doi.org/10.1136/bjsports-2012-091270
https://doi.org/10.1136/bjsports-2012-091270
http://www.ncbi.nlm.nih.gov/pubmed/22842235
https://doi.org/10.1136/bjsports-2013-092843
https://doi.org/10.1136/bjsports-2013-092843
http://www.ncbi.nlm.nih.gov/pubmed/24282197
https://doi.org/10.1152/jappl.1989.66.5.2454
https://doi.org/10.1152/jappl.1989.66.5.2454
http://www.ncbi.nlm.nih.gov/pubmed/2745306
http://www.ncbi.nlm.nih.gov/pubmed/16385840
https://doi.org/10.14814/phy2.14263
http://www.ncbi.nlm.nih.gov/pubmed/31660703
https://doi.org/10.1242/jeb.204.18.3133
http://www.ncbi.nlm.nih.gov/pubmed/11581327
https://doi.org/10.1007/s40279-014-0204-8
https://doi.org/10.1007/s40279-014-0204-8
http://www.ncbi.nlm.nih.gov/pubmed/24849544
https://doi.org/10.1080/02640410600718129
http://www.ncbi.nlm.nih.gov/pubmed/17365530
http://www.ncbi.nlm.nih.gov/pubmed/26336357
https://doi.org/10.1136/bjsports-2013-092793
https://doi.org/10.1136/bjsports-2013-092793
http://www.ncbi.nlm.nih.gov/pubmed/24282210
https://doi.org/10.3389/fspor.2020.00026
https://doi.org/10.3389/fspor.2020.00026
http://www.ncbi.nlm.nih.gov/pubmed/33345020
https://doi.org/10.2165/11317920-000000000-00000
https://doi.org/10.2165/11317920-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/20020784
https://doi.org/10.1007/s00421-002-0708-z
http://www.ncbi.nlm.nih.gov/pubmed/12527969
https://doi.org/10.1136/bjsports-2013-092826
https://doi.org/10.1136/bjsports-2013-092826
http://www.ncbi.nlm.nih.gov/pubmed/24282212
http://www.ncbi.nlm.nih.gov/pubmed/25028984
https://doi.org/10.1371/journal.pone.0297007


19. Arezzolo D, Coffey VG, Byrne NM, Doering TM. Effects of Eight Interval Training Sessions in Hypoxia

on Anaerobic, Aerobic, and High Intensity Work Capacity in Endurance Cyclists. High Alt Med Biol.

2020; 21(4):370–7. Epub 2020/08/25. https://doi.org/10.1089/ham.2020.0066 PMID: 32830992.

20. Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, et al. Exercise training in nor-

mobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Phy-

siol (1985). 2006; 100(4):1238–48. Epub 2006/03/17. https://doi.org/10.1152/japplphysiol.00742.2005

PMID: 16540709.

21. Kim SW, Jung WS, Kim JW, Nam SS, Park HY. Aerobic Continuous and Interval Training under Hyp-

oxia Enhances Endurance Exercise Performance with Hemodynamic and Autonomic Nervous System

Function in Amateur Male Swimmers. Int J Environ Res Public Health. 2021; 18(8). Epub 2021/05/01.

https://doi.org/10.3390/ijerph18083944 PMID: 33918616; PubMed Central PMCID: PMC8068973.

22. Roels B, Bentley DJ, Coste O, Mercier J, Millet GP. Effects of intermittent hypoxic training on cycling

performance in well-trained athletes. Eur J Appl Physiol. 2007; 101(3):359–68. Epub 2007/07/20.

https://doi.org/10.1007/s00421-007-0506-8 PMID: 17636319.

23. Millet G, Bentley DJ, Roels B, Mc Naughton LR, Mercier J, Cameron-Smith D. Effects of intermittent

training on anaerobic performance and MCT transporters in athletes. PLoS One. 2014; 9(5):e95092.

Epub 2014/05/07. https://doi.org/10.1371/journal.pone.0095092 PMID: 24797797; PubMed Central

PMCID: PMC4010422.

24. Truijens MJ, Toussaint HM, Dow J, Levine BD. Effect of high-intensity hypoxic training on sea-level

swimming performances. J Appl Physiol (1985). 2003; 94(2):733–43. Epub 2002/10/23. https://doi.

org/10.1152/japplphysiol.00079.2002 PMID: 12391107.

25. Vallier JM, Chateau P, Guezennec CY. Effects of physical training in a hypobaric chamber on the

physical performance of competitive triathletes. Eur J Appl Physiol Occup Physiol. 1996; 73(5):471–8.

Epub 1996/01/01. https://doi.org/10.1007/BF00334426 PMID: 8803509.

26. Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, et al. Intermittent nor-

mobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance run-

ners. J Appl Physiol (1985). 2004; 96(5):1800–7. Epub 2003/12/16. https://doi.org/10.1152/

japplphysiol.00969.2003 PMID: 14672967.

27. Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance

after hypoxic exposure. Med Sci Sports Exerc. 2007; 39(9):1600–9. Epub 2007/09/07. https://doi.org/

10.1249/mss.0b013e3180de49d3 PMID: 17805094.

28. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic train-

ing to repeated sprint training in hypoxia. Br J Sports Med. 2013; 47 (Suppl 1):i45–50. Epub 2013/12/

07. https://doi.org/10.1136/bjsports-2013-092741 PMID: 24282207; PubMed Central PMCID:

PMC3903143.

29. Siebenmann C, Dempsey JA. Hypoxic Training Is Not Beneficial in Elite Athletes. Med Sci Sports

Exerc. 2020; 52(2):519–22. Epub 2020/01/16. https://doi.org/10.1249/MSS.0000000000002141

PMID: 31939915.
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42. Shim SR, Kim SJ, Lee J, Rücker G. Network meta-analysis: application and practice using R software.

Epidemiol Health. 2019; 41:e2019013. Epub 2019/04/20. https://doi.org/10.4178/epih.e2019013

PMID: 30999733; PubMed Central PMCID: PMC6635665.
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