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Abstract

Deep neural networks have been widely adopted in numerous domains due to their high per-

formance and accessibility to developers and application-specific end-users. Fundamental

to image-based applications is the development of Convolutional Neural Networks (CNNs),

which possess the ability to automatically extract features from data. However, compre-

hending these complex models and their learned representations, which typically comprise

millions of parameters and numerous layers, remains a challenge for both developers and

end-users. This challenge arises due to the absence of interpretable and transparent tools

to make sense of black-box models. There exists a growing body of Explainable Artificial

Intelligence (XAI) literature, including a collection of methods denoted Class Activation

Maps (CAMs), that seek to demystify what representations the model learns from the data,

how it informs a given prediction, and why it, at times, performs poorly in certain tasks. We

propose a novel XAI visualization method denoted CAManim that seeks to simultaneously

broaden and focus end-user understanding of CNN predictions by animating the CAM-

based network activation maps through all layers, effectively depicting from end-to-end how

a model progressively arrives at the final layer activation. Herein, we demonstrate that

CAManim works with any CAM-based method and various CNN architectures. Beyond

qualitative model assessments, we additionally propose a novel quantitative assessment

that expands upon the Remove and Debias (ROAD) metric, pairing the qualitative end-to-

end network visual explanations assessment with our novel quantitative “yellow brick

ROAD” assessment (ybROAD). This builds upon prior research to address the increasing

demand for interpretable, robust, and transparent model assessment methodology, ulti-

mately improving an end-user’s trust in a given model’s predictions. Examples and source

code can be found at: https://omni-ml.github.io/pytorch-grad-cam-anim/.
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Introduction

The popularization of deep learning in numerous domains of research has led to the rapid

adoption of these methodologies in disparate fields of scientific research. Convolutional Neu-

ral Networks (CNNs) are a class of deep learning models that use convolutions to extract

image features, achieving high performance in numerous computer vision applications [1].

However, due to the intrinsic network structure and the complexity of features leveraged for

model predictions, CNNs are, consequently, often labeled as uninterpretable or ‘black-box’

models. Interpretability is crucial for applications in high-criticality fields such as medicine

[2], where model decisions have the potential to cause excessive harm if incorrect. In order to

be deployed, models must be trustworthy both in their class predictions and in the features

used to make those predictions. Therefore, there is a definitive impetus to develop trustworthy

explanations of model decisions.

Presently, there exists extensive literature on the use of state-of-the-art deep learning meth-

odologies within healthcare systems and applications. Indeed, there exist entire subfields of

computer science and biomedical engineering on computational medicine and medical image

analysis. Notable examples from the literature include online medical pre-diagnosis systems

[3], 3D deep learning on medical images [4], the development of medical transformers for

chest x-ray diagnosis [5], and an emergent trend to adopt generative methods in these high-

criticality fields (e.g. GPT-3 as a data generator for medical dialogue summarization [6]). With

the emergence of large language models (LLMs) such as the GPT-3 and GPT-4 models devel-

oped by OpenAI and made broadly available through the ChatGPT platform, early adopters

are actively promoting the transformative opportunities of these AI systems within the health-

care space [7] while others issue active calls for caution in their use [8]. Fundamentally, it is

paramount to develop increasingly transparent methods to assist medical practitioners in their

use of, critical oversight of, and reliance upon deep learning models.

There have been numerous methods proposed to improve the interpretability of CNNs.

Zeiler and Fergus initially investigated network interpretability by using a deconvolutional

network to identify pixels activated in CNN feature maps [9]. Thereafter, gradient-based meth-

ods were used to develop saliency maps indicating important image regions based on desired

output class [10–12]. Class Activation Maps (CAMs) are a group of methods that linearly com-

bine weighted feature activation maps from a given CNN layer [13–22]. Typically, only the

final layer(s) are visualized to confer trustworthiness and describe what image features are

used for model predictions. However, this provides little detail on the learning process of the

model. In addition, selecting the correct final layer to visualize from each CNN model is not

straightforward and is often done arbitrarily.

To better interpret how a given model evaluates a given image through each of its layers, we

propose expanding these existant Explainable Artificial Intelligence (XAI) methodologies by

individually visualizing and analyzing the model’s layer-wise activation maps. In a natural

extension of this idea, these layer-wise activation maps can be combined as individual frames

of a video animating the end-to-end network activation maps; a method we propose in this

article and denote CAManim. We develop local and global normalization to understand

learned network features on a layer-wise (local perspective) and network-wise scale (global

perspective). We experiment and quantify layer-wise performance of CAManim with numer-

ous CNN models and CAM variations to show performance in a variety of experimental con-

ditions, including medical applications wherein model understanding and trustworthiness is

critical.

Our contributions are as follows:
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• We propose CAManim, a novel visualization method that creates activation maps for each

layer in a given CNN. CAManim can be applied to any existing CNN and CAM for any clas-

sification task.

• We introduce local and global normalization to understand important learned features at

both a layer-wise and network-wise level.

• We perform extensive experimentation to determine the expected time and space require-

ments to run CAManim.

• We demonstrate the usefulness of CAManim across multiple CAM variations and CNN

models, and in high-criticality fields.

• We quantitatively evaluate the performance of each CAM visualization generated per model

layer with an analytical process denoted “yellow brick ROAD” (ybROAD) that seeks to

improve the understanding of how CNNs learn. This is further extended to selecting the

most accurate feature map representation from all possible layers of a CNN.

Related work

The topic of explainable and trustworthy AI has been researched extensively. Lipton et al. [23]

described the importance for trustworthy and interpretable models, while Ribeiro et al. [24]

conducted human-based trials to quantify their degree of trust in classifer predictions. Compu-

tationally, numerous methods have investigated the improvement of CNN interpretation. In

this section, we provide an overview of proposed methods and how CAManim addresses a gap

in the current literature.

Earliest explainable AI studies. One of the earliest efforts to interpret CNNs was made

by Zeiler and Fergus [9]. In this study, feature maps from convolutional layers are used as

input to a deconvolutional network to identify activated pixels in the original image space.

Simonyan et al. [10] approached network explainability in two ways. First, they proposed class

models, which are images generated through gradient ascent that maximize the score for a

given class [10]. Next, they produced class-specific saliency maps, calculated using the gradient

of the input image with respect to a given class [10].

Guided backpropagation and gradient-based methods. Springenberg et al. [11]

extended Simonyan’s work to Guided Backpropagation, which excludes all negative gradients

to produce improved saliency maps. Despite calculating gradients with respect to individual

classes, Selvaraju et al. showed that the visualizations produced by Guided Backpropagation

are not class-discriminative (i.e. there is little difference between images generated using differ-

ent class nodes) [14]. Sundarajan et al. [12] proposed integrated gradients, calculated through

the integral of the gradient between a given image and baseline, to satisfy axioms of sensitivity

and implementation invariance. FullGrad is another gradient-based method that is non-dis-

criminative and uses the gradients of bias layers to produce saliency maps [25].

Gradient-free methods. While gradient-based methods are quite popular in the field of

explainable AI, some studies argue that these methods produce noisy visualizations due to gra-

dient saturation [26, 27]. For this reason, gradient-free methods have been investigated by a

number of studies. Zhou et al. [28] identified K images with the highest activation at a given

neuron in a convolutional layer and occluded patches of each image to determine the object

detected by the neuron. Morcos et al. [29] used an ablation analysis to remove individual neu-

rons or feature maps from a CNN and quantify the effect on network performance. This study

demonstrated that neurons with high class selectivity (i.e. highly activated for a single class)

PLOS ONE CAManim: Animating end-to-end network activation maps

PLOS ONE | https://doi.org/10.1371/journal.pone.0296985 June 18, 2024 3 / 18

https://doi.org/10.1371/journal.pone.0296985


may indicate poor network generalizability. Zhou et al. [30] extended this work to show that

ablating neurons with high class selectivity may cause large differences in individual class

performance.

Class activation maps. A popular class of CNN visualizations are Class Activation Maps

(CAMs), which produce explainable visualizations through a linearly weighted sum of feature

maps at a given CNN layer [13]. The original CAM was proposed for a specific CNN model,

consisting of convolutional, global average pooling, and dense layers at the end of the network

[13]. The dense layer weights were used to determine the weighted importance of individual

feature maps [13]. However, this required a specific CNN architecture and was not applicable

to numerous high-performing models. This led to the development of CNN model-agnostic

CAM methods.

Gradient-based methods were the first variation of the original CAM [14–19]. These meth-

ods determine importance weights by calculating averaged or element-wise gradients of the

output of a class with respect to the feature maps at the desired layer. As discussed previously,

gradient methods may produce noisy visualizations due to gradient saturation [20–22, 26, 27];

as a result, perturbation CAM methods have been proposed [20, 21]. In this case, importance

weights are calculated by perturbing the original input image by the feature maps and measur-

ing the change in prediction score. In addition, non-discriminative approaches have been

investigated to eliminate the reliance of class-discriminative methods upon correct class pre-

dictions. For example, EigenCAM produces its CAM visualization using the principal compo-

nents of the activation maps at the desired layer [22].

While most studies have developed saliency map and/or CAM formulations for a single

layer, LayerCAM demonstrated how aggregating feature maps from multiple layers can refine

the final CAM visualization to include more fine-detailed information [19, 31]. Gildenblat

extended this idea across existing multiple CAM and saliency map methods [17]. While con-

ceptually similar, to the best of our knowledge, our study is the first to consider individual fea-

ture maps generated from every CNN layer and combine them into an end-to-end network

explanation. Moreover, this end-to-end layer-wise analysis enables a unique view of local and

global perspectives and a natural integration of both qualitative and quantitative network-wide

explainability. Fig 1 provides a conceptual overview of the CAManim method proposed in this

work.

Materials and methods

In this section, we first recall the general formulation for Class Activation Maps and outline

notation preliminaries. Next, we explain the generation of CAManim using CAM visualiza-

tions from each layer of a CNN, depicted in Fig 1. The concepts of global and local normaliza-

tion are introduced, and the computational requirements of CAManim are described from

large-scale experiments. Lastly, we define the quantitative performance metric for individual

CAM visualizations, and propose ybROAD for analyzing end-to-end layer-wise CAManim.

Individual CAM formulation

The general formulation for any CAM method consists of taking a linearly weighted sum of

feature maps as follows:

Lc
CAMðAlÞ

¼
X

k

ðac
kA

l
kÞ;where Al ¼ f lðxÞ ð1Þ

For a given input image x and CNN model f(�), a CAM visualization L can be generated

through the weighted α summation of k activation feature maps A at layer l. Class
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discriminative CAM methods further define L per predicted class c. To exclude negative acti-

vations, most CAM formulations are followed by a ReLU operation.

End-to-end layerwise activation maps

To formulate CAManim, CAM visualizations are first generated for every differentiable layer l
within a given CNN with a total number of layers N:

Lc
CAManim ¼ Lc

CAMðAl¼0Þ
; . . . ; Lc

CAMðAl¼N Þ ð2Þ

Each CAM visualization is subsequently saved as a PNG image I and concatenated together

to create the final CAManim video, as depicted below:

CAManim ¼ k
N

l
ILc

CAMðAlÞ
ð3Þ

For clarity, the concatenation operator, k, is defined in this work in a way analagous to the

summation operator, S, and product operator, P, to concisely express the sequential organiza-

tion of individual frames into the resulting animated video.

Fig 1. Conceptual overview of generating an animation of a resnet’s end-to-end activation maps for a given image and target class.

https://doi.org/10.1371/journal.pone.0296985.g001
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Global- vs. Local-Level Normalization

For a model end-user to correctly interpret what importance the model attributes to particular

pixels at a given layer in the network, they must be provided the appropriate context. To this

end, the model interpreter may wish to know “what importance does the model place on partic-
ular pixels at a given layer?” or “what importance does the model place upon particular pixels
overall?”. Consequently, two normalization approaches can be leveraged, each with the intent

of correctly relaying information to answer one of these two questions, and both complemen-

tary to the other. Thus CAManim visualizes the CAM activations of each layer using two dif-

ferent types of normalization: Local-Level Normalization and Global-Level Normalization.

Global normalization is performed using the minimum and maximum activation value across

all activations generated, which is practical for determining and visualizing which layer con-

tains the strongest network-wide activation for a given class. Local normalization uses the min-

imum and maximum values of the activations of each specific layer. Local normalization,

contrary to global-level normalization, depicts the strongest layer-level activation and there-

fore provides layer-wise information.

Fig 2 shows the difference between global and local normalization for the first denseblock

of DenseNet161 [32]. The global normalization (right) displays an attenuated version of the

local normalization (left). This example demonstrates that the layer-wise information focuses

upon learning small pattern-like features, whereas the network-wise information indicates

that the activations of this layer are generally attenuated with respect to all other layers within

the DenseNet161 model.

Model- & CAM-specific interpretation and computational complexity

To appreciate how varying CNN architectures and CAM methods produce differing visual

explanations for a given image x, target class c, and CNN model f(�), we ran large-scale

Fig 2. Difference between local and global normalization for the feature map generated from layer features.denseblock1 in DenseNet161.

https://doi.org/10.1371/journal.pone.0296985.g002
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experiments producing numerous layer-wise and globally normalized CAManim videos/

image sequences. Consequently, this additionally enabled the benchmarking of key model-spe-

cific metrics such as layer-level number of parameters and CAManim run-time.

Fig 3 illustrates the layer-wise parameter number along a log-scale where we can explicitly

visualize the four general DenseBlocks comprised of a varying number of DenseLayers.

Since CAManim computation will vary by layer number n, layer-wise parameters p, and

CAM-specific compute runtime r, we generally estimate that CAManim will have a simplified

computational time complexity of Oðn�p�rÞ. For clarity, the overbar notion expresses averages

for the number of parameters and CAM-specific compute time, respectively. Image-specific

dimension will also impact runtime, however, given that the majority of models reshape their

input to a consistent size, this constant factor may be subsumed within term n. To provide

general estimates on the overall runtime for a given CNN and CAM, we tabulate in Table 1

our experimental benchmarks using an Intel Xeon CPU 2.20 GHz, 13GB RAM, Tesla K80

GPU accelerator, and 12GB GDDR5 VRAM.

Quantitative evaluation

To quantitatively evaluate the performance of each CAM visualization and demonstrate the

information gained through deeper layers in a CNN, we calculate the Remove and Debias

(ROAD) score [33]. This metric has superior computational efficiency and prevents data leak-

age found with other CAM performance metrics [33]. ROAD perturbs images through noisy

Fig 3. Layer-wise depiction of DenseNet161 parameters.

https://doi.org/10.1371/journal.pone.0296985.g003
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linear imputations, blurring regions of the image based on neighbouring pixel values [33]. The

confidence increase or decrease C in classification score using the perturbed image with the

least relevant pixels (LRP) or most relevant pixels (MRP) is then used to evaluate the accuracy

of a CAM visualization. Since the percentage of pixels perturbed affects the ROAD perfor-

mance, we evaluate ROAD at p = 20%, 40%, 60% and 80% pixel perturbation thresholds. As

proposed by Gildenblat [17], we combine the LRP and MRP scores for our final metric:

ROADðLc
CAMðAlÞ

Þ ¼
X

p

ðCp
LLRP
� Cp

LMRP
Þ

2
ð4Þ

A ROAD score is calculated for each CAM generated. Therefore, for N differentiable layers

in a CNN, there will be N ROAD scores calculated within CAManim. Given that this network-

wide sequence of ROAD values represents a journey-like traversal of the network, we denote

this series of ROAD values as the ‘yellow brick ROAD’, or ybROAD for brevity:

ybROAD ¼ k
N

l
ROADðLc

CAMðAlÞÞ ð5Þ

The ybROAD scores can be used to analyze performance of an experiment with given

image x, target class c, and CNN model f(�) over all layers of the network. Consequently, this

analysis enables the quantitative identification of the CNN layer that maximally visualizes fea-

tures with the largest impact on model performance through max(ybROAD). The mean
(ybROAD) score is also calculated to summarize the overall model end-to-end ROAD perfor-

mance. Interestingly, variant metrics derived from ybROAD values may yield new insights

into the quantification of a model’s ability to predict particular classes.

Results & discussion

In this section, we first define the pre-trained models and datasets used to evaluate CAManim.

Next, we demonstrate CAManim in high-criticality fields using a ResNet50 model fine-tuned

to perform breast cancer classification. We then show example visualizations from CAManim

for 10 different CAM variations and discuss abnormal visualizations. Lastly, we discuss the

ybROAD performance of CAManim and future directions building upon this work.

Pre-trained models and datasets

To evaluate CAManim, we use models from Pytorch pre-trained on the 2012 ImageNet-1K

dataset [34]. Specifically, results are shown for AlexNet [35], ConvNeXT [36], DenseNet161

[32], EfficientNet-b7 [37], MaxViT-t [38], and SqueezeNet [39]. The CAManim videos for an

additional 14 models and publicly available code can be found here: https://omni-ml.github.

Table 1. Total number of parameters, CAManim runtime, and average parameters and runtime across all layers included in CAManim calculated for six CNN mod-

els using HiResCAM.

Model Num. Params. Time (s) Avg. Params. per Layer Avg. Layer Time (s)

AlexNet 61,100,840 16.67 329,292.8 0.2622

ConvNeXT 88,591,464 392.78 1,140,535.1 0.2665

DenseNet161 28,681,000 514.99 180,814.6 0.0997

EfficientNet-b7 66,347,960 972.42 345,325.1 0.1375

MaxViT-t 30,919,624 596.84 292,907.1 0.1080

SqueezeNet 1,248,424 52.54 48,030.8 0.0144

https://doi.org/10.1371/journal.pone.0296985.t001
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io/pytorch-grad-cam-anim/. All results in this study (apart from the high-criticality case

study) leverage a popular brown bear-containing image typically used in the CAM research

community; following an emergent standard, the image is preprocessed by resizing to

224 × 224 and normalized. Next, we demonstrate the utility of CAManim in a high-criticality

field.

Case study: End-to-end BC-ResNet50 visualization for malignant tumour

prediction

We leverage a ResNet50 model [40] initially trained on the 2012 ImageNet-1K dataset [34] and

fine-tune the model using the Kaggle breast ultrasound data to classify malignant vs. normal

images [41]. For simplicity, we refer to this network as BC-ResNet50 (“Breast Cancer-

ResNet50”). This dataset comprises 133 normal images and 210 malignant images that are

split into a 80–10-10% train-validation-test split. Images are preprocessed to a size of

224 × 224 and various augmentations are applied to the training set.

Pre-processing and training steps are selected based on MONAI recommendations. Follow-

ing fine-tuning, CAManim is run with an example test image of the malignant class to visualize

and interpret how the resultant CNN arrives at producing the correct prediction of malignant

cancer. Fig 4 illustrates the layer-wise activations that BC-ResNet50 considers when determin-

ing the ‘malignant’ tumour.

It is important to emphasize that for high-criticality applications such as medical imagery,

the initial resizing of input imagery can dramatically alter the information available to the

model and impact model out and its interpretability. While this work builds upon previous

XAI literature and adopts their methodological approach, we recommend that for high-criti-

cality applications, the initial image size be kept closely aligned with original input image sizes

(no/limited downsizing) so as not to alter image resolution and to provide a clinical decision

support system as a visual explanation method.

Visualizing end-to-end network activation maps

We further demonstrate the performance of CAManim on 10 different CAM methods, includ-

ing seven gradient-based methods (EigenGradCAM, GradCAM, GradCAMElementWise,

GradCAM++, HiResCAm, LayerCAM, and XGradCAM), two perturbation methods (Abla-

tionCAM and ScoreCAM), a principal components method (EigenCAM), and RandomCAM.

RandomCAM generates random feature activation maps from a uniform distribution between

[−1, 1].

As expected, Figs 5 & 6 depicts early model layers as activating general patterns and edges

while middle and final layers progressively focus the activation maps to regions highly charac-

teristic of the brown bear contained within. Such a layer-wise approach enables the pair-wise

or multi-wise comparison of visual-explanation methods and how these individual activation

maps compare globally across all activation maps.

Fig 4. Visualization of the activation maps from BC-ResNet50 to visually depict how the model predicts the ‘malignant’ tumour class. Only the

10th percentile layers are illustrated for concision.

https://doi.org/10.1371/journal.pone.0296985.g004
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Layer-type visualization issues

Certain differentiable layers may produce unanticipated CAM visualizations, as depicted in

Fig 7. In these layers, images are compressed to 1-dimensional (1D) representations; conse-

quently, 2D feature visualization of a non-convolutional layer is effectively meaningless.

Instead, individual neurons that are highly activated show up as vertical or horizontal lines

across the image. While these images are uninformative, they simply depict visualizations of

1D vectors and should be filtered out.

ybROAD quantitative evaluation

Fig 8 displays the ybROAD for 11 trials of generating CAManim for the bear image using

ResNet152 (mean ybROAD: 0.204; max ybROAD: 0.473 at layer 402). Initially, the layer-wise

ROAD performance is very high (*0.4). At this point, the CNN layer is activating many small

regions throughout the image; when each of these areas is perturbed, it is difficult to correctly

Fig 5. End-to-end activation map visualization for 10 CAMs using DenseNet161. Every 10th percentile map is depicted, from left to right.

https://doi.org/10.1371/journal.pone.0296985.g005
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Fig 6. Initial, middle, and final activation maps applying a single CAM, HiResCAM, to various model

architectures.

https://doi.org/10.1371/journal.pone.0296985.g006
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classify the image, and the ROAD score increases. As the network starts learning larger fea-

tures, less of the bear image is perturbed, and the ROAD score decreases. Towards the end of

the network, the ROAD score increases again and reaches its maximum value as the small acti-

vations are combined together to encapsulate the entire bear. This demonstrates how the

ybROAD score can provide more information on how the network progressively learns.

Interestingly, the layer-wise depiction of ROAD values may be used to investigate how vari-

ous model layers contribute to the overall discrimination of a given target class within an

image for a pre-trained model of a given architecture and selected CAM. To quantify the

improvement of our ybROAD method against standard practise (i.e., considering the activa-

tion map of the final layer of a model), we sumarize 12 diverse experimental conditions in

Table 2. The difference in the ybROAD vs. final layer-ROAD values is indicative of the perfor-

mance improvement from our proposed layer-wise approach. Fig 9 additionally depicts the

general improvement and convergence of ROAD values across all model layers. Interestingly,

this layer-wise series of values affords greater insight into the general functioning and utility of

various model layer contributions across experiments. While Fig 9A, 9B, 9D and 9E all seem to

generally improve in ROAD performance from model layer beginning to end, Fig 9C and 9F

both appear relatively consistent in their value distribution, perhaps indicative that within

these instances, the model/CAM combination had greater difficulty in discriminating the tar-

get class within the given image. Certainly, across all experiments we observe a noisy time-

series signal suggesting that future work investigate moving average smoothing as a technique

to make these curves more interpretable, albeit, as a trade-off for the layer-specific resolution

of ROAD values.

The combined consideration of quantitative ROAD and qualitative CAM at every layer

enables end-users to identify the best representation for their particular image, target class,

and model in a manner less arbitrary than selecting one of several terminal layers. For

Fig 7. Visualization of CAManim for fully connected and average pooling layers.

https://doi.org/10.1371/journal.pone.0296985.g007

PLOS ONE CAManim: Animating end-to-end network activation maps

PLOS ONE | https://doi.org/10.1371/journal.pone.0296985 June 18, 2024 12 / 18

https://doi.org/10.1371/journal.pone.0296985.g007
https://doi.org/10.1371/journal.pone.0296985


example, a healthcare professional might identify a better representative feature map for a pre-

dicted tumour than they might otherwise from a potentially poorer last-layer visualization.

This approach effectively allows an end-user to peer across the network and determine those

layers that best capture the story as opposed to relying on the final output alone. We caution

Fig 8. Depiction of end-to-end ROAD values, denoted ybROAD.

https://doi.org/10.1371/journal.pone.0296985.g008

Table 2. Quantitative comparison of ybROAD values and SOTA CAM methods for various model architectures, images, and target classes.

Model

Architecture

Image Name Target Class Selected CAM Mean Layer-wise

ROAD

Final Layer ROAD ybROAD Difference (ybROAD—

Final)

ResNet152 catdog dog ScoreCAM 0.133 -3.50E-07 0.499 +0.499

ResNet152 bear bear ScoreCAM 0.107 -6.26E-07 0.491 +0.491

ResNet152 bear bear EigenCAM 0.153 -5.96E-08 0.486 +0.486

ResNet152 catdog cat ScoreCAM 0.029 -2.92E-07 0.301 +0.301

ResNet152 catdog dog GradCAMElementWise 0.120 4.26E-05 0.228 +0.228

ResNet152 catdog cat HiResCAM 0.030 1.74E-06 0.222 +0.222

DenseNet169 catdog dog EigenCAM 0.043 0.124 0.334 +0.210

DenseNet169 catdog dog LayerCAM 0.110 0.111 0.309 +0.197

ResNet152 catdog cat LayerCAM 0.049 1.20E-04 0.184 +0.184

DenseNet169 catdog dog GradCAMElementWise 0.106 0.107 0.267 +0.160

DenseNet169 bear bear EigenCAM 0.167 0.429 0.470 +0.042

DenseNet169 bear bear HiResCAM 0.128 0.452 0.463 +0.011

https://doi.org/10.1371/journal.pone.0296985.t002
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that this may introduce additional risk for confirmation bias, however, this has broadly been a

challenge within the XAI community.

CAM failure cases

Interestingly, EigenCAM incorrectly highlights the dog in the image, instead of the desired cat

class. This explains the negative ROAD value for EigenCAM in Fig 10. EigenCAM is a non-

Fig 9. Quantitative determination of ybROAD & visualization of model convergence to the target class.

https://doi.org/10.1371/journal.pone.0296985.g009

Fig 10. Multiple CAM demonstration with varied target classes (‘catdog’ image with target classes) and EigenCAM failure case.

https://doi.org/10.1371/journal.pone.0296985.g010
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discriminative CAM method that uses principal components to create activation maps. How-

ever, when there are multiple classes within the same image, the order of principal components

must be specified (e.g., first principal components vs. second principal components). Eigen-

CAM performs well on images with a “single-subject”, but otherwise requires a user to deter-

mine the number and rank of various components within an image to perform successfully.

This requires a level of hand-engineering and data leakage to correctly align the appropriate

principal component with the intended class.

The ybROAD plots proposed within this work can be leveraged to better understand

whether a model adequately distinguishes a given class or whether it fails across all layers of

the model. As visualized in the ybROAD plots of Fig 11 the mean layerwise ROAD value

around 0 effectively demonstrate that the model was unable to identify the correct class within

the image. Consequently, the ybROAD quantitative metrics derived from the ybROAD plots

may be useful in elucidating the impact of model architecture (and their learned parameters)

on a class-specific basis. As part of future work, this concept could be extended to consider

epoch-wise ybROAD plots to better determine how specific layers through model training

contribute to the discrimination of the target class.

Future directions

The proposed future directions for research represent individual contributions that can signifi-

cantly advance the use of CAMs for CNNs. Supporting materials in continuation of this work

can be found in S1 File. Foremost, conducting more in-depth studies on the activation maps

statistics at different layers and for different images can provide a better understanding of how

CNNs attend to images in varying applications and contexts. Secondly, designing an algorithm

to efficiently compute CAM-based videos would greatly improve the applicability of this tech-

nique in various fields, particularly those that require inference or interpretability in near-real-

time. Thirdly, using activation maps sequences to identify useless layers/filters represents a

novel approach towards network compression purposes. Fourthly, exploring the behavior of

activation maps sequences for wrong classes and finding ways to exploit this information for

Fig 11. Failure case where the ybROAD plot indicates that the model was unable to correctly distinguish the correct object within this image,

class, model, and CAM combination.

https://doi.org/10.1371/journal.pone.0296985.g011
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classification purposes is a unique contribution. Lastly, coupling CAM-based videos with

expert feedback in specific applications can result in a more interpretable and accurate model.

Overall, these individual research contributions have the potential to improve the perfor-

mance, efficiency, and interpretability of CNN models, leading to advancements in various

image classification tasks and promoting large-scale and transparent adoption of these models.

Conclusion

This work proposes CAManim as a novel XAI visualization method enabling end-users to bet-

ter interpret CNN predictions by animating the CAM-based network activation maps through

all layers. We demonstrate that CAManim works with any CAM-based method and various

CNN architectures. We additionally introduce a quantitative end-to-end assessment inspired

from the ROAD metric, denoted “yellow brick ROAD” (ybROAD). Our experiments demon-

strate the utility of these methods for improved interpretation and understanding of CNN pre-

dictions, not only in their final layers but across their layer-specific and global-wise

perspectives. Visualizations and source code can be found at: https://omni-ml.github.io/

pytorch-grad-cam-anim/.

Supporting information

S1 File. Code and and data availability.

(PDF)
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