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Abstract

With the rapid development of smart grids, society has become increasingly urgent to solve

the problems of low energy utilization efficiency and high energy consumption. In this con-

text, load identification has become a key element in formulating scientific and effective

energy consumption plans and reducing unnecessary energy waste. However, traditional

load identification methods mainly focus on known electrical equipment, and accurate identi-

fication of unknown electrical equipment still faces significant challenges. A new encoding

feature space based on Triplet neural networks is proposed in this paper to detect unknown

electrical appliances using convex hull coincidence degree. Additionally, transfer learning is

introduced for the rapid updating of the pre-classification model’s self-incrementing class

with the unknown load. In experiments, the effectiveness of our method is successfully

tested on the PLAID dataset. The accuracy of unknown load identification reached 99.23%.

Through this research, we expect to bring a new idea to the field of load identification to

meet the urgent need for the identification of unknown electrical appliances in the develop-

ment of smart grids.

Introduction

Global electricity consumption is continuously increasing. The 2021 global electricity data

report reveals a staggering cumulative worldwide electricity consumption of 28.466 trillion

kWh [1], emphasizing the immense scale of global energy usage. The energy demand is esca-

lating, highlighting the significance of efficient energy utilization. To optimize electric energy

utilization, load monitoring is a vital technical approach. Research consistently indicates that

when residents can monitor and flexibly allocate power resources, there is a significant reduc-

tion in energy losses and an improvement in the overall utilization rate of electric energy

[2–4]. Load monitoring methods can be categorized into two types: invasive load monitoring

and non-invasive load monitoring. Invasive load monitoring involves the installation of power

consumption detection devices on individual electrical appliances. This method offers high

accuracy in extracting detailed power information for each appliance [5, 6]. However, due to

the high cost of installing a power consumption detection device for every single device, it is

not suitable for widespread adoption and practical application. The concept of non-intrusive

load monitoring (NILM) was initially introduced by Hart [7] in a published article in 1992.

NILM effectively addresses the cost issue associated with equipment deployment. This method
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involves the installation of an electricity detection device near the meter, which collects data

that is subsequently analyzed using algorithms. By making minor modifications to the existing

circuit structure at a low cost. NILM eliminates the need for individual power consumption

detection devices on each appliance. However, more advanced algorithms are needed for pre-

cise analysis of data. The choice between invasive and non-invasive load monitoring methods

depends on specific application requirements and constraints. Invasive methods provide high-

precision data and are suitable for applications with strict power consumption information

requirements. However, they are costly and not suitable for large-scale deployment. Non-inva-

sive methods have lower costs and broader applicability but may require more complexity in

algorithms and data analysis. They may not offer the same level of accuracy as invasive meth-

ods. Therefore, when selecting a monitoring method, after weighing these factors, the ultimate

choice is non-invasive detection.

In recent years, the application of deep learning methods in non-invasive load monitoring

has shown significant growth. Deep learning methods can understand the deep structures

within data, enhancing the performance of models. Additionally, deep learning models are

highly flexible in capturing nonlinear relationships within data, which is particularly advanta-

geous for tackling complex problems. Deep learning has become one of the primary applica-

tions in the field of load identification. In the majority of non-intrusive load identification

algorithms, appliance identification typically occurs when the load category and the number of

loads are already known. Guo L, Wang [8] et al. proposed a load identification method based

on active deep learning and discrete wavelet transform. Arash [9] et al. proposed a method uti-

lizing a convolutional neural network based on deep learning, employing a layered structure

and feature extraction from power consumption curves to achieve appliance type detection

and load disaggregation. Weicheng Liu [10] et al. proposed a time-domain power hybrid algo-

rithm and a temporal convolutional autoencoder model to enhance the data processing accu-

racy of NILM. Eduardo [11] et al. applied the pinball quantile loss function to guide a deep

neural network in NILM. Dong Ding [12] et al. proposed a method that utilizes multiple over-

lapping sliding windows and an improved convolutional neural network internal structure to

effectively disaggregate highly mixed loads of multiple appliances. Xiao Zhou [13] et al.

employed a deep learning model combining convolutional neural network, long short-term

memory network, and random forest algorithms, effectively improving the accuracy of electri-

cal appliance recognition. Leitao Qu [14] et al. proposed a residual convolutional neural net-

work with energy normalization and squeeze-and-excitation blocks, applied in NILM.

But most load identification research currently concentrates on known electrical appliances

with identified types and data characteristics. However, there is relatively less research dedi-

cated to identifying unknown loads. Baets [15] proposed a clustering method based on the Sia-

mese neural network for unknown device detection. The advantage of this method is that

there is no mandatory limit on the number of equipment types, and there is no need to pre-set

the number of clusters. M. Yu [16] et al. proposed a non-invasive load identification model

based on the Siamese neural network. The model calculates the similarity of V-I trajectories

using the Siamese network and dynamically incorporates new features into the feature library

to identify unknown loads. Both methods utilize Siamese neural networks. However, training

the Siamese neural network requires pairs of images to determine whether they belong to the

same category or not. Moreover, the network may encounter challenges in distinguishing tar-

gets with high similarity. Bo Yin [17] et al. utilized the Siamese neural network for unknown

device detection based on steady-state single-cycle current. In load identification, V-I trajec-

tory provides more comprehensive information than single cycle current. For example, cur-

rent waveform, phase information, frequency components, etc. Through these features, it is

possible to describe the load behavior more accurately. Additionally, V-I trajectories are very
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useful for detecting and identifying non-linear loads. The V-I trajectory captures the nonlinear

nature of the waveform. A single cycle current may not provide enough information. This

method also uses the Siamese neural network and also has the disadvantages of the above two

methods. Triplet neural network is typically more suitable for multi-class problems in load

identification. It can reduce the labeling data cost, enhance generalization, and adapt to imbal-

anced data distributions. It effectively addresses the limitations of Siamese neural networks.

Methods

Feature extraction

The load characteristics can generally be divided into two types: steady-state characteristics

[18] and transient characteristics [19] according to the different states of the load. In non-

intrusive load identification, the characteristics of the load to be identified are determined by

two factors: the electronic components present in the load equipment and its internal circuit

structure. The steady-state characteristics and transient characteristics generally mentioned in

power system research are more common in fault analysis and diagnosis [18, 20, 21]. Steady-

state characteristics are typically more stable and less susceptible to noise and measurement

errors, which can result in more reliable outcomes. Measurements of transient characteristics

may be influenced by external disturbances. They may also require higher sampling frequen-

cies. Additionally, more complex instrumentation might be needed. These factors have the

potential to increase experimental uncertainties. Steady-state data is generally easier to process

and analyze since it does not contain momentary fluctuations or noise. This facilitates

researchers in extracting valuable information and trends from the data more easily. Different

from the characteristics in system research, the non-intrusive load characteristics are more

microscopic and correspond to a single load device. In this paper, steady-state features are

selected for experiments.

Event detection is required before feature extraction. Understanding the events of electrical

equipment under different operating states is crucial. Every time the electrical status changes,

an event occurs. Fig 1 is an electrical operation waveform diagram drawn using the root mean

Fig 1. Running RMS current value of air conditioner.

https://doi.org/10.1371/journal.pone.0296979.g001
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square current(RMS) [22]. The red dot is the moment when the event occurs. Under the con-

ditions of determining the turning on or off event of the electrical equipment, the interval

range in the stable state is obtained. Anderson [23]et al. provide a framework for evaluating

event detection algorithms in non-intrusive load monitoring. The accuracy of event detection

is the basis for steady-state feature extraction. After obtaining the stable operation interval of

the electrical appliance, we extract various steady-state characteristics of the electrical

appliance.

Based on the stable state of operation, each electrical appliance extracts the current and volt-

age under different complete cycles and then normalizes the extracted data. The calculation

formula is described in formula (1)

ImðtÞ ¼
IðtÞ � Imin

Imax � Imin

VmðtÞ ¼
VðtÞ � Vmin

Vmax � Vmin

ð1Þ

In the calculation formula, Im(t) and Vm(t) are the value of the current and voltage after nor-

malization. The unit of Im(t) is A. The unit of Vm(t) is V. I(t) and V(t) are the current and volt-

age at the present. The unit of I(t) is A. The unit of V(t) is V. Imin and Vmin are the minimum

values of current and voltage at the present steady-state cycle. The unit of Imin is A. The unit of

Vmin is V. Imax and Vmax are the maximum values of current and voltage at the present steady-

state cycle. The unit of Imax is A. The unit of Vmax is V. The value of the minimum and maxi-

mum is up to the maximum and minimum values of each electrical device data, not fixed.

Self-incrementing class learning non-intrusive load identification method

A non-intrusive load identification method is proposed in this paper for the self-incrementing

class learning of unknown loads, based on the V-I trajectory. The complete process of load

identification is illustrated in Fig 2. Once data processing and event detection are accom-

plished, and the binary V-I trajectories dataset is obtained. The chapter primarily focuses on

three aspects: load pre-classification modeling, detection of unknown loads, and learning to

update the model for unknown loads.

Load pre-classification model based on LeNet label acquisition. In recent years, the

convolutional neural network (CNN) has gained significant popularity in deep learning and

has been widely employed in the field of image processing. Good results have been achieved by

CNNs in load classification based on V-I trajectory. Due to the V-I trajectory image containing

only one curve and lacking complex background. Consequently, there is no need to opt for a

complex deep convolution model. Therefore, in this paper, the classic LeNet [24] model is cho-

sen as the load pre-classification model. The original LeNet model is slightly modified by

replacing all sigmoid [25] activation functions with the Rectified Linear Unit [26, 27] (ReLU)

activation function. The specific network structure is presented in the Fig 3. The input to the

model is a three-channel image with dimensions of 32×32, and the output corresponds to the

labels of the 7 known categories of electrical appliances. The detailed parameter settings of the

LeNet model can be found in the Table 1.

Among the layer names, the first layer of convolution is denoted as Conv1, the first layer of

pooling as Pool1, and the first layer of full connection as FC1. The remaining layers follow a

similar naming convention. Channel represents the number of channels of each layer feature

map. Size represents the size of each layer of feature maps. Kernel size represents the length

and width of the convolution kernel. Stride represents the stride size of each convolution
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Fig 2. Overall process of self-incrementing class learning for unknown loads.

https://doi.org/10.1371/journal.pone.0296979.g002
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movement. The function represents the activation function type of the current layer and the

pooling method adopted by the pooling layer. The activation function uses ReLu, and the pool-

ing method adopts max pooling [28, 29]. The number of neurons in the output layer is 7,

which represents the number of categories of electrical appliances participating in the training.

Additionally, the softmax [30] function is used to map the output to the [0, 1] interval. The

maximum probability index is the class for which the load is identified. The calculation of the

feature map size for each layer output is given by formula (2).

SO ¼ ð
IS � FS

stride
Þ þ 1 ð2Þ

In the formula, SO is the size of the feature map output by each layer. The unit of SO is pixel. IS
is the size of the feature map input for each layer. The unit of IS is pixel. FS is the size of the con-

volution kernel of each layer. The unit of FS is pixel. stride is the step size of each layer of con-

volution kernel movement. The unit of stride is pixel. The operation of rounding down is

performed after the final calculation is obtained.

Unknown load detection method based on combined TNCD method. After load pre-

classification of the input load data, the predicted load label is obtained, and it is necessary to

ensure that the input load corresponds to the intended load. To address this, a combined

method called TNCD (Triplet Neural Network and Convex Hull Coincidence Degree) is pro-

posed for detecting unknown loads. In this method, a new encoding feature space model is

generated by a Triplet neural network (blue bar in Fig 4). The similarity calculation method

used to distinguish unknown loads is the convex hull coincidence degree (CHCD) (yellow bar

Fig 3. LeNet neural network model.

https://doi.org/10.1371/journal.pone.0296979.g003

Table 1. Parameter settings of the LeNet model.

Layer Name Channel Size Kernel Size Stride Function

Inupt 3 (32×32) - - -

Conv1 16 (28×28) (5×5) 1 ReLu

Pool1 16 (14×14) (2×2) 1 Max

Conv2 32 (10×10) (5×5) 1 ReLu

Pool2 32 (5×5) (2×2) 1 Max

FC1 - - 120 - ReLu

FC2 - - 84 - ReLu

Output - - 7 - Softmax

https://doi.org/10.1371/journal.pone.0296979.t001
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in Fig 4). The combined TNCD method, which incorporates both the Triplet neural network

and the CHCD, is employed for detecting unknown loads. The complete illustration of the

TNCD method for unknown load detection is presented in Fig 4.

A.Modeling of new encoding feature spaces based on Triplet neural network. The

advantage of Triplet [31] neural network clustering, as compared to traditional clustering

methods, lies in its ability to automatically determine the number and categories of clusters

without pre-setting them. This is achieved through the encoding of input data and similarity

calculation. Furthermore, the Triplet neural network can dynamically update the encoding

and clustering center, leading to improved accuracy and robustness in clustering. Another

strength of the Triplet neural network is its capability to address scenarios where there are

fewer categories but a large number of samples within each category, effectively handling

imbalanced datasets. In this paper, while the amount of data used for training the network is

sufficient, the number of sample data available for identifying unknown loads is relatively

small. To address this issue, the Triplet neural network is employed to overcome the challenges

associated with small sample data, such as poor category stability and lengthy update times in

traditional clustering models. By utilizing the Triplet neural network, the similarity between

V-I trajectory image samples is learned, enabling the establishment of a new encoding feature

space. Importantly, there is no need to update the Triplet neural network model online to

effectively distinguish new categories, thereby achieving real-time performance objectives. The

Fig 4. Unknown load detection based on the combined TNCD method.

https://doi.org/10.1371/journal.pone.0296979.g004
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input of the Triplet neural network consists of three V-I trajectory images: an anchor sample, a

positive sample from the same category as the anchor sample, and a negative sample from a

different category. The output of the Triplet neural network is a vector representing a low-

dimensional representation of the anchor samples. The process of establishing a new encoding

feature space model using the Triplet network is illustrated in Fig 5.

The architecture of the Triplet neural network is depicted within the blue dotted box.

Firstly, the anchor sample (A), positive sample (P), and negative sample (N) are fed into three

separate LeNets (as indicated in the solid line box on the left side of Fig 5) to obtain the new

encoding features for each sample. To assess the similarity between samples, the positive dis-

tance and negative distance are calculated. The positive distance represents the distance

between the anchor sample and the positive sample, while the negative distance represents the

distance between the anchor sample and the negative sample. These distances are then

Fig 5. Flow chart for generating a new encoding feature space model based on a Triplet neural network.

https://doi.org/10.1371/journal.pone.0296979.g005
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adjusted using a defined loss function, as computed by the formula (3). The objective of this

loss function is to increase the negative distance and decrease the positive distance.

L ¼

XM

i¼1
jj f xAi
� �

� f xPi
� �
jj

2
� jj f xAi

� �
� f xNi
� �
jj

2
þ a L > 0

0 L � 0

(

ð3Þ

In the formula, M represents the number of samples used by the Triplet network training

appliance. A, P, and N represent anchor, positive, and negative samples, respectively. α is the

interval parameter. f(x) is the new encoding features of the sample and the low-dimensional

output of the Triplet neural network. Its dimension information is displayed in the formula (4).

f ðxÞ ¼ ð fxðxÞ; fyðxÞÞ ð4Þ

B.Unknown load detection based on convex hull coincidence degree. In Fig 6(a), the

input load and the load to be detected are indicated by blue points and red points, respec-

tively, on the two-dimensional coordinate axis using the new encoding feature space model.

The similarity evaluation method of convex hull coincidence degree is utilized in this paper

to predict the load and determine whether it is an unknown load. A convex hull is a convex

polygon that encompasses all convex combinations of a given set of points. The specific defi-

nition of a convex hull can be found in [32]. The calculation steps for CHCD are briefly

described as follows:

1. Identify the leftmost, rightmost, uppermost, and lowermost points from the set of points on

the two-dimensional coordinate axis, as well as points on any other boundaries. Connect all

these points to form a convex polygon, which is referred to as a convex hull.

2. Calculate the areas of the two convex hulls. In Fig 6(b), the polygon formed by the blue scat-

ter points is referred to as Pinput, and the polygon formed by the red points is referred to as

Ppredict. Calculate the area Sinput and Spredict of Pinput and Ppredict respectively. Then, calculate

the area of the common region between the two polygons.

3. Calculate the convex hull coincidence degree. The calculation of CHCD is shown in the for-

mula (5).

CHCD ¼
Sinput

T
Spredict

Sinput þ Spredict � ðSinput
T
SpredictÞ

ð5Þ

The numerator in the formula represents the coincident region of the convex hulls of the

encoding feature representation of the known and unknown loads. The denominator in the

formula represents the respective regions of the encoding feature representations of the two

loads after removing the repeated regions. Thus, the formula calculates the ratio of the coin-

cident area to the area of the two convex hulls (after removing the coincident part). A

higher value indicates a higher degree of coincidence and greater similarity in the encoding

feature representation regions of the two loads.

4. To determine whether the input load is unknown, a threshold T is set. If the calculated

value of CHCD is greater than the threshold T, it is determined that the input load and the

predicted load belong to the same category. Otherwise, if the CHCD value is below the

threshold T, it indicates that they do not belong to the same category, suggesting that the

input load is unknown.
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C.Self-incrementing class update method based on parameter freezing. When an

unknown load is detected, the load identification model needs to be updated. However,

retraining the model can be time-consuming and computationally expensive, resulting in a

waste of computing resources. In this paper, a self-incrementing class update model based on

parameter freezing is proposed to facilitate the rapid update of the load identification model.

The pre-classification LeNet model (see Fig 3) has already undergone training on the structural

patterns of the known loading data. Therefore, it is sufficient to freeze all the parameters of the

trained LeNet model, except for the parameters of the FC2 layer and the output layer. This

allows feature extraction for unknown loads to be performed using a frozen parameter layer.

By adopting this approach, the load identification model can be efficiently updated without

Fig 6. New encoding space representation and the convex hull.

https://doi.org/10.1371/journal.pone.0296979.g006

PLOS ONE Unknown load identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0296979 February 9, 2024 10 / 20

https://doi.org/10.1371/journal.pone.0296979.g006
https://doi.org/10.1371/journal.pone.0296979


the need for extensive retraining, thereby reducing the time and computational resources

required for the update process. The extracted feature vector is further input into the FC2 layer

and the output layer, with an increased number of neurons, to achieve the objective of incre-

mental update. The original pre-classification model has undergone comprehensive training

using a large amount of known load data. The network parameters obtained from this training

enable effective extraction of load characteristics. Based on this, only a small amount of data is

required for training to enhance the model’s understanding of unknown loads. During the

training process, similar known load data is added and mixed with unknown loads to form a

training database. This training database is used to facilitate the model’s comprehension of the

characteristics of unknown loads. The update process of the pre-classification model is detailed

in Fig 7. When an unknown load is detected, the load database is updated in real-time. The

original database of known loads is merged with both unknown loads and known loads that

share similar characteristics, forming a new database. After freezing the parameters, all the

data from the new database is input as training data into the pre-classification model. The out-

put feature vector is then input into the updated section of the model, and a new category is

added. The number of neurons in the output layer is set to n+1, where n represents the num-

ber of load categories in the pre-classification model. The newly added neurons correspond to

the number of newly introduced unknown loads. The network is trained to obtain a new pre-

classification model, which significantly saves training time and computing resources.

Results

To evaluate the effectiveness of the method proposed in this paper, experiments were con-

ducted from four aspects: binary V-I trajectory discrimination, load pre-classification model

reliability, the applicability of the unknown load detection method, and time-saving of the pre-

classification model update. The mainstream load public datasets, including PLAID [33],

Fig 7. Self-incrementing learning process of the load pre-classification model.

https://doi.org/10.1371/journal.pone.0296979.g007
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BLUED [34], and REDD [35], were considered. Among these datasets, the PLAID dataset was

chosen for this experiment due to its larger data volume, richer data diversity, and higher data

quality. Table 2 provides the names of electrical appliances and their corresponding labels. To

generate the dataset, 15,000 pictures of binary V-I trajectories were drawn for each type of elec-

trical appliance, with 500 sampling points per period, and a picture was randomly selected

from the steady-state period. Known loads were labeled from 0 to 6, while unknown loads

were labeled from 7 to 10. The binary V-I trajectory pictures of some electrical appliances are

illustrated in Fig 8.

Pre-classification of known loads

The 15,000 samples with known loads were divided into a training set and a validation set in a

7:3 ratio. The training data was then used to train the improved LeNet model proposed in pre-

vious chapters, with the parameter settings provided in Table 1. Additionally, three classic con-

volutional neural networks with different depths, namely Alexnet [36], Vgg16 [37], and

Resnet18 [38], compare with LeNet. The same datasets and batch size parameters as described

earlier were used for training. Each of these four networks was trained by iterating over the

training data 2000 times, resulting in the training of four pre-classification models. The perfor-

mance of these models was evaluated using the validation set. The detailed result values can be

found in Table 3. The table shows that the accuracy of the four models on the validation set is

approximately 99%. However, it is worth noting that the LeNet model has a training speed that

is 10-20 times faster than the other three models. Analyzing the model loss curve and the accu-

racy curve on the validation set depicted in Fig 9. The red curve representing the LeNet model

exhibits minimal fluctuations. This indicates that the LeNet model is the most stable among

the experimental models. Since the V-I trajectory images consist of a single curve without

complex backgrounds. The shallow neural network architecture of LeNet is capable of achiev-

ing excellent results in load classification based on the V-I trajectory. Consequently, the deci-

sion was made to select the LeNet model as the pre-classification model for load identification.

Unknown load detection

The detection methods for unknown loads were examined based on the accurate identification

of known loads by pre-classification models. Following the process of establishing a new

encoding feature space based on Triplet (see Fig 5), a new encoding feature space was estab-

lished for the 7 known loads. The training set was split according to a ratio of 7 to 3 for the

training set and validation set. A batch size of 64 was set, the Triplet neural network learning

Table 2. Load label and name.

0 Air Conditioner

1 Compact Fluorescent Lamp

2 Fan

3 Fridge

4 Hairdryer

5 Heater

6 Incandescent Light Bulb

7 Laptop

8 Microwave

9 Vacuum

10 Washing Machine

https://doi.org/10.1371/journal.pone.0296979.t002
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rate was set to 0.01, and the margin was set to 1.0. The model parameters were optimized

using the formula (3), which calculates the Triplet loss. After 1000 rounds of iterations, the

new encoding feature space was finally obtained, as depicted in Fig 10.

Each load sample is represented by different colored scatter points in the process of map-

ping to the two-dimensional coordinate axis. It can be observed from the figure that the new

encoding model clearly distinguishes each load and maps them to different regions in the two-

dimensional space. After the construction of the new encoding feature space model, the

Fig 8. The single cycle binary V-I trajectory pictures of some electrical appliances.

https://doi.org/10.1371/journal.pone.0296979.g008

Table 3. The result values of the four models.

Network Name Validation Set Accuracy Training speed Final Loss Value Convergence

LeNet 0.9941 70item/s 0.0012 400

Alexnet 0.9953 5.5item/s 0.0007 280

Vgg 0.9965 2.4item/s 0.0006 15

Resnet18 0.9982 6.0item/s 0.0001 10

https://doi.org/10.1371/journal.pone.0296979.t003
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unknown load is detected using the combined TNCD method as shown in Fig 4. The detection

process of unknown loads is illustrated using the example of the Microwave device with label

7. Firstly, the pre-classification model trained in previous chapters is utilized to input the

Microwave sample, obtaining the label of the known load fridge that exhibits the most similar

characteristics. Following the process depicted in Fig 4, a selection of 100 fridge samples and

100 Microwave samples are made. These 200 samples are then input into the new encoding

feature space model to derive their respective new coded feature representations. In the Fig 11

(a), the blue point signifies the input load, representing the new encoding feature space of the

Microwave. The red point represents the predicted load, representing the new encoding fea-

ture space of the fridge. Both the blue and red points reside within their respective regions, dis-

playing a noticeable distance between them. Subsequently, a convex hull is constructed based

on the new encoding feature space representations of the two loads, as depicted in Fig 11(b).

Finally, the CHCD is computed for the two convex hulls, utilizing CHCD as the criterion to

assess the similarity between the loads. In the figure, the calculated CHCD for the two convex

hulls is determined to be zero, indicating that the two loads are dissimilar and not the same

load. Subsequently, fridge samples are again selected from the known load database, and the

Fig 9. Accuracy and loss comparison of the LeNet, AlexNet, VGG, and ResNet models on the validation set.

https://doi.org/10.1371/journal.pone.0296979.g009
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aforementioned detection process is repeated. The pre-classification model outputs a label of

the fridge, their respective new coded feature representations are shown in Fig 11(c), and their

respective convex hulls are shown in Fig 11(d). The calculated value of the convex hull coinci-

dence degree is 0.873, indicating a high similarity between the two loads and confirming that

they belong to the same load type. To further evaluate the detection process, 300 experiments

are conducted on each of the 11 load types, resulting in two box plots. In Fig 12(a), it can be

observed that the CHCD values for known loads are consistently above 0.65. Similarly, Fig 12

(b) demonstrates that the CHCD values for unknown loads are all below 0.2. These findings

indicate that setting the CHCD threshold to 0.65 enables accurate differentiation between

known and unknown loads.

Self-incrementing class update of pre-classification model

After the unknown load is detected, the pre-classification model is updated using the self-

incrementing class method, following the process depicted in Fig 7. The training data is split

into a train set and a validation set with a ratio of 7 to 3, and the iteration is performed 1000

times. The training results of regular training and self-incrementing class update with the addi-

tion of Microwave based on the 7 known loads are presented in Table 4. Through analysis, it is

discovered that the self-incrementing class update requires less training time, and the accuracy

of the two methods is comparable. This achieves the objective of quickly updating the model

without compromising accuracy. The training accuracy of both models on the validation set is

illustrated in Fig 13. Continuing the experiment after incorporating Microwave, the remaining

three unknown loads are sequentially trained using the self-incrementing class update method.

Fig 10. New encoding space representation of data from 7 known loads.

https://doi.org/10.1371/journal.pone.0296979.g010
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Table 1 provides a detailed overview of the various parameters after each load training is com-

pleted. The training accuracy on the validation set for the self-incrementing learning model

with the four types of electrical appliances is presented in Fig 14. All accuracies exceed 90%,

and the training speed is notably fast. This fully validates the efficacy of this method in achiev-

ing rapid self-incrementing class updates on the pre-classification model while maintaining a

high accuracy rate.

Discussion

Combining each experimental part of this paper, discussing the experimental results: The

method proposed in this paper utilizes the low-dimensional mapping ability of the Triplet neu-

ral network and employs self-incrementing class learning based on model parameter freezing.

Our known load pre-classification model based on the LeNet neural network exhibits high

accuracy. In the detection of unknown equipment, the combined TNCD method addresses the

instability of traditional clustering methods and effectively identifies unknown loads. Through

Fig 11. Unknown load detection process for unknown loads and known loads.

https://doi.org/10.1371/journal.pone.0296979.g011
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the utilization of the self-incrementing learning model based on network parameter freezing,

the pre-classification model can be rapidly updated following the identification of unknown

loads. The experiments conducted on 11 different load types achieved an average accuracy rate

of 99.23%. So, the method proposed in this paper exhibits higher accuracy compared to the

previous methods. Additionally, the proposed method expands the functionality of the NILM

system by enabling the identification and modeling of unknown loads. However, it should be

noted that the method proposed in this paper also has limitations, such as the consumption of

additional computing resources due to the combination of different algorithms.

Conclusion

In this paper, a method is proposed to address the challenge of identifying unknown loads by

combining TNCD. The Triplet neural network is employed to establish a new encoding feature

space model. The benefit of the Triplet neural network is to map similar samples to adjacent

locations in the embedding space while mapping dissimilar samples to distant locations. Then

combine the convex hull coincidence degree to detect the unknown loads. Finally, transfer

learning is applied to update the pre-classification model through self-incrementing classes.

Transfer learning can improve the generalization ability of a model, making it perform better

on unknown data. The knowledge originally trained helps the model better understand and

capture the common characteristics of new data. These advantages can save a lot of time dur-

ing the training process and quickly update the model. The performance of the proposed

method is validated using the publicly available PLAID dataset, demonstrating high accuracy

in identifying unknown loads.

Fig 12. CHCD statistical box plot of load data feature space representation.

https://doi.org/10.1371/journal.pone.0296979.g012

Table 4. The result values of the two models.

Method Iteration Time

- 10 50 100 500 1000 -

LeNet 0.2254 0.6934 0.8414 0.9783 0.9865 551

Self-incrementing class update model 0.1764 0.9304 0.97 0.9908 0.9923 73

https://doi.org/10.1371/journal.pone.0296979.t004
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