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Abstract

In causal inference, the estimation of the average treatment effect is often of interest. For

example, in cancer research, an interesting question is to assess the effects of the chemo-

therapy treatment on cancer, with the information of gene expressions taken into account.

Two crucial challenges in this analysis involve addressing measurement error in gene

expressions and handling noninformative gene expressions. While analytical methods have

been developed to address those challenges, no user-friendly computational software pack-

ages seem to be available to implement those methods. To close this gap, we develop an R

package, called AteMeVs, to estimate the average treatment effect using the inverse-prob-

ability-weighting estimation method to handle data with both measurement error and spuri-

ous variables. This developed package accommodates the method proposed by Yi and

Chen (2023) as a special case, and further extends its application to a broader scope. The

usage of the developed R package is illustrated by applying it to analyze a cancer dataset

with information of gene expressions.

1 Introduction

Bioinformatics has revealed that cancer stems from a genetic disorder, deiven by genetic varia-

tions that lead to the abnormally dysfunction of genes and their altered expressions (e.g., [1]).

Accurate assessment of gene expression levels becomes crucial for cancer diagnosis and treat-

ment. Chemotherapy is a commonly used approach in cancer treatment as it often effectively

eradicates malignant cells. In particular, the integration of targeted therapy with chemotherapy

is frequently used to control the growth, division, and spread of cancer cells (e.g., [2]). How-

ever, due to its lack of specificity in targeting cancer cells, chemotherapy drugs can impact

both cancer cells and healthy cells, which leads to significant side effects. One concern is

whether employing chemotherapy is more beneficial than taking alternative treatments that

avoid it. We are interested in studying whether taking chemotherapy has a causal effect on

increasing the survival of cancer patients.
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This research is partially motivated by the Molecular Taxonomy of Breast Cancer Interna-

tional Consortium (METABRIC) database, a Canada-UK Project that includes targeted

sequencing data of primary breast cancer samples collected by the Cambridge Research Insti-

tute and the British Columbia Cancer Centre in Canada [3]. The dataset with all gene expres-

sion names is publicly available on the Kaggle website (https://www.kaggle.com/datasets/

raghadalharbi/breast-cancer-gene-expression-profiles-metabric). One interesting question is

whether patients taking chemotherapy as a treatment (“hormone_therapy”: 1 is yes and 0 is

no) can increase the chance of the survival status (“overall_survival”: 1 is alive and 0 is dead).

The dataset contains Z-scores of m-RNA levels for 331 genes, where the Z-score is defined as

an expression level in the tumor sample � the mean expression in reference sample
standard deviation of expression levels in reference sample

;

which is a continuous variable. In addition, some gene expressions may be confounded with

the outcome and treatment, shown in Fig 1.

Taking the causal inference paradigm, we formulate the question as the estimation of the

average treatment effect (ATE), defined as the difference between potential outcomes under

two treatments, where the two treatments refer to taking and not taking chemotheropy,

respectively.

Various causal inference methods, accompanied by R packages, are available in the litera-

ture. Examples include iWeigReg [4], SVMMatch [5], CausalGAM [6], and wfe [7]. The R

package mediation [8] is developed to conduct mediation analysis. Package qualCI [9] is used

to analyze causal inference with qualitative and ordinal information on outcomes. Matching-

Frontier [10] applies the matching method to handle the balance issue in causal inference.

In the framework of causal inference, the inverse probability weighted (IPW) estimation

method has been widely used to estimate average treatment effects due to its simplicity and

transparent interpretation (e.g., [11–13]). The method adjusts for the effects of measured con-

founders by re-weighting the data as if the weighted data were collected from randomized

Fig 1. An illustrative diagram of the causal relationship with possible confounders.

https://doi.org/10.1371/journal.pone.0296951.g001
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controlled trials. The validity of the method requires two key conditions: (1) the treatment

model is correctly specified to consistently estimate propensity scores, and (2) the variables in

the treatment model are precisely measured.

In the presence of measurement error, directly applying those methods to the observed data

usually yields unreliable estimation results. As illustrated in Fig 1, in the study of the treatment

effect on the outcome, confounders (e.g., gene expressions) may possess complex features:

some are associated only with the treatment variable, some are solely related to the outcome

variable, some are connected to both treatment and outcome variables, and some are not rele-

vant to either treatment or outcome variable. Including irrelevant confounders in the analysis

or model building may lead to misleading results.

In the literature, variable selection for causal inference (e.g., [14–16]) or measurement error

correction (e.g., [17–22]) are discussed under various settings. However, in the concurrent

presence of both features, limited work has been carried out to estimate ATE except for [23].

Moreover, there is a lack of user-friendly R packages designed to facilitate causal estimation

for data with both measurement error and spurious variables.

In this paper, we develop an R package, called AteMeVs, which is desired to estimate the

average treatment effect with measurement error and variable selection for confounders. This

package, available at CRAN [24], is developed to implement a recent method proposed by

[23], which estimates the average treatment effect for noisy data that include both measure-

ment error and spurious variables needed to be excluded. The developed package contains a

set of functions that provide a step-by-step estimation procedure, including the correction of

the measurement error effects, variable selection for the estimation of propensity scores, and

estimation of ATE. Our functions contain multiple options for users to implement, including

different ways to correct for the measurement error effects, various penalty functions for vari-

able selection, and different regression models for characterizing propensity scores.

2 Notation and framework

2.1 Propensity score

In contrast to the variables indicated by Fig 1, we now introduce abstract symbols to classify

the associated variables differently. Let T denote the observed binary treatment (e.g., chemo-

therapy) with T = 1 if treated and T = 0 if untreated. Accordingly, we consider counterfactual

responses corresponding to the treatment status. For t 2 {0, 1}, let Y(t) represent the potential

outcome of the patient if the patient would have received T = t. As described in Section 1, the

goal is to assess the causality effect of the treatment (e.g., chemotherapy) on increasing the

patient’s survival, or equivalently, we are interested in estimating the ATE,

t0 ≜ EðYð1ÞÞ � EðYð0ÞÞ:

To facilitate an individual’s characteristics, we letW denote the p-dimensional vector of

pre-treatment confounders for the individual, which as an example, can be understood as gene

expressions in Fig 1. To reflect the possible dependence of T onW, we consider the conditional

probability

p≜PðT ¼ 1jWÞ;

also called the propensity score for the individual. The introduction of the propensity score

allows us to use the observed outcome, denoted by Y, and the treatment information to
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consistently estimate τ0 (e.g., [25]), which basically is due to the property (e.g., [23])

t0 ¼ E
TY
p

� �

� E
�
ð1 � TÞY

1 � p

�

: ð1Þ

The validity of (1) hinges on the following standard assumptions in the causal inference

framework:

1. The strong ignorable treatment assumption (SITA): given the covariates W, potential out-

comes Y(0) and Y(1) are independent of T;

2. The stable unit treatment value assumption (SUTVA), also known as the consistency

assumption: each subject’s potential outcomes are not influenced by the actual treatment

assignment of other subjects. Therefore, the observed outcome, Y, for an individual is

assumed to be linked with potential outcomes via Y = TY(1) + (1 − T)Y(0);

3. The positivity assumption: the propensity score is between 0 and 1, i.e., 0< π(W)< 1 for

allW.

In applications, π is frequently characterized by a parametric model:

g � 1ðpÞ ¼W>g; ð2Þ

where γ = (γ0, γ1, � � �, γp)
> is the vector of regression parameters of dimension p + 1, with γ0

representing the intercept; and g(�) is a link function. For ease of exposition and the inclusion

of the intercept, we slightly abuse the notation W in (2) by including 1 to the original p-dimen-

sional vector of confounders here and in the subsequent development. Common choices of g
(�) include the logit, probit, and complementary log-log functions, respectively yielding

• the logistic regression model:

p ¼
exp ðW>gÞ

1þ exp ðW>gÞ
; ð3Þ

• the probit regression model:

p ¼ ΦðW>gÞ; ð4Þ

with Φ(�) representing the cumulative distribution function of the standard normal distribu-

tion, and

• the complementary log-log regression model:

p ¼ 1 � exp f� exp ðW>gÞg: ð5Þ

2.2 The IPW estimator

With the setup in Section 2.1, the estimation of τ0 can be carried out using the measurements

of a random sample, say {{Ti, Yi,Wi}: i = 1, . . ., n} of size n, where Ti, Yi, andWi represent the

corresponding variables for subject i with i = 1, . . ., n.

The estimation of τ0 basically involves the following two steps. In the first step, we estimate

the propensity score πi = P(Ti = 1|Wi) for subject i = 1, . . ., n based on estimating parameter γ
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in model (2). Let Si(γ;Wi) denote the likelihood score function obtained from subject i that is

derived from fitting model (2). If the true value ofWi is available, one may solve

Xn

i¼1

Siðg;WiÞ ¼ 0 ð6Þ

for γ to obtain a consistent estimate of γ, denoted bg, provided usual regularity conditions.

Then we calculate πi with γ in (2) replaced by the estimate bg, and let bp i denote the resulting

value of πi.
In the second step, utilizing the property (1) yields a consistent estimate of the ATE τ0 by

the following IPW estimator, as initiated by [25]:

bt ¼
1

n

Xn

i¼1

TiYi
bpi
�

1

n

Xn

i¼1

ð1 � TiÞYi
1 � bpi

: ð7Þ

To mitigate unstable numerical results caused by extreme values of bpi that may be close to 0 or

1, [12] proposed a stable version of (7), which also offers a consistent estimator of τ0:

bt ¼
Xn

i¼1

Ti
bpi

 !� 1
Xn

i¼1

TiYi
bp i
�

Xn

i¼1

1 � Ti
1 � bp i

 !� 1
Xn

i¼1

ð1 � TiÞYi
1 � bpi

: ð8Þ

We use (8) for the following development.

2.3 Irrelevant variables and measurement error

As noted in [23], the validity of (7) or (8) breaks down in the presence of two features of noisy

data: measurement error and irrelevant variables.

In applications, some variables (e.g., gene expressions) inWi can be subject to measurement

error. To reflect this feature, we write Wi as ðX>i ;Z
>
i Þ
>

so that all error-prone variables are

included in Xi and all precisely measured variables go to Zi. Let X∗
i denote the observed surro-

gate measurement of Xi.
To characterize the relationship between X∗

i and Xi, we consider the classical additive error

model (e.g., [26, 27])

X∗
i ¼ Xi þ ei; ð9Þ

where the error term ei is independent of {Ti, Xi, Zi, Yi} and follows N(0, Se) with covariance

matrix Se.

Model (9) is the most commonly used in the literature; it facilitates situations where the

observed value fluctuates around the true value with an error term, and the degree of measure-

ment error in X∗
i is reflected by the value of Se. In this paper, we consider the following four

cases for Se:

Case 1: Se is known;

Case 2: Se is unknown and estimated from repeated surrogate measurements fX∗
ij : j ¼

1; � � � ; ni; i 2 Rg for a subset, say R, of {1, 2, � � �, n} with jRj ¼ m andm< n;

Case 3: Se is unknown and estimated from repeated surrogate measurements fX∗
ij : j ¼

1; . . . ; nig of Xi for i = 1, � � �, n, where ni� 2 that may or may not depend on i;

Case 4: Se is unknown and estimated from an external validation sample ffXk;X∗
kg : k 2 Vg,

where V is index set for the subjects in the validation sample.
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Case 1 is useful for addressing data issues in which the existence of measurement error is

acknowledged, yet the magnitude of this error has not been quantified. In this case, we often

conduct sensitivity analyses to assess the sensitivity of inference results to varying degrees of

measurement error, where user-specified values for Se are typically used to describe different

scenarios of measurement error in Xi (e.g., [27, 28]). This case was also considered by [23].

Cases 2 and 3 complement each other in addressing two scenarios with repeated surrogate

measurements. In contrast to the availability of replicates, Case 4 assumes the availability of an

external validation dataset.

The second issue of noisy data concerns irrelevant variables in the data. As shown in Fig 1,

some gene expressions have no connection with chemotherapy or patient’s survival status. To

reflect this feature, we writeWi ¼ ðW>
Ii ;W

>
IIiÞ
>

for i = 1, � � �, n, whereWIi includes the informa-

tive confounders associated with Ti and Yi, andWIIi contains noninformative confounders.

We further writeWIi ¼ ðZ>Ii ;X
>
Ii Þ
>

andWIIi ¼ ðZ>IIi;X
>
IIiÞ
>

so that Zi≜ðZ>Ii ;Z>IIiÞ
>

represents the

subvector of error-free confounders inWi and Xi≜ðX>Ii ;X>IIiÞ
>

is the subvector of error-prone

confounders inWi. Let pZ and pX denote the dimension of Zi and Xi, respectively. We let X∗
i ¼

ðX∗>
Ii ;X

∗>
IIi Þ

>
denote the observed version of Xi, where X∗

Ii and X∗
IIi are the observed measure-

ments of XIi and XIIi, respectively.

3 Estimation methods

Here we describe methods for estimating the average treatment effect τ0, with the features of

variable selection and measurement error accommodated for each of the four cases described

in Section 2.3. The main idea comes from Section 3.1 of [23], which is developed under Case 1

described in Section 2.3. Sections 3.2-3.4 extend the development in Section 3.1 to respectively

handle Cases 3.2-3.4 described in Section 2.3.

3.1 Implementation steps for Case 1

First, we describe the algorithm for Case 1 where Se is user-specified. The algorithm of esti-

mating τ0 contains the five steps, summarized as follows. For details, see Section 3.1 of [23].

Step 1. Simulation:

We simulate a sequence of artificial surrogates, denoted fX∗
i ðk;cÞ : k ¼ 1; � � � ;K;c 2 C;

i ¼ 1; � � � ; ng, where K is a user-specified positive integer, C ¼ fc1;c2; . . . ;cMg is a sequence

ofM non-negative values taken from ½0;cM� with a given cM and ψ1 = 0, and

X∗
i ðk;cÞ ¼ X

∗
i þ

ffiffiffiffi
c

p
eik with eik independently generate from Nð0;SeÞ: ð10Þ

Step 2. Estimation of Treatment Model Parameters:

Parameter γ in model (2) is estimated by solving (6) with Xi replaced by X∗
i ðk;cÞ, and let

bgðk;cÞ denote the resulting estimate. Calculate bgðcÞ ¼ K � 1
PK

k¼1
bgðk;cÞ for c 2 C.

Step 3. Extrapolation:

For j = 0, 1, 2, . . ., p, let bg jðcÞ denote the jth element of bgðcÞ; fit a regression model to

fðc;bg jðcÞÞ : c 2 Cg and extrapolate it to ψ = −1; and let ~g j denote the resulting extrapolated

value of γj, the jth element of γ. Write ~g ¼ ð~g0; ~g1; . . . ; ~gpÞ
>

.

Step 4. Variable Selection:
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Minimize the penalized quadratic loss function

‘PðgÞ ≜ ‘ðgÞ � n
Xp

j¼1

rlðjgjjÞ

≜
1

2
ðg � ~gÞ

>Vnðg � ~gÞ � n
Xp

j¼1

rlðjgjjÞ

ð11Þ

with respect to γ, where ρλ(�) is a user-specified penalty function with a tuning parameter λ,

and Vn is a user-specified positive definite weight matrix.

Step 5. Estimation of ATE:

Write bg ¼ ðbg>I ;bg
>
IIÞ
>

with bgI ¼ ðbg
>
xI;bg

>
zIÞ
>

and bgII ¼ ðbg
>
xII;bg

>
zIIÞ
>

corresponding to the non-

zero and zero components in bg, respectively. With unimportant variables XIIi and ZIIi excluded

from the initial model (2), the final treatment model is taken as

g � 1ðpiÞ ¼W>
Ii gI; ð12Þ

where gI is the vector of model parameters associated with important covariates WIi.

For k = 1, � � �, K and c 2 C, calculate an estimate, say, btðk;cÞ, of τ0 using (8) with bpi
replaced by the propensity score for subject i, determined by the selected treatment model (12)

with XIi replaced by X∗
Iiðk;cÞ, the subvector of X∗

i ðk;cÞ that corresponds to X∗
Ii. Then calculate

btðcÞ ¼ K � 1
XK

k¼1

btðk;cÞ:

Finally, fit a regression model to fðc;btðcÞÞ : c 2 Cg and extrapolate it to ψ = −1. The result-

ing value, denoted as bt, is taken an estimate of τ0.

3.2 Implementation steps for Case 2

Consider Case 2 where repeated measurements fX∗
ij : j ¼ 1; � � � ; ni; i 2 Rg of Xi are available

for jRj≜m subjects, and surrogates X∗
ij and Xi are linked via the measurement error model

X∗
ij ¼ Xi þ eij for i 2 R and j ¼ 1; � � � ; ni;

where for i 2 R; ni � 2; eij follows N(0, Se) with unknown covariance matrix Se; and the eij
are independent of {Ti, Xi, Zi, Yi(1), Yi(0)}.

With the repeated measurements, using the method of moments, we estimate Se by

bSe ¼

X

i2R

Xni

j¼1

ðX∗
ij � X

∗
i ÞðX

∗
ij � X

∗
i Þ
>

X

i2R

ðni � 1Þ
; ð13Þ

where X∗
i ¼ n

� 1
Pni

j¼1

X∗
ij.

To estimate τ0, we repeat the five steps described in Section 3.1 with Se in (10) replaced by

(13).
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3.3 Implementation steps for Case 3

Now we consider Case 3 described in Section 2.3, where Se is unknown but repeated surrogate

measurements fX∗
ij : j ¼ 1; � � � ; nig are available for all the subjects in the sample, with ni� 2

for i = 1, � � �, n.

Adapting the development in [27, 29] (p.107), we modify Step 1 in Section 3.1 as follows.

For any c 2 C and i = 1, � � �, n, we generate ni variates independently from the standard nor-

mal distribution, and let {dij(ψ): j = 1, � � �, ni} denote them. Calculate diðcÞ ¼ 1

ni

Pni

j¼1

dijðcÞ and

cijðcÞ ¼
dijðcÞ � diðcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xni

l¼1

fdilðcÞ � diðcÞg
2

s :

Then for k = 1, � � �, K, we define

X∗∗
i ðk;cÞ ¼ X

∗
i þ

ffiffiffiffi
c

ni

s
Xni

j¼1

cijðcÞX
∗
ij; ð14Þ

where X∗
i ¼ n

� 1
i

Pni

j¼1

X∗
ij. Estimation of τ0 can then be proceeded following the five steps in Sec-

tion 3.1, with X∗
i ðk;cÞ in (10) replaced by X∗∗

i ðk;cÞ in (14).

3.4 Implementation steps for Case 4

We now consider Case 4 described in Section 2.3. In this case, we have the main study data,

given by
n
fYi;Ti;Zi;X∗

i g : i 2M
o

with M ¼ f1; � � � ; ng, and an external validation sample

ffXk;X∗
kg : k 2 Vg with size jVj≜m, where the index sets M and V do not overlap. We assume

that X∗
k and Xk are related via (9) for k 2 V. Further, we make the transportability assumption,

considered in [30].

With the availability of Xk and X∗
k in V, we can empirically estimate SX = var(Xk) and

SX∗ ¼ varðX∗
kÞ, and denote the resulting estimators by

bSX ¼
1

jVj

X

i2V

Xi � Xi

� �
ðXi � XiÞ

>

and

bSX∗ ¼
1

jVj

X

i2V

X∗
i � X

∗
i

� ��
X∗
i � X

∗
i

�>
;

respectively, where Xi ¼
1

jVj

P

i2V
Xi and X∗

i ¼
1

jVj

P

i2V
X∗
i .

Consequently, by the additivity of covariance matrices in (9), we estimate Se by

bSe ¼
bSX∗ �

bSX: ð15Þ

Then estimation of τ0 is carried out following the five steps in Section 3.1, with Se in (10)

replaced by the estimator bSe in (15).
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4 Implementation details

To implement the estimation procedures described in Section 3, we need to first decide the

choice of relevant quantities, including K and C in Step 1, the regression model for extrapola-

tion in Steps 3 and 5, and the penalty function together with the tuning parameter in Step 4. In

the following subsections, we discuss the choice of each quantity individually.

4.1 Choice of K and C in step 1

Integer K determines the repetition of simulated data X∗
i ðk;cÞ for each given ψ. To reduce

Monte Carlo errors, a larger value of K is expected to produce a more stable result of bgðcÞ. On

the other hand, a larger value of K requires a substantially longer computational time. There-

fore, a suitable choice of K is driven by the trade-off between the computation time and the

accuracy of the results. Empirical experience (e.g., [23, 31–33]) suggests setting K to be 50, 100,

200, or 500 may be reasonable for many applications.

Regarding the choice of C, one may take cM to be 1 or 2, and divide the interval ½0;cM�

equally intoM sub-intervals, whereMmay be taken as 5, 10, or other positive integers. Then C
is the set of the resulting cut points.

4.2 Choice of extrapolation function in steps 3 and 5

[26] (Section 5.3.2) suggests to use one of the following functions, denoted by φ(u) with

parameters β0, β1, β2, and β3, to approximate the true extrapolation functions in implementing

Steps 3 and 5:

1. the quadratic function

φðuÞ ¼ b0 þ b1uþ b2u2; ð16Þ

2. the linear function

φðuÞ ¼ b0 þ b1u; ð17Þ

3. the rational linear function

φðuÞ ¼ b0 þ
b1

b2 þ u
: ð18Þ

To increase flexibility, we add the following function to approximate the extrapolation

functions for the implementation of Steps 3 and 5:

4. the cubic function

φðuÞ ¼ b0 þ b1uþ b2u2 þ b3u3: ð19Þ

4.3 Choices of penalty function in step 4

In implementing Step 4 in Section 3.1, we consider the following commonly used penalty func-

tions ρλ(u) that are included in the R package ncvreg:
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1. the least absolute shrinkage and selection operator (LASSO) penalty [34]:

rlðuÞ ¼ ljuj; ð20Þ

2. the smoothly clipped absolute deviation (SCAD) penalty [35]:

r0
l
ðuÞ ¼ lfIðu � lÞ þ

ðal � uÞ
þ

ða � 1Þl
� Iðu > lÞg; ð21Þ

where I(�) is the indicator function, u+ = max{u, 0}, and a = 3.7. Here r0
l
ðuÞ is the first order

derivative of the penalty function ρλ(u) with tuning parameter λ.

3. the minimax concave penalty (MCP) function proposed by [36]:

r0
l
ðuÞ ¼ ðl � u=aÞ

þ ð22Þ

with a = 3.

4. the Elastic Net [37]:

rlðuÞ ¼ lfð1 � aÞu2 þ ajujg; ð23Þ

with α 2 [0, 1]. If α = 1, then (23) reduces to (20); when α = 0, then (23) gives the L2-norma

penalty for the ridge regression.

4.4 Determination of tuning parameter

To achieve satisfactory performance of the selection procedure, we may consider one of the

following criteria for choosing a suitable value for the tuning parameter λ:

1. Bayesian Information Criterion (BIC)

Given a grid Λ of possible values for the tuning parameter λ, and for λ 2 Λ, let

bgðlÞ ¼ argmin
g
‘PðgÞ

and let dfλ denote the number of non-zero elements of bgðlÞ. We define

BICðlÞ ¼ � 2‘ðbgðlÞÞ þ 2ðlog nÞdfl:

Then the optimal tuning parameter λ* is chosen as the minimizer of BIC(λ):

l
∗
¼ argmin

l2L
BICðlÞ:

2. V-fold cross validation (CV)

The original dataset is first divided into V subsamples with an equal size, where V is a user-

specified positive integer, such as V = 5. The rth subsample is taken as the testing set and

the remaining (V − 1) subsamples are merged as the training set.

Applying (11) to the training set gives us an estimator of γ, denoted γ(−r)(λ). Then we evalu-

ate ℓ(γ) in (11) at γ = γ(−r)(λ) based on the rth testing set, and let ℓ(r)(γ(−r)(λ)) denote the

resulting value. Finally, we compute

CVðlÞ ¼
1

V

XV

r¼1

‘
ðrÞ
ðgð� rÞðlÞÞ:
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The optimal tuning parameter λ* is then determined by the minimizer of CV(λ):

l
∗
¼ argmin

l2L
CVðlÞ:

This approach can be realized by employing the function cv.ncvreg in the R package

ncvreg.

5 Syntax of R package

In this section, we present our developed R package, AteMeVs, which implements the estima-

tion procedures described in Section 3, together with the details in Section 4. The developed R

package utilizes the available R packages: MASS and ncvreg. The former is used to generate a

multivariate normal distribution to address (10), and the latter is used to implement penalty

functions as outlined in Section 4. Below, we describe the syntax of the developed functions

that implement the step-by-step estimation procedure in Section 3.

SIMEX_EST
The function SIMEX_EST implements Steps 1-3 in Section 3.1, given by

SIMEX_EST(data, PS = “logistic”, Psi = seq(0,1,length = 10),
px = p, K = 200, extrapolate=“quadratic”, Sigma_e, replicate =
“FALSE”, RM = rep(0,px)).

The arguments in this function include

• data: an n × (p + 2) matrix of a dataset. The first column records the observed outcome, the

second column displays the values for the binary treatment, and the remaining columns

store the observed measurements for the confounders.

• PS: a specification of a link function g(�) in (2). logistic refers to the logistic regression

function (3), probit reflects the probit model (4), and cloglog gives the complementary

log-log regression model (5).

• Psi: the specification of C in Step 1.

• px: the dimension of X.

• K: a positive integer K in Step 1.

• extrapolate: the extrapolation function in Step 3. quadratic reflects the quadratic

polynomial function (16), linear gives the linear polynomial function (17), RL is the ratio-

nal linear function (18), and cubic refers to the cubic polynomial function (19).

• Sigma_e: the covariance matrix Se for the measurement error model (9).

• replicate: the identification of the availability of repeated measurements in the con-

founders. replicate = “FALSE” represents no repeated measurements and

replicate = “TRUE” indicates that repeated measurements exist in the dataset. The

default is set as replicate = “FALSE”.

• RM: a pX dimensional user-specified vector with each entry representing the number of repe-

titions for the respective confounder. For example, RM = c(2,2,3) indicates that three

confounders in X have repeated measurements, where the first and second confounders

have two repetitions and the third one has three repetitions. The default of RM is set as the

pX-dimensional zero vector, i.e., RM = rep(0,px).
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In the argument data, the potential outcome can be continuous or binary and the treat-

ment in the second column is designed to be binary. For the columns of confounders, one

should place error-prone confounders from the third to the (px+2)-th column, and the

remaining columns record precisely-measured confounders in Z. The argument PS is used to

specify a link function g(�) that is used to characterize the propensity score in model (2), where

the logistic regression model (3) is taken as the default. Two arguments Psi and K are used to

generate the working data X∗
i ðk;cÞ in Step 1 in Section 3.1. The default of Psi is given by

seq(0,1,length = 10), i.e., an interval [0, 1] with equal width divided intoM = 10 sub-

intervals, and the default of K is set as 200. px reflects the dimension of error-prone confound-

ers, with the default value set as the dimension of all confounders Wi, revealing that all

confounders may be subject to measurement error. Setting px = 0 accommodates the situa-

tion where all confounders are precisely measured and there is no need to correct the measure-

ment error effects. On the contrary, if confounders do involve measurement error, specifying

px = 0 yields the naive estimate of τ0 which ignores the measurement error effects. The argu-

ment extrapolate contains commonly used working functions for extrapolation listed in

Section 4.2. The default of the working extrapolation function is taken as the quadratic

function.

Finally, Sigma_e records the covariance matrix Se, which can be user-specified or esti-

mated by using auxiliary information, as described in Sections 3.2-3.4. Two arguments

replicate and RM are used to indicate the availability of repeated measurements and the

way of generating working data. Specifically, when replicate = “FALSE”, then (10) is

implemented to generate the working variables in the main dataset for Cases 1, 2, and 4,

respectively described in Sections 3.1, 3.2, and 3.4. On the other hand, the argument

replicate = “TRUE” reflects Case 3 described in Section 3.3, which uses (14) to replace

Step 1 in Section 3.1. The argument RM is in use to accompany with the argument

replicate. When replicate = “FALSE”, no repeated measurements are available in

the sample, and RM should be set as RM = rep(0,px). In contrast, if replicate =
“TRUE”, there are repeated measurements for the confounders, and in this case, users should

specify the number of repeated measurements for each confounder by setting a proper value

for RM. For example, setting RM = c(2,2,3) represents that three confounders have

repeated surrogate measurements, having 2, 2, and 3 replicates, respectively. When all argu-

ments are specified, the output of this function gives a vector ~g as defined in Step 3.

VSE_PS
The function VSE_PS, reflecting variable selection and estimation of propensity scores, is used

to implement Step 4 in Section 3.1. The input function is given by

VSE_PS(V, y, method=“lasso”, cv=“TRUE“, alpha = 1),

with the following arguments:

• V: a (p + 1) × (p + 1) matrix Vn in (11).

• y: a (p + 1)-dimensional vector ~g in (11).

• method: it reflects the penalty function ρλ(�) in (11) with choices presented in Section 4.3,

where “lasso”, “scad” and “mcp” are given by (20), (21) and (22), respectively.

• cv: the method for choosing the tuning parameter λ. cv=“TRUE” suggests the use of the

cross-validation method and cv=“FALSE” allows the use of the BIC, described in Section

4.4.

• alpha: a constant α 2 [0, 1] in (23).

PLOS ONE R package: AteMeVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0296951 September 27, 2024 12 / 20

https://doi.org/10.1371/journal.pone.0296951


The argument V is a user-specified matrix, with the default set as the identity matrix, and y
represents a vector derived by the output of SIMEX_EST. The argument method provides

the penalty functions in Section 4.3 that are implemented in the R package ncvreg. The argu-

ment cv gives two choices to determine the optimal tuning parameter, respectively deter-

mined by cross-validation and BIC. Finally, alpha reflects a user-specified value α in (23),

with the default value alpha = 1 that recovers the lasso method.

The output of this function gives a (p + 1)-dimensional vector of the estimator of γ. In this

vector, components with zero values represent confounders that are unimportant and should

be excluded; components with nonzero values identify important confounders entering the

treatment model (12).

EST_ATE
Upon the implementation of Steps 1-4, we then use the function EST_ATE to estimate ATE,

as discussed in Step 5. The implementation is given by

EST_ATE(data, PS = “logistic”, Psi = seq(0,1,length = 10),
K = 200, gamma, px = p, extrapolate=“quadratic”, Sigma_e,
replicate = “FALSE”, RM = 0, bootstrap = 100).

All the arguments in this function are the same as those in SIMEX_EST, except for the

argument gamma. The argument gamma records the estimate obtained from the implementa-

tion of Steps 1-4, and is used to estimate the propensity score bp iðk;cÞ in Step 5. The function

EST_ATE provides the final estimate of ATE.

Furthermore, to provide a variance estimate and the resulting p-value for the estimated

ATE, we employ the bootstrap algorithm by repeatedly running the proposed procedure to a

sequence of bootstrap samples; then using the resulting estimates of ATE, we compute the

sample variance of those estimates; taking this as a bootstrap variance for the initially obtained

estimate of ATE, we calculate an associated p-value. The argument bootstrap is used to

specify the number of bootstrap samples the user wishes to consider; its default value is set as

100. Function EST_ATE outputs values with headings estimate, variance, and p-
value, which are a point estimate, the associated variance estimate, and the resulting p-value

of τ0, respectively.

6 Numerical studies

6.1 Implementation of AteMeVs

In this section, we implement the R package AteMeVs to the METABRIC data described in

Section 1. The dataset contains the information for 1422 patients, together with 331 gene

expressions. Following the notation in Section 2, we define Y and T as “overall_survival” and

“hormone_therapy”, respectively. We letW denote those gene expressions. The following code

is used to prepare for the dataset.

read.table(“C://METABRIC_causal.csv”, sep = “,”, header = TRUE) ->

data_METABRIC

library(MASS)

library(ncvreg)

library(AteMeVs)

data = data_METABRIC[, 1:280]

gene = colnames(data_METABRIC)[3:280]
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set.seed(20651252)

n = dim(data)[1]

p = dim(data)[2] - 2

We now demonstrate Steps 1-3 by using the function SIMEX_EST and by setting K = 10

and C to include the cutpoints equally dividing the interval [0, 2] intoM = 10 subintervals.

Since there is no additional information to estimate Se, we follow Case 1 in Section 2.3 to spec-

ify Se as a diagonal matrix with common value s2 = 0.2. As noted in [32], measurements of

gene expressions are subject to measurement error, and therefore, we specify px = p, which

is 331. The implementation is given below:

Psi = seq(0, 2, length = 10)

K = 10

s2 = 0.2

y = as.vector(SIMEX_EST(data, Psi, K, px = p, Sigma_e = diag(s2, p)))

matrix(y,ncol=2)

[,1] [,2]

[1,] -0.132002775 -0.098403692

[2,] 0.192014131 -0.247497662

[3,] 0.333889793 0.153789525

[4,] -0.470314553 -0.486142020

[5,] -0.164594040 -0.040468911

[6,] -0.190031631 0.041317059

[7,] 0.443131214 0.108216814

[8,] -0.612154496 0.014734219

[9,] 0.201441389 -0.012663900

[10,] 0.611405760 -0.242673669

Due to the space constraint, we report partial results for the output y above to show the esti-

mate ~g.

Next, we use ~g to demonstrate variable selection in Step 4. Since Vn in (11) is user-specified,

we follow [23] and set Vn as the identity matrix. To see the impact of variable selection by dif-

ferent methods, we examine three penalty functions (20), (21), and (22). Detailed demonstra-

tions with an application of the function VSE_PS are given below. We also display some

results in the command “VS” as follows.

V = diag(1, length(y), length(y))

est_lasso_cv = VSE_PS(V, y, method = “lasso”, cv = “TRUE”)

est_scad_cv = VSE_PS(V, y, method = “scad”, cv = “TRUE”)

est_mcp_cv = VSE_PS(V, y, method = “mcp”, cv = “TRUE”)

cbind(est_lasso_cv,

est_scad_cv,

est_mcp_cv) -> VS

rownames(VS) = gene
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VS

est_lasso_cv est_scad_cv est_mcp_cv

brca1 0.0000000 0.0000000 0.0000000

brca2 0.0000000 0.0000000 0.0000000

palb2 0.0000000 0.0000000 0.0000000

pten 0.0000000 0.5182603 0.5230828

tp53 0.0000000 0.0000000 0.0000000

atm 0.0000000 0.0000000 0.0000000

cdh1 0.0000000 0.0000000 0.0000000

chek2 0.5457605 0.6601017 0.6649249

nbn 0.0000000 0.0000000 0.0000000

nf1 -0.5277423 -0.5634578 -0.5586342

stk11 0.0000000 0.0000000 0.0000000

bard1 0.0000000 0.0000000 0.0000000

mlh1 0.0000000 0.0000000 0.0000000

msh2 0.5342537 0.6485958 0.6534201

msh6 0.0000000 0.0000000 0.0000000

pms2 0.0000000 0.0000000 0.0000000

epcam 0.0000000 0.0000000 0.0000000

rad51c 0.0000000 0.0000000 0.0000000

rad51d 0.0000000 0.0000000 0.0000000

rad50 0.0000000 0.0000000 0.0000000

rb1 -0.8071897 -0.8429033 -0.8380785

rbl1 0.0000000 0.0000000 0.0000000

rbl2 0.0000000 0.0000000 0.0000000

ccna1 0.0000000 0.0000000 0.0000000

ccnb1 0.0000000 0.0000000 0.0000000

cdk1 0.0000000 0.0000000 0.0000000

ccne1 0.0000000 0.0000000 0.0000000

cdk2 0.0000000 0.0000000 0.0000000

cdc25a -0.5527873 -0.5885001 -0.5836741

ccnd1 0.5691736 0.6835180 0.6883442

cdk4 0.5165555 0.6309001 0.6357266

cdk6 -0.7121596 -0.7478720 -0.7430453

ccnd2 0.0000000 0.0000000 0.0000000

cdkn2a -0.5822496 -0.6179617 -0.6131343

cdkn2b 0.0000000 0.0000000 0.0000000

myc -0.6168412 -0.6525533 -0.6477256

cdkn1a 0.0000000 0.0000000 0.0000000

cdkn1b 0.0000000 0.0000000 0.0000000

e2f1 0.0000000 0.0000000 0.0000000

e2f2 0.0000000 -0.5323233 -0.5274951

Variable selection shows that zero values correspond to unimportant gene expressions and

nonzero ones suggest important gene expressions. The results show that informative gene

expressions are sparse regardless of variable selection methods. In the partial results displayed

here, we observe that some gene expressions, such as “e2f2” and “pten”, are selected by (21)

and (22) but not by (20). Moreover, selected gene expressions contain “cdk4”, “cdk6”, and

“ccnd1”, which is consistent with the findings of [38, 39]; they found that “ccnd1” was
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associated with a good breast cancer prognosis and cdk6 has been shown to be regulated and

influenced by several mitogenic signaling pathways in breast cancer.

Finally, using the selected gene expressions, we estimate ATE by using the function EST_
ATE; the estimation result is shown as follows:

ate_lasso_cv = EST_ATE(data,

gamma = est_lasso_cv,

px = p,

Sigma_e = diag(s2, px))

ate_scad_cv = EST_ATE(data,

gamma = est_scad_cv,

px = p,

Sigma_e = diag(s2, px))

ate_mcp_cv = EST_ATE(data,

gamma = est_mcp_cv,

px = p,

Sigma_e = diag(s2, px))

> ate_mcp_cv

estimator variance p-value

[1,] 1.4773 0.04885097 2.326125e-11

> ate_scad_cv

estimator variance p-value

[1,] 1.631049 0.04049768 5.275382e-16

> ate_lasso_cv

estimator variance p-value

[1,] 1.116406 0.0357837 3.597e-09

An estimate of ATE is 1.4773, 1.631049, and 1.116406, respectively corresponding to the

estimates of γ derived from (20), (21), and (22); and associated variance estimates derived by

the three methods are 0.04885097, 0.04049768, and 0.0357837, respectively. All the three

resulting p-values are smaller than the significance level 0.05, suggesting that the chemother-

apy treatment has a positive causal effect on increasing the survival of a patient. These results

are derived by accommodating the effects of informative gene expressions, including “ccnd1”,

“cdk4”, and “cdk6”, which are also identified to be informative by [9].

6.2 Comparisons of AteMeVs with other methods

To highlight the advantages of the package AteMeVs and underscore the importance of

addressing issues of measurement error and variable selection, we consider two additional sce-

narios: (i) using AteMeVs without implementing VSE_PS, and (ii) using existing packages

iWeigReg and CausalGAM, in comparison to the use of AteMeVs with different penalty func-

tions. In Scenario (i), we correct for measurement error in confounders but do not address the

exclusion of irrelevant confounders; in Scenario (ii), we aim to estimate ATE without taking

measurement error and variable selection into account. We summarize the numerical results

in Table 1, where ‘EST’ represents the estimate of ATE, ‘VAR’ is the variance associated with

the estimated ATE derived from the packages, and ‘p-value’ is the p-value derived from testing

the null hypothesis H0: τ0 = 0.

The results show that the package AteMeVs performs stably, irrespective to the degree of

measurement error and the choice of the penalty function; significant causal effects are
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revealed by the use of AteMeVs. In contrast, Scenario (i) shows insignificant causal effects

with p-values greater than 0.05, which might be caused by the involvement of irrelevant con-

founders, even though measurement error correction is taken into account. Moreover, with

the ignorance of measurement error effects and variable selection, it is interesting that the

package iWeigReg shows evidence for the significance of the causal effects, but the EST and

VAR are greater than those derived by the package AteMeVs. On the other hand, CausalGAM

does not provide evidence for suggesting ATE differs zero.

7 Discussion

The inverse-probability-weighting estimation method and its variants have proved to be useful

for estimating the average treatment effect within the causal inference framework. However,

their applications are hindered by two critical conditions. The validity of those methods relies

on the proper determination of propensity scores and the use of the precise measurements of

the covariates. When data lack these features [23], introduced a simulation-based method that

adapts the inverse-probability-weighting scheme to accommodate measurement error effects

as well as variable selection for calculating propensity scores. In this paper, we develop an R

package, called AteMeVs, to extend the method proposed by [23]. This package provides ana-

lysts a user-friendly tool for estimating the average treatment effect when working with error-

contaminated data and inconsequential confounders.

As the package AteMeVs is designed to handle classical measurement error model (9),

biased estimation is anticipated when model (9) is not feasible; the impact of the violation of

the model (9) was explored by [40] for survival analysis with covariate measurement error.

Further, the development of the package AteMeVs lies on the correct parametric modelling

for the propensity score. When such an assumption is untrue, estimation results obtained

from using AteMeVs may become invalid. However, in applications, the relationship between

the treatment and the confounders can be complex, making it difficult to have straightforward

representation through a convenient parametric model. It is useful to introduce semipara-

metric models to characterize propensity scores.

Table 1. Comparisons of estimation methods. LASSO(x) is the usage of the package AteMeVs with the LASSO penalty function, SCAD(x) is the usage of the package Ate-

MeVs with the SCAD penalty function, MCP(x) is the usage of the package AteMeVs with the MCP penalty function, Full(x) refers to Scenario (i), where x = 0.2, 0.5 or

0.7, representing identical diagonal elements in Se. The usage of iWeigReg and CausalGAM refer to Scenario (ii).

Method Estimator of ATE

EST VAR p-value

AteMeVs LASSO(0.2) 1.477 0.049 2.326e-11

LASSO(0.5) 1.739 0.043 6.83e-17

LASSO(0.7) 1.590 0.071 2.525e-09

SCAD(0.2) 1.631 0.040 5.275e-16

SCAD(0.5) 1.115 0.102 0.000

SCAD(0.7) 0.661 0.097 0.034

MCP(0.2) 1.116 0.036 3.597e-19

MCP(0.5) 1.274 0.066 7.084e-07

MCP(0.7) 1.440 0.099 4.599e-06

Scenario (i) Full(0.2) 0.027 0.031 0.878

Full(0.5) 0.300 0.079 0.285

Full(0.7) 0.005 0.075 0.986

Scenario (ii) iWeigReg 3.168 0.741 0.000

CausalGAM 0.121 0.038 0.534

https://doi.org/10.1371/journal.pone.0296951.t001
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While the package AteMeVs offers flexibility in handling measurement error and variable

selection, it has limitations. Currently, the package focuses on continuous error-prone random

variables, and it cannot handle error-contaminated confounders that are mixed with both con-

tinuous and discrete variables. Another notable issue concerns the size of data. The AteMeVs

is basically developed for settings where the number of confounders is smaller than the sample

size, which is driven by the setup considered in [23]. It is interesting to generalize the method

in [23] to handle high-dimensional error-prone data, where the dimension of confounders can

be diverging as the sample size approaches infinity. Creating R packages to conduct causal

inference about such data can be useful.

Finally, the package AteMeVs developed here can only handle outcomes with complete

observations. In the presence of incomplete responses with error-contaminated covariates,

such as survival data with covariate measurement error, it is important to address both the

censoring effects (e.g., [41]) and the measurement error effects when estimating causal effects.

It is interesting to devise causal inference methods to handle such data and then develop R

packages accordingly to extend the application scope of the package AteMeVs.
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