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Abstract

Background

The early life factors of birthweight, child weight, height, body mass index (BMI) and pubertal

timing are associated with risks of breast cancer. However, the predictive value of these fac-

tors in relation to breast cancer is largely unknown. Therefore, using a machine learning

approach, we examined whether birthweight, childhood weights, heights, BMIs, and puber-

tal timing individually and in combination were predictive of breast cancer.

Methods

We used information on birthweight, childhood height and weight, and pubertal timing

assessed by the onset of the growth spurt (OGS) from 164,216 girls born 1930–1996 from

the Copenhagen School Health Records Register. Of these, 10,002 women were diagnosed

with breast cancer during 1977–2019 according to a nationwide breast cancer database.

We developed a feed-forward neural network, which was trained and tested on early life

body size measures individually and in various combinations. Evaluation metrics were

examined to identify the best performing model.

Results

The highest area under the receiver operating curve (AUC) was achieved in a model that

included birthweight, childhood heights, weights and age at OGS (AUC = 0.600). A model

based on childhood heights and weights had a comparable AUC value (AUC = 0.598),

whereas a model including only childhood heights had the lowest AUC value (AUC = 0.572).

The sensitivity of the models ranged from 0.698 to 0.760 while the precision ranged from

0.071 to 0.076.

Conclusion

We found that the best performing network was based on birthweight, childhood weights,

heights and age at OGS as the input features. Nonetheless, this performance was only

slightly better than the model including childhood heights and weights. Further, although the
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performance of our networks was relatively low, it was similar to those from previous studies

including well-established risk factors. As such, our results suggest that childhood body size

may add additional value to breast cancer prediction models.

Introduction

Among women, breast cancer is the most commonly diagnosed cancer form worldwide and it

is the leading cause of death from cancer [1]. As such, it is important to identify women at

high risk for breast cancer as early as possible. To aid this, different breast cancer risk predic-

tion tools have been developed to improve and streamline screening approaches [2]. Two of

the most widely used breast cancer risk assessment tools are the Gail model/ the Breast Cancer

Risk Assessment Tool (BCRAT) and the Rosner-Colditz model [2], which include well-estab-

lished risk factors such as ages at menarche and menopause, parity, use of hormone replace-

ment therapy, and a family history of breast cancer [3, 4]. In addition, the Rosner-Colditz

model includes information on average adult BMI before and after menopause as well as adult

height [5].

Since the development of these prediction tools, a large body of research has shown that

body size early in life relates to risks of breast cancer [6]. However, the associations are com-

plex as birthweight and childhood height are positively associated with risks of breast cancer

[7, 8], whereas childhood body mass index (BMI), weight, self-reported body shape and age at

peak growth are inversely associated with risks of breast cancer [7, 9–11]. Recently, a study

examined the effect of additionally including adolescent somatotypes (a proxy of childhood

adiposity) in the Rosner-Colditz model, which significantly improved the model performance

[12], and thus, highlighting the potential importance of early life body size in relation to pre-

diction of breast cancer. Nevertheless, the importance of including other measures of early life

body size together with measures of childhood adiposity in relation to prediction of breast can-

cer remains largely unknown. As such, a machine learning approach may be a suitable tool to

understand the predictive power of these measures and their complex associations with breast

cancer, since the method does not focus on inference, but learns from the data and finds pre-

dictive patterns. Therefore, we used a neural network to examine whether birthweight, child-

hood heights, weights, BMIs, and pubertal timing individually and in combination were

predictive of breast cancer.

Materials and methods

Data material

Information on early life body size and puberty markers were obtained from the Copenhagen

School Health Records Register (CSHRR), which currently includes 200,978 girls born during

1930–1996 [13]. In the municipality of Copenhagen, virtually every schoolchild underwent

regular health examinations performed by school physicians and nurses. Height and weight

were measured and for children born from 1936, birthweight was reported by the parents at

the first health examination using either the child’s health booklet or recall. From the height

measurements, age at onset of the pubertal growth spurt (OGS) and age at peak height velocity

(PHV) were derived as described in detail previously [14]. The ages at OGS and PHV were

estimated for girls born from 1930–1969, which is the period with a sufficient number of

height measurements for its determination. Missing values for all variables were imputed over
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10 iterations with the multivariate imputer from sklearn, where a regressor was fit at each step,

with one feature as output and the rest of the features as input. The method is similar to multi-

ple imputation by chained equations but returns only a single imputation [15].

A personal identification number from the Danish Civil Registration System has been

issued to all Danish residents alive or born after 1968 [16]. These numbers were recorded in

the register for girls still attending school in 1968 and were retrieved for those who left school

before this time [13]. We excluded girls without this number (n = 21,856), with the most com-

mon reasons for not having one being emigration or death prior to 1968. Moreover, we

excluded women with less than three values of height, weight, or BMI from ages 7–13 years

(n = 14,906) leaving a total of 164,216 girls for analysis.

Via the personal identification number, girls in the CSHRR were linked to the nationwide

Danish Breast Cancer Group (DBCG) database, which contains information on women diag-

nosed with a first primary breast cancer since 1977 [17]. Breast cancer status was obtained

through 2019.

The Danish Data Protection Agency approved the project and the data-linkage. According

to Danish law, ethical approval is not required for purely register based studies of pre-existing

personal data.

Feature selection

Height, weight and BMI at ages 7–13 years as well as birthweight and ages at OGS and PHV

were included as continuous variables. A preliminary feature selection showed that age at OGS

had a higher power than age at PHV. Thus, we only included age at OGS in the subsequent

networks.

Five separate networks were trained on (1) BMIs, (2) weights, (3) heights, (4) both heights

and weights, and (5) birthweight, heights, weights and age at OGS. These networks were cho-

sen on the basis of a previous study we conducted on the same data-resource, where we

reported consistent associations of childhood BMIs and heights with breast cancer risks, but

not with birthweight and the markers of puberty [18]. Women were divided in two classes;

women diagnosed with a breast cancer in the DBCG database constituted the breast cancer

class and the remaining women constituted the non-cancer class.

Neural network architecture

To predict which girls developed breast cancer later in life, we implemented a network with

five layers consisting of an input layer, three hidden layers and an output layer. After each hid-

den layer, rectified linear unit (Relu) activation function was applied [19]. After the output

layer, sigmoid was used as the activation function to convert the outputs to a number between

0 and 1.

Loss function

Cross entropy was the loss function with Adam as the optimizer [20]. Class weights were

assigned to account for the imbalance in the classes of non-case and cancer. The class weights

were used for weighting the loss function penalizing misclassification of the minority class, in

our analyses this was the breast cancer class. The weight for the class i is defined by:

class weighti ¼
N

2∗Ni

where N is the total number of women in the training data and Ni is the number of women

belonging to class i.
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Training and testing

The networks were trained and tested in a five-fold nested cross validation. In each of the five

data splits, 80% of the data were used for training and 20% were used for testing. The distribu-

tion of classes from the entire dataset was maintained using stratified K-fold. The training data

was standardized in each outer layer of the cross validation, and the test data was then stan-

dardized with the standardization parameters obtained from the training set. The networks

were trained on batches of 2000 women at the time to ensure that both classes were present in

most batches. In the inner layer, 20% of the training set was used as validation when tuning

the hyperparameters. After the hyperparameters were determined, the network was retrained

over 100 epochs with the best hyperparameters, and the evaluation metrics were calculated on

the test set. The process is illustrated in Fig 1. The sub-samples of individuals used for training,

validation or testing respectively, were the same for all five models.

Hyperparameters optimization

The number of neurons in the hidden layers and the learning rate was tuned as hyperpara-

meters with random search. The number of hidden neurons was allowed to range from eight

to 20 as an even number, and the learning rate was either 0.01 or 0.001. The tuning was based

on minimizing the loss function, with 10 random combinations of hyperparameters tested.

The model was trained over 50 epochs for each combination of the hyperparameters. A seed

was set for the search algorithm, the weight initialization and data split for reproducibility and

to enable a fairer comparison of networks.

Evaluation metrics

The network performance was evaluated by the area under the receiver operating characteris-

tic curve (AUC), accuracy, specificity, sensitivity and precision. The metrics are defined as:

Sensitivity ¼
True Positives

True Positivesþ False Negatives
ð1Þ

Specificity ¼
True Negatives

True Negativesþ False Positives
ð2Þ

Fig 1. Overview of the five-fold nested cross validation process.

https://doi.org/10.1371/journal.pone.0296835.g001
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Precision ¼
True Positives

True Positivesþ False Positives
ð3Þ

Accuracy ¼
True Negativesþ True Positives

True Negativesþ False Negativesþ True Positivesþ False Positives
ð4Þ

The performance of the network is reported as the mean and standard deviation of the eval-

uation metrics from the cross-validation folds. We further evaluated the five different networks

using logistic regression and compared the performance metrics from these models with those

from the neural networks.

Software

The neural network was developed in the open-source platform TensorFlow. The implementa-

tion and data handling were performed with Keras and sklearn libraries in Python version 3.7.

Results

Among the 164,216 women included in the study, 10,002 were diagnosed with a primary

breast cancer between 1977 and 2019. Women with breast cancer had a median age of 60.0

years (25th and 75th percentiles: 51.4 and 67.6 years) at diagnosis. Summary characteristics of

the input variables among women with and without breast cancer are shown in Table 1. Per-

centages of imputed values (range: 1.5–54.4%) are shown in S1 Table.

The performance of the networks that were trained and tested with the different sets of

early life measures as the inputs can be seen in Table 2. Overall, the network including birth-

weight, heights, weights, and age at OGS had the highest AUC of 0.600, but it varied little from

the reduced model that only included heights and weights (AUC = 0.598). The lowest perform-

ing network included only heights (AUC = 0.572) (Table 2). Nevertheless, the AUC achieved

by the five models varied slightly, which is depicted in Fig 2. In general, the sensitivity was

higher than the specificity in all the networks, but none of the networks predicted the risk of

breast cancer with an accuracy above 0.463 (Table 2). Further, the precision was low for all net-

works ranging from 0.071 to 0.076 (Table 2).

The confusion matrices summarize the prediction results, with the rows showing the actual

number of women with breast cancer and the columns the predicted number of breast cancer

cases (Fig 3). The confusion matrix for the model including birthweight, weights, heights and

age at OGS that yielded the highest AUC showed that among non-cancer cases, 89,117 (57.8%)

women were predicted to develop breast cancer, and among breast cancer cases, 7266 (72.7%)

women were predicted to develop breast cancer (Fig 3).

For comparison, the models were also examined using logistic regression. Using this

method, as with the neural networks, the model including birthweight, heights, weights, and

age at OGS yielded the highest AUC, while the model including only heights had the lowest

AUC (Table 3). Compared to the neural networks, the logistic regression models yielded lower

sensitivities, but higher specificities and accuracies. However, none of the logistic regression

models predicted the risk of breast cancer with an accuracy above 0.510 (Table 3). Similar to

the neural networks, the precision was low for all models (Table 3).

Discussion

Using neural networks, we found that the highest AUC was obtained from the network that

was trained on birthweight, child heights, weights, and age at OGS, whereas the lowest AUC
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Table 1. Characteristics of the study population by breast cancer status.

Breast cancer status

Input variable Yes (n = 10,002) No (n = 154,214)

Birthweight, kg 3.3 (3.0, 3.5) 3.3 (3.0, 3.5)

Height, m

Age 7 years 1.22 (1.18, 1.25) 1.22 (1.19, 1.25)

Age 8 years 1.27 (1.23, 1.30) 1.27 (1.24, 1.31)

Age 9 years 1.32 (1.28, 1.36) 1.32 (1.29, 1.36)

Age 10 years 1.37 (1.33, 1.41) 1.38 (1.34, 1.41)

Age 11 years 1.43 (1.38, 1.47) 1.43 (1.39, 1.47)

Age 12 years 1.49 (1.44, 1.54) 1.50 (1.45, 1.54)

Age 13 years 1.55 (1.51, 1.60) 1.56 (1.52, 1.60)

Weight, kg

Age 7 years 22.3 (20.5, 24.1) 22.8 (20.9, 24.7)

Age 8 years 24.8 (22.8, 27.0) 25.4 (23.1, 27.7)

Age 9 years 27.6 (25.3, 30.2) 28.4 (25.7, 31.0)

Age 10 years 30.5 (27.8, 33.6) 31.6 (28.4, 34.3)

Age 11 years 34.0 (30.7, 37.8) 35.4 (31.4, 38.6)

Age 12 years 38.6 (34.5, 43.0) 40.2 (35.4, 44.0)

Age 13 years 44.1 (39.4, 48.6) 45.5 (40.6, 49.4)

BMI, kg/m2

Age 7 years 15.1 (14.4, 15.9) 15.4 (14.5, 16.2)

Age 8 years 15.5 (14.7, 16.3) 15.7 (14.8, 16.6)

Age 9 years 15.8 (15.0, 16.8) 16.1 (15.2, 17.1)

Age 10 years 16.2 (15.3, 17.3) 16.5 (15.5, 17.6)

Age 11 years 16.7 (15.7, 17.8) 17.0 (15.9, 18.2)

Age 12 years 17.3 (16.2, 18.5) 17.7 (16.4, 18.9)

Age 13 years 18.2 (16.9, 19.5) 18.6 (17.2, 19.8)

Age at OGS, years 10.2 (9.6, 10.9) 10.2 (9.5, 10.8)

Data are presented as median (25th, 75th percentile)

Abbreviations: BMI, body mass index; OGS, onset of the growth spurt

https://doi.org/10.1371/journal.pone.0296835.t001

Table 2. Performance metrics for the neural networks predicting breast cancer*,**.
Network performance metrics

Input variables AUC Sensitivity Specificity Accuracy Precision

BMI 0.587 (0.005) 0.706 (0.047) 0.418 (0.042) 0.436 (0.037) 0.073 (0.001)

Height 0.572 (0.005) 0.760 (0.010) 0.354 (0.018) 0.378 (0.017) 0.071 (0.001)

Weight 0.586 (0.005) 0.742 (0.042) 0.380 (0.044) 0.402 (0.039) 0.072 (0.001)

Height, weight 0.598 (0.003) 0.698 (0.042) 0.447 (0.039) 0.463 (0.034) 0.076 (0.001)

Birthweight, height, weight, age at OGS 0.600 (0.007) 0.726 (0.026) 0.422 (0.028) 0.441 (0.024) 0.075 (0.001)

* Data are presented as mean and standard deviation of the cross-validation folds

** The input variables BMI, height, and weight includes values at each age between 7 and 13 years

Abbreviations: AUC, area under the curve; BMI, body mass index; OGS, onset of the growth spurt

https://doi.org/10.1371/journal.pone.0296835.t002
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Fig 2. ROC curves for the neural networks with early life body measures predicting breast cancer. Abbreviations:

AUC, area under the curve; BMI, body mass index; OGS, onset of the growth spurt; ROC, Reciever operating

characteristics.

https://doi.org/10.1371/journal.pone.0296835.g002

Fig 3. Confusion matrices for the neural networks. The panels show the network that included BMIs (Panel A),

weights (Panel B), heights (Panel C), weights and heights (Panel D), and weights, heights, BW and age at the OGS

(Panel E). 0 indicates those without breast cancer and 1 indicates those with breast cancer. Abbreviations: BW,

birthweight; OGS, onset of the growth spurt.

https://doi.org/10.1371/journal.pone.0296835.g003
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was obtained from the network with childhood heights as the single input. Nevertheless, the

network that included childhood heights and weights as the input features had similar perfor-

mance as the network with highest performance. As such, our results suggest that if breast can-

cer prediction models should account for early life body size, the inclusion of childhood

heights and weights may be relevant.

Our neural networks yielded AUCs between 0.572–0.600. We acknowledge that these val-

ues within machine learning are considered as poor discrimination. Nonetheless, even though

not directly comparable due to differences in methods, input features and data sources, the

AUCs obtained in our study are similar to those reported in previous breast cancer prediction

studies using traditional risk factors. One study evaluated the performance of the Rosner-Col-

ditz breast cancer incidence model in two different datasets and compared the AUCs. The

results showed that the AUC was 0.597 in the Nurse’s Health Study data and 0.589 in the Cali-

fornia Teachers Study data [21]. When the authors compared the Gail model using these same

data, AUCs of 0.562 and 0.547 were obtained from the Nurse’s Health Study data and the Cali-

fornia Teachers Study data, respectively [21]. Our results are also comparable to those from a

machine learning study using neural networks [22]. In this study, the authors reported an

AUC of 0.608 from the best performing network, which was trained on a broad set of input

variables including, among other factors, current age, ages at menarche and menopause, age at

first live birth, BMI, HRT usage, number of first-degree relatives who had breast cancer, and

race/ethnicity [22]. Interestingly, the highest AUC of 0.636 was reported in the study that

updated the Rosner-Colditz incidence model by including adolescent somatotype [12]. How-

ever, in this model information on predicted percent mammographic density was also added,

and the authors did not report the AUCs for the models when adding the two factors individu-

ally [12]. In comparison, another study examining the predictive value of adding mammo-

graphic density (percent dense area) to the Rosner-Colditz model reported AUCs of 0.619 and

0.659 among post-menopausal women not using HRT and post-menopausal women using

HRT, respectively [23].

The low performance reported in our study and the previous studies likely reflects that

although there are multiple identified risk factors for breast cancer, the majority of these are

not strongly related to breast cancer risks. Nevertheless, the findings from a recent mendelian

randomization study suggest that genetically predicted childhood body size at age 10 years

(assessed as relative to peers) has an effect on breast cancer risk independent of adult body size

[24]. Thus, these results indicate that early life is a window of susceptibility for breast cancer,

which may explain why a model with childhood heights and weights performs similar to the

models including several risk factors in adolescence and/or adulthood. The mechanisms

underlying the associations between childhood height and weight/BMI and breast cancer,

Table 3. Performance metrics for the logistic regression models predicting breast cancer*.
Network performance metrics

Input variables AUC Sensitivity Specificity Accuracy Precision

BMI 0.560 0.58 0.51 0.51 0.07

Height 0.528 0.53 0.51 0.51 0.06

Weight 0.553 0.57 0.51 0.51 0.07

Height, weight 0.561 0.60 0.50 0.50 0.07

Birthweight, height, weight, age at OGS 0.564 0.60 0.50 0.50 0.07

* The input variables BMI, height, and weight includes values at each age between 7 and 13 years

Abbreviations: AUC, area under the curve; BMI, body mass index; OGS, onset of the growth spurt

https://doi.org/10.1371/journal.pone.0296835.t003
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respectively, are not fully understood and likely differ. While childhood height may be linked

to breast cancer through growth-regulating hormones, such as insulin-like growth factor-1

[25], lower breast density may mediate the association between excess childhood adiposity and

breast cancer risk [26, 27].

We also used other parameters to evaluate the performance of the neural networks, and the

sensitivities of our networks were moderately good, as at least 70% of the women with breast

cancer were predicted correctly. However, the specificities were low and did not exceed 0.45.

Thus, the networks incorrectly predicted at least 55% of women without breast cancer as being

a breast cancer case. Similarly, the accuracies were below 0.50, which indicates that less than

half of the women were predicted correctly as either cases or non-cases. A likely explanation

for the higher sensitivity and lower specificity is that we forced the models to penalize misclas-

sifications of the cancer cases more than misclassifications of non-cancer cases. Thus, the mod-

els overestimated the number of women with breast cancer, which resulted in the number of

false positive exceeding the number of true negatives. Further, because of the imbalance

between cancer and non-cancer cases, balanced weights were assigned to these two groups. As

such, women from the false negative group were moved into the true positive group, but

women from the true negative group were also moved to the false positive group. This may

have impacted the precision of our networks, which did not exceed 0.075, meaning that only

7.5% of the women who were predicted as cancer cases actually developed cancer. As two of

the aforementioned studies did not report performance metrics other than the AUCs, direct

comparisons of our findings are precluded [12, 21]. However, the sensitivities and specificities

of our networks are similar to those reported in the machine learning study [22], which

reported a sensitivity of 0.599 and a specificity of 0.562 for its best performing network. Fur-

ther, the precision of this network was 0.0287 [22], thus, indicating that even when a large

number of adult factors are used for prediction, it was still very difficult to predict breast can-

cer accurately. Nevertheless, considering that we achieved corresponding performances with

models trained on childhood heights and weights alone or in combination with other indices

of early life body size, this suggests that breast cancer prediction models may benefit from

including measures of childhood body size.

The strengths of our study include the large study population and the unique individual-

level linkage with a nationwide database of breast cancer diagnoses [17]. In addition, validation

of the DBCG database against the Danish Cancer Registry (established in 1942) [28] showed

that the coverage of the DBCG database increased from 80% when it was initiated in 1977 to

95% in the mid-1990s [17]. Further, from 2006 onwards there has been complete agreement

between the DBCG database and the National Pathology Registry (established in 1999) [29] on

breast cancer status [30]. Thus, the validity of the breast cancer diagnoses during follow-up

was high. It is also a strength of our study that childhood anthropometry was measured, which

limits the potential for information bias associated with recall of childhood body size at later

ages. Additionally, because the women were followed prospectively from childhood, this mini-

mizes effects of survival bias until adult age for inclusion in this study. Due to the mandatory

school health examinations and the universal health care system in Denmark, selection bias

into the study population is limited. Another strength of the study is the method applied;

machine learning techniques make it possible to analyze complex associations when compared

to what is possible in traditional statistics, such as logistic regression models. Although the

logistic regression analyses in our study yielded similar AUCs as the neural network analyses,

this may be related to the structure of our data, rather than indicating that logistic regression

analyses have equal performance as machine learning techniques. Our study also has limita-

tions. As the coverage of breast cancer cases in the DBCG was 80% in the beginning of the

study period, we cannot preclude some degree of misclassification of women with breast
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cancer as non-cases. Further, it is a limitation that we were unable to include information on

other relevant risk factors used in other breast cancer prediction models such as ages at menar-

che and menopause, parity, and a family history of breast cancer. This could potentially have

improved our networks, and thus, resulted in higher AUCs with better discrimination than

those we obtained. Also, we were not able to distinguish between different subtypes of breast

cancer, although this is relevant to consider since breast cancer is a heterogenous disease and

the etiology likely differ by e.g., menopausal status and hormone receptor status. Additionally,

we included repeated measurements of childhood height and weight, which are correlated, as

input features and acknowledge that this might impact the generalizability of our results. Fur-

ther, since these kinds of data are relatively rare, the possibilities for validating our networks in

independent datasets may be limited. Nonetheless, future breast cancer prediction studies

should aim at including measures of childhood heights and weights in order to obtain the pre-

dictive value of this relative to the traditional risk factors.

Conclusion

We showed that neural networks trained and tested on measures of early life body size alone

had relatively low performance in the prediction of breast cancer. Nevertheless, the perfor-

mances of our networks were similar to those reported in other studies using traditional breast

cancer risk factors. Further, we found that the best performing network was based on birth-

weight, childhood heights and weights as well as age at OGS as input features. However, this

network had similar performance as the network including childhood heights and weights.

There are multiple risk factors for breast cancer, but our findings suggest that there may be

additional value in considering these measures in the prediction of breast cancer, despite the

low performance found in our study.
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back received from Sif Ingibergsdóttir Novitski, PhD fellow, on this manuscript.

Author Contributions

Conceptualization: Jennifer L. Baker.

Data curation: Sara M. S. Svendsen, Jennifer L. Baker.

Formal analysis: Sara M. S. Svendsen.

Funding acquisition: Jennifer L. Baker.

Investigation: Sara M. S. Svendsen, Dorthe C. Pedersen, Britt W. Jensen, Julie Aarestrup, Lene

Mellemkjær, Lise G. Bjerregaard, Jennifer L. Baker.

Methodology: Sara M. S. Svendsen, Lise G. Bjerregaard, Jennifer L. Baker.

Project administration: Jennifer L. Baker.

PLOS ONE Early life body size and prediction of breast cancer risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0296835 February 9, 2024 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296835.s001
https://doi.org/10.1371/journal.pone.0296835


Resources: Jennifer L. Baker.

Software: Sara M. S. Svendsen.

Supervision: Lise G. Bjerregaard, Jennifer L. Baker.

Validation: Sara M. S. Svendsen.

Visualization: Sara M. S. Svendsen, Lise G. Bjerregaard, Jennifer L. Baker.

Writing – original draft: Sara M. S. Svendsen, Dorthe C. Pedersen.

Writing – review & editing: Sara M. S. Svendsen, Dorthe C. Pedersen, Britt W. Jensen, Julie

Aarestrup, Lene Mellemkjær, Lise G. Bjerregaard, Jennifer L. Baker.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics

2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA

Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660 PMID: 33538338

2. Kim G, Bahl M. Assessing Risk of Breast Cancer: A Review of Risk Prediction Models. J Breast Imag-

ing. 2021; 3:144–55. https://doi.org/10.1093/jbi/wbab001 PMID: 33778488

3. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabili-

ties of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst.

1989; 81:1879–86. https://doi.org/10.1093/jnci/81.24.1879 PMID: 2593165

4. Rosner B, Colditz GA. Nurses’ health study: log-incidence mathematical model of breast cancer inci-

dence. J Natl Cancer Inst. 1996; 88:359–64. https://doi.org/10.1093/jnci/88.6.359 PMID: 8609645

5. Colditz GA, Rosner B. Cumulative risk of breast cancer to age 70 years according to risk factor status:

data from the Nurses’ Health Study. Am J Epidemiol. 2000; 152:950–64. https://doi.org/10.1093/aje/

152.10.950 PMID: 11092437

6. World Cancer Research Fund International/American Institute for Cancer Research. Continuous

Update Project Expert Report 2018: Diet, Nutrition, Physical Activity and Breast Cancer.

7. Ahlgren M, Melbye M, Wohlfahrt J, Sørensen TIA. Growth patterns and the risk of breast cancer in

women. N Engl J Med. 2004; 351:1619–26. https://doi.org/10.1056/NEJMoa040576 PMID: 15483280

8. Stavola BL, Hardy R, Kuh D, Silva IS, Wadsworth M, Swerdlow AJ. Birthweight, childhood growth and

risk of breast cancer in a British cohort. Br J Cancer. 2000; 83:964–8. https://doi.org/10.1054/bjoc.2000.

1370 PMID: 10970703

9. Fagherazzi G, Guillas G, Boutron-Ruault MC, Clavel-Chapelon F, Mesrine S. Body shape throughout

life and the risk for breast cancer at adulthood in the French E3N cohort. Eur J Cancer Prev. 2013;

22:29–37. https://doi.org/10.1097/CEJ.0b013e328355ec04 PMID: 22694827

10. Baer HJ, Tworoger SS, Hankinson SE, Willett WC. Body fatness at young ages and risk of breast can-

cer throughout life. Am J Epidemiol. 2010; 171:1183–94. https://doi.org/10.1093/aje/kwq045 PMID:

20460303

11. Bardia A, Vachon CM, Olson JE, Vierkant RA, Wang AH, Hartmann LC, et al. Relative weight at age 12

and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2008; 17:374–8.

https://doi.org/10.1158/1055-9965.EPI-07-0389 PMID: 18250344

12. Rice MS, Tworoger SS, Hankinson SE, Tamimi RM, Eliassen AH, Willett WC, et al. Breast cancer risk

prediction: an update to the Rosner-Colditz breast cancer incidence model. Breast Cancer Res Treat.

2017; 166:227–40. https://doi.org/10.1007/s10549-017-4391-5 PMID: 28702896

13. Baker JL, Olsen LW, Andersen I, Pearson S, Hansen B, Sørensen TIA. Cohort profile: the Copenhagen

School Health Records Register. Int J Epidemiol. 2009; 38:656–62. https://doi.org/10.1093/ije/dyn164

PMID: 18719090

14. Aksglaede L, Olsen LW, Sorensen TI, Juul A. Forty years trends in timing of pubertal growth spurt in

157,000 Danish school children. PLoS One. 2008; 3:e2728. https://doi.org/10.1371/journal.pone.

0002728 PMID: 18628945

15. scikit-learn-developers. sklearn.impute.IterativeImputer [Internet]. [cited 2022 October 19]. Available

from: https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html Accessed.

16. Pedersen CB. The Danish Civil Registration System. Scand J Public Health. 2011; 39:22–5. https://doi.

org/10.1177/1403494810387965 PMID: 21775345

PLOS ONE Early life body size and prediction of breast cancer risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0296835 February 9, 2024 11 / 12

https://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1093/jbi/wbab001
http://www.ncbi.nlm.nih.gov/pubmed/33778488
https://doi.org/10.1093/jnci/81.24.1879
http://www.ncbi.nlm.nih.gov/pubmed/2593165
https://doi.org/10.1093/jnci/88.6.359
http://www.ncbi.nlm.nih.gov/pubmed/8609645
https://doi.org/10.1093/aje/152.10.950
https://doi.org/10.1093/aje/152.10.950
http://www.ncbi.nlm.nih.gov/pubmed/11092437
https://doi.org/10.1056/NEJMoa040576
http://www.ncbi.nlm.nih.gov/pubmed/15483280
https://doi.org/10.1054/bjoc.2000.1370
https://doi.org/10.1054/bjoc.2000.1370
http://www.ncbi.nlm.nih.gov/pubmed/10970703
https://doi.org/10.1097/CEJ.0b013e328355ec04
http://www.ncbi.nlm.nih.gov/pubmed/22694827
https://doi.org/10.1093/aje/kwq045
http://www.ncbi.nlm.nih.gov/pubmed/20460303
https://doi.org/10.1158/1055-9965.EPI-07-0389
http://www.ncbi.nlm.nih.gov/pubmed/18250344
https://doi.org/10.1007/s10549-017-4391-5
http://www.ncbi.nlm.nih.gov/pubmed/28702896
https://doi.org/10.1093/ije/dyn164
http://www.ncbi.nlm.nih.gov/pubmed/18719090
https://doi.org/10.1371/journal.pone.0002728
https://doi.org/10.1371/journal.pone.0002728
http://www.ncbi.nlm.nih.gov/pubmed/18628945
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://doi.org/10.1177/1403494810387965
https://doi.org/10.1177/1403494810387965
http://www.ncbi.nlm.nih.gov/pubmed/21775345
https://doi.org/10.1371/journal.pone.0296835


17. Christiansen P, Ejlertsen B, Jensen MB, Mouridsen H. Danish Breast Cancer Cooperative Group. Clin

Epidemiol. 2016; 8:445–9. https://doi.org/10.2147/CLEP.S99457

18. Pedersen DC, Jensen BW, Tjønneland A, Andersen ZJ, Mellemkjaer L, Bjerregaard LG, et al. Birth-

weight, childhood body size, and timing of puberty and risks of breast cancer by menopausal status and

tumor receptor subtypes. Breast Cancer Res. 2022; 24:77. https://doi.org/10.1186/s13058-022-01578-

0 PMID: 36369105

19. Schmidt-Hieber J. Nonparametric regression using deep neural networks with ReLU activation function.

The Annals of Statistics. 2020; 48:1875–97, 23.

20. Kingma D, Ba J. Adam: A Method For Stochastic Optimization. 2017.

21. Rosner BA, Colditz GA, Hankinson SE, Sullivan-Halley J, Lacey JV Jr., Bernstein L. Validation of Ros-

ner-Colditz breast cancer incidence model using an independent data set, the California Teachers

Study. Breast Cancer Res Treat. 2013; 142:187–202. https://doi.org/10.1007/s10549-013-2719-3

22. Stark GF, Hart GR, Nartowt BJ, Deng J. Predicting breast cancer risk using personal health data and

machine learning models. PLoS One. 2019; 14:e0226765. https://doi.org/10.1371/journal.pone.

0226765 PMID: 31881042

23. Zhang X, Rice M, Tworoger SS, Rosner BA, Eliassen AH, Tamimi RM, et al. Addition of a polygenic risk

score, mammographic density, and endogenous hormones to existing breast cancer risk prediction

models: A nested case-control study. PLoS Med. 2018; 15:e1002644. https://doi.org/10.1371/journal.

pmed.1002644 PMID: 30180161

24. Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey Smith G. Use of genetic variation to separate

the effects of early and later life adiposity on disease risk: mendelian randomisation study. Bmj. 2020;

369:m1203. https://doi.org/10.1136/bmj.m1203 PMID: 32376654

25. The Endogenous Hormones and Breast Cancer Collaborative Group, Key TJ, Appleby PN, Reeves GK,

Roddam AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer

risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010; 11:530–42. https://

doi.org/10.1016/S1470-2045(10)70095-4 PMID: 20472501

26. Andersen ZJ, Baker JL, Bihrmann K, Vejborg I, Sørensen TIA, Lynge E. Birth weight, childhood body

mass index, and height in relation to mammographic density and breast cancer: a register-based cohort

study. Breast Cancer Res. 2014; 16:R4. https://doi.org/10.1186/bcr3596 PMID: 24443815

27. Rice MS, Bertrand KA, VanderWeele TJ, Rosner BA, Liao X, Adami HO, et al. Mammographic density

and breast cancer risk: a mediation analysis. Breast Cancer Res. 2016; 18:94. https://doi.org/10.1186/

s13058-016-0750-0 PMID: 27654859

28. Gjerstorff ML. The Danish Cancer Registry. Scand J Public Health. 2011; 39:42–5. https://doi.org/10.

1177/1403494810393562 PMID: 21775350

29. Bjerregaard B, Larsen OB. The Danish Pathology Register. Scand J Public Health. 2011; 39:72–4.

https://doi.org/10.1177/1403494810393563 PMID: 21775357

30. Cronin-Fenton DP, Kjaersgaard A, Ahern TP, Mele M, Ewertz M, Hamilton-Dutoit S, et al. Validity of

Danish Breast Cancer Group (DBCG) registry data used in the predictors of breast cancer recurrence

(ProBeCaRe) premenopausal breast cancer cohort study. Acta Oncol. 2017; 56:1155–60. https://doi.

org/10.1080/0284186X.2017.1327720 PMID: 28585885

PLOS ONE Early life body size and prediction of breast cancer risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0296835 February 9, 2024 12 / 12

https://doi.org/10.2147/CLEP.S99457
https://doi.org/10.1186/s13058-022-01578-0
https://doi.org/10.1186/s13058-022-01578-0
http://www.ncbi.nlm.nih.gov/pubmed/36369105
https://doi.org/10.1007/s10549-013-2719-3
https://doi.org/10.1371/journal.pone.0226765
https://doi.org/10.1371/journal.pone.0226765
http://www.ncbi.nlm.nih.gov/pubmed/31881042
https://doi.org/10.1371/journal.pmed.1002644
https://doi.org/10.1371/journal.pmed.1002644
http://www.ncbi.nlm.nih.gov/pubmed/30180161
https://doi.org/10.1136/bmj.m1203
http://www.ncbi.nlm.nih.gov/pubmed/32376654
https://doi.org/10.1016/S1470-2045%2810%2970095-4
https://doi.org/10.1016/S1470-2045%2810%2970095-4
http://www.ncbi.nlm.nih.gov/pubmed/20472501
https://doi.org/10.1186/bcr3596
http://www.ncbi.nlm.nih.gov/pubmed/24443815
https://doi.org/10.1186/s13058-016-0750-0
https://doi.org/10.1186/s13058-016-0750-0
http://www.ncbi.nlm.nih.gov/pubmed/27654859
https://doi.org/10.1177/1403494810393562
https://doi.org/10.1177/1403494810393562
http://www.ncbi.nlm.nih.gov/pubmed/21775350
https://doi.org/10.1177/1403494810393563
http://www.ncbi.nlm.nih.gov/pubmed/21775357
https://doi.org/10.1080/0284186X.2017.1327720
https://doi.org/10.1080/0284186X.2017.1327720
http://www.ncbi.nlm.nih.gov/pubmed/28585885
https://doi.org/10.1371/journal.pone.0296835

