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Abstract

This paper presents a multi-algorithm fusion model (StackingGroup) based on the Stacking

ensemble learning framework to address the variable selection problem in high-dimensional

group structure data. The proposed algorithm takes into account the differences in data

observation and training principles of different algorithms. It leverages the strengths of each

model and incorporates Stacking ensemble learning with multiple group structure regulari-

zation methods. The main approach involves dividing the data set into K parts on average,

using more than 10 algorithms as basic learning models, and selecting the base learner

based on low correlation, strong prediction ability, and small model error. Finally, we

selected the grSubset + grLasso, grLasso, and grSCAD algorithms as the base learners for

the Stacking algorithm. The Lasso algorithm was used as the meta-learner to create a com-

prehensive algorithm called StackingGroup. This algorithm is designed to handle high-

dimensional group structure data. Simulation experiments showed that the proposed

method outperformed other R2, RMSE, and MAE prediction methods. Lastly, we applied the

proposed algorithm to investigate the risk factors of low birth weight in infants and young

children. The final results demonstrate that the proposed method achieves a mean absolute

error (MAE) of 0.508 and a root mean square error (RMSE) of 0.668. The obtained values

are smaller compared to those obtained from a single model, indicating that the proposed

method surpasses other algorithms in terms of prediction accuracy.

1 Introduction

Data has recently evolved into a brand-new category of crucial manufacturing components.

The study of image processing, text mining, and genetic informatics has progressively

advanced with the rapid growth of artificial intelligence. Large-scale database mining and anal-

ysis are starting to gain more and more attention. The complexity of the objects being pro-

cessed increases along with the complexity of the data dimensions. The number of samples

that can be utilized for analysis is too few when compared to ultra-high-dimensional data,

resulting in high-dimensional small sample data. Data having a particularly high data

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0296748 February 5, 2024 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li D, Pan C, Zhao J, Luo A (2024) A

penalized variable selection ensemble algorithm for

high-dimensional group-structured data. PLoS

ONE 19(2): e0296748. https://doi.org/10.1371/

journal.pone.0296748

Editor: Nasir Ayub, Air University, PAKISTAN

Received: October 25, 2023

Accepted: December 19, 2023

Published: February 5, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0296748

Copyright: © 2024 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by The Guizhou

Provincial Department of Education’s Youth

Growth Project Fund [No. Qian Jiaoji [2022] 380,

https://orcid.org/0009-0003-9761-0680
https://orcid.org/0000-0002-5810-0042
https://doi.org/10.1371/journal.pone.0296748
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296748&domain=pdf&date_stamp=2024-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296748&domain=pdf&date_stamp=2024-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296748&domain=pdf&date_stamp=2024-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296748&domain=pdf&date_stamp=2024-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296748&domain=pdf&date_stamp=2024-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296748&domain=pdf&date_stamp=2024-02-05
https://doi.org/10.1371/journal.pone.0296748
https://doi.org/10.1371/journal.pone.0296748
https://doi.org/10.1371/journal.pone.0296748
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


dimension, a tiny absolute number of samples, or a significantly lower number of samples

than the data dimension are referred to as "high-dimensional small sample data." High-dimen-

sional small sample data will seriously devastate the data analysis process in terms of dimen-

sion. A small sample size makes it simple to overfit the model, which makes it tough to

extrapolate and predict and also makes choosing the right variables challenging. Variable selec-

tion, which has long been a crucial component of statistical modeling, is a useful approach to

resolving this issue. Variable selection is a technique used to improve statistical models by

deleting duplicate or pointless variables. Since it was first introduced in the 1960s, variable

selection theory and methodology have been a significant topic in statistical study. Initially, the

sample size is adequate since the sample dimension of the data set is frequently less than 40.

Thus, the subset technique and coefficient compression method are the most often utilized

methods. The area of statistics makes extensive use of these methods. The flaws in these algo-

rithms are starting to become apparent as the big data age begins. Tibshirani (1996) [1] intro-

duced Lasso (Least Absolute Shrinkage and Selection Operator), which was modeled after the

NG (Nonnegative Garrote) approach, to address the drawbacks of conventional statistical

techniques. In order to actualize the sparsity of the model and variable selection, the model

solves the gradient at the zero point using the L1 norm penalty to get a sparse solution in

which many of the components of the model vector are zero. Stepwise regression, the opti-

mum subset, and model selection are examples of procedures that it subverts that are greedy.

A compressed angle is used to accomplish automatic recognition. Since then, penalty-based

variable selection methods have emerged one after another (Breiman [2], 1996; Tibshirani [3],

2011), aiming at the shortcoming of Lasso’s biased estimation, a series of approximate unbi-

ased sparse models have been proposed one after another. The so-called approximate unbiased

sparse model refers to the sparse model that weakens or even eliminates the compression of

the regression coefficient of the target variable compared with Lasso. These approximate unbi-

ased sparse models are Bridge (Frank and Friedman, 1993), SCAD (Fan and Li [4], 2001;

smoothly Clipped Absolute Deviation), adaptive lasso (Zou [5], 2006; alasso), MCP (Zhang

[6], 2007), L2 SCAD (Jun [7], 2014), etc. The above methods are all methods for selecting a sin-

gle variable; however, it is common for explanatory variables to possess a group structure. For

instance, when analyzing gene expression, genes that belong to the same biological pathway or

share similar biological functions can be regarded as a group. Neglecting this grouping infor-

mation during data analysis can significantly diminish the impact of variable selection,

decreasing the model’s explanatory power. As a result, researchers have begun to explore

methods of variable selection. Hui (2005) [8] conducted a study on this topic, while Yuan and

Lin (2006) [9] proposed the Group Lasso model, which utilizes the group structure between

variables as prior information. One advantage of this model is that its objective function is a

convex function of unknown parameters, ensuring the existence of a unique global minimum.

Numerous scholars have researched the properties of this model. Group Lasso, being based on

the L1 norm penalty, shares similar disadvantages with Lasso. Specifically, it tends to overly

compress groups with large coefficients, leading to significant parameter estimation deviation

and an excessive selection of groups. To address these issues, the Adaptive Group Lasso was

proposed by Wang (2007) et al. [10]. Additionally, Group Lasso’s estimation is biased, prompt-

ing the development of alternative models. The Group SCAD model utilizes the SCAD penalty

function (Wang, 2007 [11]; Hai, 2015 [12]), while the Group MCP model employs the MCP

penalty function (Huang, 2012 [13]). Moreover, the Sparse Group Lasso (Simon, 2013) [14] is

a combination of Lasso and Group Lasso for a two-layer variable selection. Its optimal solution

is determined by its first-order derivative function, which guarantees a global optimal solution

without the presence of local optimal solution problems common in optimization. Later on,

alternative approaches to the Group Lasso algorithm were introduced in the literature. Fang
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[15] (2015) devised the adaptive sparse group Lasso method, while Jung [16] (2015) proposed

the Bayesian Sparse Group Selection technique. To address the limitation of Group Lasso in

selecting variables within a group, Jian [17] (2009) proposed the L1 Group Bridge method.

Additionally, Breheny and Huang [18] (2009) suggested the L1 Group MCP approach to tackle

the non-differentiability issue of the L1 Group Bridge penalty function. Furthermore, Breheny

[19] (2015) explored the Group Lasso, Group MCP, and Group SCAD algorithms, and

extended these algorithms to logistic regression.

In various research and application domains, the increasing prevalence of vast high-dimen-

sional data underscores the significance of leveraging the sparse characteristics of the data to

extract valuable insights. Trevor (2020) [20] enhanced and expanded the simulation study on

optimal subset selection, while also conducting comparisons with forward stepwise selection,

Lasso, and relaxed Lasso. Moreover, there have been advancements in the Best subset selection

algorithm by Guo (2020) [21], as well as extensions to group variable selection by Guo [22]

(2014) and Zhang [23] (2020). In recent years, ensemble learning has garnered significant

attention in the field of machine learning due to its ability to efficiently solve practical applica-

tion problems. Ensemble learning methods involve training multiple learners and combining

their outputs to address a problem. Some of the most well-known ensemble learning methods

include Bagging, Boosting, and Stacking. These methods have demonstrated superior accuracy

compared to single learners, leading to great success in various practical tasks. In recent years,

due to ensemble learning (Dasarathy and Sheela [24], 1979; Jacobs [25], 1991) can efficiently

solve practical application problems, so it has attracted much attention in the field of machine

learning. These methods train multiple learners and combine them to solve a problem. The

most classical ensemble learning methods are Bagging (Breiman [26], 1996), Boosting (Scha-

pire [27], 1998; Freund and Schapire [28], 1997) and Stacking (Wolpert [29], 1992). In general,

an ensemble algorithm combining multiple learners is more accurate than a single learner,

and the ensemble learning method has achieved great success in many practical tasks (Anders

[30], 1997; Hansen [31], 2002; Xin [32], 2010; Gras [33], 2017). In the realm of statistics, the

focus of research has always been on the method that serves as the basis for selecting variables,

as each method yields different selections. To arrive at a more effective solution strategy, it is

advisable to employ multiple commonly used variable selection methods separately and inte-

grate the common factors among these methods. Notably, some scholars have expanded the

concept of ensemble learning to include group variable selection algorithms (Wang [34], 2022;

Wan and Tanioka [35], 2023; Hussein and Rahul [36], 2023). To accommodate more complex

group structures, Thompson (2021) [37] proposed a sparse estimator of group structure by

combining group subset selection and shrinkage. As a result, algorithms such as grSubset

+ grLasso and grSubset + Ridge were developed to enable the dual-layer selection of group

variables.

In view of the advantages of regularized sparse model and ensemble learning, this paper

proposes a multi-algorithm fusion model based on the Stacking ensemble learning framework,

which is named StackingGroup. The algorithm idea is as follows: first, the algorithm that can

select a single variable and a double-layer selection variable is used as the base learner; then,

through simulation experiments, the base learner with good adaptability to high-dimensional

small sample group structure data and high model fitting degree is selected as the optimal base

learner. Finally, the combination strategy of Stacking ensemble learning is adopted, and a layer

of the Lasso model is used as a meta-learner to train the data and output the prediction results.

Through simulation experiments and real data verification, the results show that compared

with a single model, the method proposed in this paper has certain generalization and effec-

tiveness for high-dimensional small sample and large sample group structure data, and pro-

vides a feasible research framework for processing high-dimensional group structure data.
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The subsequent sections of this article are organized as follows: The second section provides an

overview of the fundamental components of the model. In the third section, a series of simulation

experiments are conducted, employing various methodologies for comparative analysis and select-

ing the base learner. The fourth section applies the proposed method to real-world problems charac-

terized by high dimensionality and limited sample sizes, validating the effectiveness of the model in

terms of prediction. Finally, the fifth section offers a comprehensive summary of the entire text.

2 Algorithm principle

2.1 Model formulation

Consider the following general linear model with a group structure

Yn�1 ¼
XG

g¼1

Xgβg þ ε ð1Þ

Where Xg is n×mg the dimension of the design matrix, βg is a regression coefficient vector

of length mg, and εn�1 � Nnð0; s
2InÞ, Number of non-overlapping groups g = 1,2,� � �,G, and

the dimension is p ¼
XG

g¼1

mg .

2.2 Group lasso

To solve the variable selection of high-dimensional variables, the Group Lasso (grLasso)

method has been proposed and widely used by many scholars (Yuan and Lin [9], 2006; Geer

[39], 2008), the specific model expression is as follows

min
b

Y �
XG

g¼1

Xgβg

�
�
�
�
�

�
�
�
�
�

2

2

þl
XG

g¼1

kβgk2 ð2Þ

2.3 Group SCAD

Consider the linear model (See Eq 1), assuming that mg variables in the model are divided into

g non-overlapping groups, Group SCAD (Wang, 2007 [11]; Hai [12], 2015; the solution of the

objective function of the grSCAD model is

min
b

Y �
XG

g¼1

Xgβg

�
�
�
�
�

�
�
�
�
�

2

2

þ
XG

g¼1

Plnðkβgk2Þ ð3Þ

where the penalty function Pλ(t) is defined as

PlðtÞ ¼ l Iðt � lÞ þ
ðal � tÞ
ða � 1Þl

Iðt > lÞ

� �

where t>0 in the penalty function, λ>0 is a tuning parameter, a>2 is a parameter, and the sub-

script n is used to indicate that λ is a function of sample size.

2.4 Group subset

The general Lasso and Group Lasso algorithms are not suitable for overlapping groups;

if two groups are overlapping, the algorithm cannot select a variable independently of

the other group; To solve this problem, a group-specific vector needs to be introduced

vk 2 Rpðk ¼ 1; 2; � � � ; gÞ, Except for the position indexed by Gk, the rest places are zero. Let V
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be the set v≔ðv1; � � � ; vgÞ of all tuples, then (Thompson [37], 2021) the objective function with

Group subset is

min
b 2 Rp; v 2 V

b ¼
X

k
vk

Y �
XG

g¼1

Xgβg

�
�
�
�
�

�
�
�
�
�

2

2

þ
X

k
l01ðkvkk 6¼ 0Þ þ

X

k
l1kkvkk ð4Þ

where the group-specific vector vk is a decomposition of the regression coefficients β into a

sum of potential coefficients, facilitating the selection of overlapping groups, and λ is a tuning

parameter.

2.5 Coordinate descent algorithms

Coordinate Descent Algorithms (CDA) belong to a category of optimization algorithms used

to address the task of locating the minimum or maximum value within a function space. The

fundamental concept behind CDA involves updating a single variable (coordinate) during

each iteration while keeping the remaining variables unchanged. More precisely, the coordi-

nate descent algorithm follows the subsequent steps in its iterative process:

• Initialization variable: given the initial solution vector;

• Select Variables to Update: Select a variable to be updated from all variables;

• Updating selected variables: Updating selected variables to new values that reduce the objec-

tive function while leaving other variables unchanged;

• Check the convergence condition: determine whether the stopping criterion is satisfied, and

if so terminate the algorithm; otherwise, return to step 2 for the next iteration;

• Output optimal solution: When the stopping criterion is reached, the optimal solution is

output.

The coordinate descent method only takes into account the updating of one variable every

iteration, choosing the variable to be updated in accordance with a predetermined rule. This

rule can be chosen heuristically, sequentially, or at random.

When the objective function can be written as the sum of subfunctions in each dimension,

a property known as coordinate separation, the coordinate descent technique can be used to

solve the issue. By independently improving each subfunction, it is possible to slowly approach

the global optimal solution in this situation.

Algorithm 1 below lists the main steps of the Coordinate descent algorithm for the v(m) vec-

tor update iteration

Algorithm 1:Coordinate descent

Input: vð0Þ 2 R
X

k
pk

for m = 1,2,� � �do
v(m) v(m−1)

for k = 1,� � �,g do
vkðmÞ  argmin

x2Rpk Fckðv1
ðmÞ; v2

ðmÞ; � � � ; vk� 1
ðmÞ; x; vkþ1

ðmÞ; � � � ; vg ðmÞ; vðmÞÞ
end
if converged then break
end
return v(m)
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Proposition 1 Suppose that v̂ðtÞ is the result of running Algorithm 1 with λ0 = λ0
(t). Let A(t) be

the active set of groups. Then running Algorithm 1 initialized to v̂ðtÞ and using λ0 = λ0
(t+1) where

l0

ðtþ1Þ
¼ a �max

k=2AðtÞ

ðkrLðv̂ðtÞÞk � l1kÞ
2

þ

2pkck

 !

produces a solution v̂ðtþ1Þ such that v̂ðtþ1Þ 6¼ v̂ðtÞ for any α2[0,1).

Table 1 summarizes the penalty functions and estimates for the other methods used in this

paper.

2.6 Stacking

In order to combine the prediction outcomes of many base models for improved overall per-

formance, Wolpert [29] created the Ensemble Learning (EL) technique of stacking in 1992. It

is a meta model that takes inputs from other base models’ predictions and uses them to pro-

duce final predictions.

In Stacking, there are two main components: The Base Models and the Meta Model.

• Base Models: Base models are multiple separate predictive models that are trained indepen-

dently on the training data. These models can be different types of models or models of the

same type but trained with different features, parameters, or random initializations. Each

base model makes predictions on the training data and generates an independent prediction.

• Meta model: The meta model is a model used to combine the prediction results of the basic

model to generate the final prediction results. It accepts the prediction results of the basic

model as input and generates the final prediction based on their weights or probabilities.

The basic process of Stacking is as follows:

• Training the base model: The individual base models are trained using the training data.

• Generate predictions for base models: For training data, each base model generates a sepa-

rate prediction.

Table 1. Penalty functions and estimators for some of the regularized regression methods used in this paper.

Method Penalty Estimator

grMCP [13]
PlðbÞ ¼

XG

g¼1

f MCP
l;b

Xpj

k¼1

f MCP
l;b ðjb

ðjÞ
k jÞ

 !
b̂grMCP ¼ argminfky � Xβk2

2
þ PlðbÞg

lasso [1] PlðbÞ ¼ lkβk1 b̂ lasso ¼ argminfky � Xβk2

2
þ lkβk1g

MCP [38]

PlðbÞ ¼
ljβj �

jβj2

2g
; jβj � gl

1

2
gl

2
; jβj > gl

8
>>><

>>>:

b̂MCP ¼ argminfky � Xβk2

2
þ PlðbÞg

SCAD [4]

PlðβÞ ¼

ljβj; 0 � jβj � l

�
ðjβj2 � 2gljβj þ l2

Þ

2ðg � 1Þ
; l < jβj < gl

ðgþ 1Þl
2

2
; jβj � gl

8
>>>>>><

>>>>>>:

b̂SCAD ¼ argminfky � Xβk2

2
þ PlðbÞg

enet [8]
PlðbÞ ¼ l1

Xp

j¼1

jbjj þ l2

Xp

j¼1

b
2

j
b̂enet ¼ argminfky � Xβk2

2
þ PlðbÞg

alasso [5] PlðbÞ ¼ lkwβk1 b̂alasso ¼ argminfky � Xβk2

2
þ lkwβk1g

https://doi.org/10.1371/journal.pone.0296748.t001
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• Constructing a new feature matrix: The predictions of the base model are used as new fea-

tures to construct a new feature matrix.

• Training meta-model: A meta-model is trained using the new feature matrix and the corre-

sponding real labels.

• Making predictions: For test data, predictions are first generated using the base model, then

these predictions are used to construct new feature matrices, and finally the meta-model is

used to make the final predictions.

The benefit of stacking is its capacity to integrate the advantages of many models to

enhance performance as a whole. It can take use of the variations between many models to

provide predictions that are more reliable and accurate. However, there are certain limitations

to stacking, such as selecting the appropriate base model, preventing overfitting, and handling

input variations that may occur between various models.

In conclusion, stacking is an ensemble learning technique that combines the prediction

outcomes of many fundamental models to get the final prediction result. It can enhance the

model’s performance and resilience and has applicability in many machine learning tasks, as

shown in Fig 1.

It is important to keep in mind that the training set for the meta-learner is produced from

the output of the base learner, and that utilizing the base learner’s training set directly to pro-

duce the secondary training set might lead to severe overfitting. It is vital to logically partition

the data utilization process in order to stop the two-layer learners from learning the same data

again and to prevent the "overfitting" effect. The original training data set must be divided into

three sub-datasets in accordance with the three base learners that were chosen, and it must be

made sure that no two pieces of data ID overlap. For each base learner, 5-fold cross-validation

is used, in which one block of data is used as the validation set and the remaining data as the

training set. Fig 2 how each base learner may provide a prediction result, and how these three

outcomes can ultimately be combined to create a new dataset that is the same size as the origi-

nal. By realizing the feature transformation of all data from input features to output features

Fig 1. Schematic diagram of Stacking-based integrated learning architecture.

https://doi.org/10.1371/journal.pone.0296748.g001
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and excluding the data blocks predicted by each base learner from their training, this configu-

ration ensures that the data is only used once during the training of the model, effectively pre-

venting overfitting.

The training process of the prediction method based on the cluster structure penalty model

in the Stacking framework is as follows:

• The input features are trained for prediction using algorithms such as grSubset+grLasso,

grLasso, and grSCAD to aid in feature selection;

• Analyze the error distribution of each algorithm and select the algorithm with larger differ-

ences as the layer 1 prediction model. Divide the original dataset and use cross-validation

methods to optimize the optimal hyperparameters of each model;

• Produce a new dataset using the partitioned dataset to train the layer 1 prediction algorithm

in Stacking separately and output the prediction results;

Fig 2. Prediction method based on group structure penalty model under Stacking framework.

https://doi.org/10.1371/journal.pone.0296748.g002
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• Using the newly generated dataset, the layer 2 algorithm in Stacking is trained, based on

which the Stacking integrated learning algorithm for multi-model fusion is trained.

2.7 Evaluation criteria

Regardless of whether a single Group Lasso method or an embedded integrated selection

method is used, the model is selected and then the important variables are screened out. The

variables selected by the model are then evaluated by using the model goodness-of-fit (R2), the

mean absolute error (MAE), and the root-mean-square error (RMSE) to ensure that they play

an important role in the model. In regression problems, the three evaluation methods of R2,

MAE and RMSE are often used to evaluate the goodness of a regression model. Using these

evaluation indexes can assess the performance of the model more comprehensively and objec-

tively, and provide stronger support for the improvement and optimization of the model, and

each of the three evaluation methods reflects the performance of the model from a different

perspective, for example, R2 measures the degree of fit of the model to the observed data, the

MAE measures the mean absolute error between the predicted and observed values, and RMSE
measures the root mean square error between the predicted and observed values, by using

these three evaluation metrics can be corroborated with each other to mutually verify the per-

formance of the model.

The goodness-of-fit index can be used to test the model’s degree of fit to the data. The closer

the value is to 1, the more stable the model is, and if the value is close to 0, then it means that

the predicted value is not correlated with the observed value. R2 (R-squared) is a measure of

how well a model fits the observed data, and it can be used to assess the precision and reliabil-

ity of the model. The calculation formula is as follows

R2 ¼

Xn

i¼1

ðŷi � yÞ2

Xn

i¼1

ðyi � yÞ2
¼ 1 �

Xn

i¼1

ðyi � ŷiÞ
2

Xn

i¼1

ðyi � yÞ2
ð5Þ

where n denotes the number of samples, yi denotes the true value, ŷi denotes the predicted

value, and y denotes the mean of the true value.

The average absolute difference between the projected values and the real values is mea-

sured by the term "Mean Absolute Error" or MAE. The model matches the data better the

smaller the value of MAE, the smaller the difference between the model’s anticipated and real

values. MAE does not take into account the relative orientations of the anticipated and real val-

ues; instead, it merely considers the distance between them. Since MAE directly takes the abso-

lute values, it has the benefit of not being sensitive to outliers and not amplifying the impact of

outliers. Although it is sensitive to outliers, it directly takes absolute values and does not exag-

gerate the impact of outliers. However, MAE also has some disadvantages, one of the main

ones being that it does not take into account the square of the prediction error, which may

lead to larger errors not being captured in some cases. The formula for calculating the MAE is

as follows

MAE ¼
1

n

Xn

i¼1

jyi � ŷij ð6Þ

RMSE (Root Mean Square Error) is a measure of the root mean square error between the

predicted value and the true value. The smaller the value of RMSE means the smaller the devia-

tion between the predicted result and the true value of the model, i.e., the better the model is
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fitted. Unlike the MAE, the RMSE is sensitive to large errors and it squares each error value

before summing, so larger errors are magnified. The advantage of the RMSE is that it takes

into account the squaring of the prediction error and is better able to capture larger errors.

However, by taking the square, RMSE is more sensitive to outliers. If there are outliers in the

data, it may result in a larger value of RMSE. The formula for calculating it is given below

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ
2

s

ð7Þ

3 Simulation studies

In this section, we test the performance of the proposed algorithms mainly on simulated data. in

order to compare the effects of different penalty functions on the variable selection effects dis-

cussed in this paper, simulation experiments are set up to compare different univariate selection

and bivariate selection methods, including the grSubset+Ridge, grSubset+grLasso, grLasso,

grMCP, grSCAD, lasso, MCP, SCAD, enet, alasso, and stacking+lasso algorithms. The model fit

goodness of fit (R2), mean absolute error (MAE), and root mean square error (RMSE) were used

as indicators for evaluating the effectiveness of variable selection. Among them, the closer the

model fit goodness of fit (R2) is to 1, the more stable the model is, and the lower the other indica-

tors are the better the model is. We designed five groups of simulation experiments for different

cases of group variables, and the experiments included the number of non-empty groups, the

number of significant variables within groups, the group size, and the distribution of significant

variables between groups. Some of the model parameters used in this paper are set as follows:

Group subset: a grid of λ0 chosen adaptively using the method of Proposition 1,where the

first λ0 sets all coefficients to zero;

Group lasso: a grid of λ containing logarithmically spaced points between λmaxand λmin =

10−4λmax,where λmax is the smallest value that sets all coefficients to zero;;

Group SCAD: the same grid of λ as above, and for each value of λ,a grid of the nonconvex-

ity parameter γ containing logarithmically spaced points between γmax = 100 and γmin = 2+104;

Group MCP: the same grid of λ as above, and for each value of λ,a grid of the nonconvexity

parameter γ containing logarithmically spaced points between γmax = 100 and γmin = 2+104.

When using the grSubset+Ridge and grSubset+grLasso, refer to R package grpsel for spe-

cific parameter settings; Grids of 100 points are used for the primary tuning parameters (λ0, λ)

and grids of 30 points for the secondary tuning parameters (λ1,γ).

The data for the simulation experiments in this paper were obtained from

yi ¼
XG

g¼1

Xgbg þ εi; i ¼ 1; � � � ; n, where εi�
i�i�d:Nð0; s2Þ; s2 ¼ 10; The detailed setup of the sim-

ulation experiment is described below.

Example1

Let n = 200 and p = 500, each group has 20 variables, for a total of 25 groups, xi~N(0,∑),

and the correlation coefficient of any two explanatory variables is ρ = 0.5. The covariance

of the remaining variables is 0. The true regression coefficient β is specified as:

β ¼ 1; 1; � � � ; 1;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group1

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group2

1; 1; � � � 1;
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group3

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group4

� � � ; 1; 1; � � � ; 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group25

" #T
, the simulation results

are shown in the table below.

In Table 2, we compare the method proposed in this paper with the rest of the group struc-

ture penalty function models. we can conclude that for the case of n< p, when the sample size
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n = 200 and the number of variables p = 500, the model fit of the enet model is better, but the

RMSE and MAE errors are larger; whereas, the stacking+lasso method is in the middle-upper

level of the model fit compared to the other several models, where the value of the index

reaches the minimum for the RMSE and the MAE compared to the other models, which indi-

cates that the model’s true and predicted values have less errors.

Example2. Let n = 200 and p = 1000,each group has 20 variables and there are 50 groups,

xi~N(0,∑), and the correlation coefficient of any two explanatory variables is ρ = 0.5. The

covariance of the remaining variables is 0. The true regression coefficient β is specified as:

β ¼ 1; 1; � � � ; 1;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group1

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group2

1; 1; � � � 1;
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group3

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group4

� � � ; 0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
group50

" #T
, the simulation results are

shown in the table below.

In Table 3, for the case of n< p, when the sample size n = 200 and the number of variables

p = 1000, the model fit of the enet model is better, but the RMSE and MAE errors are larger;

while the stacking+lasso method is in the middle-upper level of the model fit compared to the

other several models, in which the value of the RMSE and the MAE is the smallest compared to

the other several models, which indicates that the model’s real and predicted values have small

errors, and the model fit of this method is gradually improving with the increase in the number

of variables, meanwhile the values of the RMSE and the MAE are also rising.

Table 2. Comparison of the results of simulation experiment 1 for several group structure penalty models.

Model R2 RMSE MAE
grSubset+Ridge 0.936 40.040 32.579

grSubset+grLasso 0.939 39.167 32.194

grLasso 0.987 75.886 59.828

grMCP 0.939 39.193 30.546

grSCAD 0.986 78.126 61.636

lasso 0.962 37.042 28.730

MCP 0.886 55.271 44.360

SCAD 0.936 52.737 41.970

enet 0.990 141.038 111.869

alasso 0.921 45.110 36.406

stacking+lasso 0.973 27.127 21.193

https://doi.org/10.1371/journal.pone.0296748.t002

Table 3. Comparison of the results of simulation experiment 2 for several group structure penalty models.

Model R2 RMSE MAE
grSubset+Ridge 0.939 73.305 59.054

grSubset+grLasso 0.942 71.331 57.747

grLasso 0.986 159.936 131.542

grMCP 0.937 76.423 62.216

grSCAD 0.987 159.983 131.559

lasso 0.975 56.084 43.897

MCP 0.907 87.124 69.862

SCAD 0.976 65.467 49.895

enet 0.992 276.974 224.425

alasso 0.943 76.180 61.773

stacking+lasso 0.975 48.622 39.388

https://doi.org/10.1371/journal.pone.0296748.t003

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0296748 February 5, 2024 11 / 19

https://doi.org/10.1371/journal.pone.0296748.t002
https://doi.org/10.1371/journal.pone.0296748.t003
https://doi.org/10.1371/journal.pone.0296748


Example3. Let n = 200 and p = 1500, each group has 20 variables and there are 75 groups,

xi~N(0,∑), and the correlation coefficient of any two explanatory variables is ρ = 0.5. The

covariance of the remaining variables is 0. The true regression coefficient β is specified as:

β ¼ 1; 1; � � � ; 1;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group1

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group2

1; 1; � � � 1;
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group3

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group4

� � � ; 1; 1; � � � ; 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group75

" #T
, the simulation results

are shown in the table below.

In Table 4, for the case of n< p, when the sample size n = 200 and the number of variables

p = 1500, the model fit of the enet model is better, and the model fit of the model decreases

with the increase of the number of variables, but the error values of the RMSE and the MAE
are still larger; while the stacking+lasso method is in the middle to the upper level, where the

RMSE and the MAE are the smallest values compared to other models, indicating that the

model has less error in the true value and the predicted value, and that the model has less error

in the real value and the predicted value. upper level, where the value of RMSE and MAE is the

smallest compared to several other models, indicating that the model’s true and predicted val-

ues have smaller errors, with the increase of the number of variables, the method’s model fit

also decreases, and at the same time, the values of RMSE and MAE are also increasing.

Example4. Let n = 200 and p = 2000,each group has 20 variables and there are 100 groups,

xi~N(0,∑), and the correlation coefficient of any two explanatory variables is ρ = 0.5. The

covariance of the remaining variables is 0. The true regression coefficient β is specified as:

β ¼ 1; 1; � � � ; 1;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group1

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group2

1; 1; � � � 1;
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group3

0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

group4

� � � ; 0; 0; � � � ; 0
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

group100

" #T
, the simulation results

are shown in the table below.

In Table 5, for the case of n< p, when the sample size n = 200 and the number of variables

p = 2000, the model fit of the enet model is better, but the error values of the RMSE and MAE
are still larger; while the stacking+lasso method has an intermediate to upper level of model fit

compared to several other models, where the value of the RMSE and MAE is the smallest com-

pared to several other models, which indicates that the model’s true and predicted values have

a smaller error, and the model fit of this method decreases with the increase in the number of

variables, and at the same time the values of the RMSE and the MAE are also rising.

Example5. Let xi~N(0,∑), and the correlation coefficient of any two explanatory variables

is ρ = 0.5, and the covariance of the rest of the variables is 0. The true regression coefficients β
repeat the setup of the simulation experiment above, and the simulation results are shown in

the following Table 6.

Table 4. Comparison of the results of simulation experiment 3 for several group structure penalty models.

Model R2 RMSE MAE
grSubset+Ridge 0.934 109.583 86.280

grSubset+grLasso 0.939 104.601 80.775

grLasso 0.985 235.129 189.434

grMCP 0.955 91.063 72.428

grSCAD 0.984 241.740 194.482

lasso 0.965 118.773 92.327

MCP 0.869 154.296 126.395

SCAD 0.961 131.099 103.294

enet 0.990 415.292 329.605

alasso 0.915 133.707 106.672

stacking+lasso 0.973 96.495 74.367

https://doi.org/10.1371/journal.pone.0296748.t004
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In order to find the best combination of base learners in the Stacking model, the model

with better model fit goodness-of-fit (R2), mean absolute error (MAE) and root mean square

error (RMSE) in the simulation experiments 1–4 is selected as the base learner for the Stacking

model; as can be seen from the Table 6, the algorithmic model combinations such as grSubset

+grLasso, grLasso, grSCAD and lasso and the algorithmic model combinations of grSubset+-

grLasso, grLasso, and grSCAD as the base learner, the former has a larger model goodness-of-

fit (R2), mean absolute error (MAE), and root-mean-square error (RMSE) relative to the latter

with the increase in the number of variables, which indicates that the latter model combination

leads to a better model; and in the same dimension, the model fit goodness of fit (R2), mean

absolute error (MAE), and root mean square error (RMSE) are also better for the latter com-

pared to the former.

To further explore the performance of the method proposed in this paper in the case of

large samples in high dimensions, the experimental setup is designed to be similar to that of

the previous simulation experiments, except that the sample size n and dimension p are differ-

ent, and the experimental results are shown in Table 7.

With the increase of the sample size, we can observe from the table that the StackingGroup

algorithm is optimal in all aspects of the indicators in the case of sample size n = 1000 and

dimension p = 100; in the same dimension, the algorithm proposed in this paper, compared to

other algorithms, the three evaluation indexes give better results, which is enough to show that

the algorithm in the selection of variables and the model prediction, the algorithm’s prediction

accuracy and modeling error will not be inferior to other algorithms.

Table 5. Comparison of the results of simulation experiment 4 for several group structure penalty models.

Model R2 RMSE MAE
grSubset+Ridge 0.929 145.855 112.437

grSubset+grLasso 0.930 145.256 111.937

grLasso 0.985 303.653 248.411

grMCP 0.921 154.063 128.208

grSCAD 0.985 295.929 241.964

lasso 0.969 131.241 104.894

MCP 0.831 224.844 183.346

SCAD 0.966 164.393 130.490

enet 0.991 526.947 431.933

alasso 0.888 208.119 163.305

stacking+lasso 0.970 110.398 90.160

https://doi.org/10.1371/journal.pone.0296748.t005

Table 6. Comparison of the results of simulation experiment 5 of the Stacking algorithm with different base model combination approaches.

Model Model Combination Sample Size The Evaluation Index

R2 RMSE MAE
Stacking 1 Base Models:grSubset+grLasso, grLasso, grSCAD, lasso p = 500, group = 25 0.977 26.275 20.485

p = 1000, group = 50 0.979 46.281 36.863

p = 1500, group = 75 0.974 93.837 72.744

Meta Model:lasso p = 2000, group = 100 0.979 100.007 81.349

Stacking 2 (Stacking-Group) Base Models:grSubset+grLasso, grLasso, grSCAD p = 500, group = 25 0.990 15.371 12.251

p = 1000, group = 50 0.987 34.740 26.214

Meta Model:lasso p = 1500, group = 75 0.990 46.411 38.874

p = 2000, group = 100 0.988 67.448 51.167

https://doi.org/10.1371/journal.pone.0296748.t006
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4 Real data

4.1 Data set: Brithwt

The Brithwt dataset, which collects data on the risk factors for low birth weight in infants and

young children, is an extension of the Brithwt dataset collected at the Springfield Medical Cen-

ter in Springfield, Massachusetts, in 1986, and can be loaded using the R package grpreg,

Table 7. Comparison of simulation results of different group structure penalty models in the case of high dimensional large samples.

Sample Size Model R2 RMSE MAE
n = 500 grSubset+grLasso 0.905 12.830 10.406

grLasso 0.925 11.702 9.690

grSCAD 0.904 11.972 9.734

grSubset+Ridge 0.901 12.148 9.884

grMCP 0.918 11.151 8.944

p = 100 lasso 0.921 10.947 8.870

MCP 0.913 11.393 9.339

SCAD 0.915 11.287 9.426

alasso 0.912 11.516 9.455

StackingGroup 0.919 11.020 8.947

n = 1000 grSubset+grLasso 0.907 12.048 9.896

grLasso 0.932 9.614 7.555

grSCAD 0.908 10.977 8.686

grSubset+Ridge 0.906 11.069 8.988

grMCP 0.930 9.535 7.434

p = 100 lasso 0.929 9.558 7.490

MCP 0.922 10.130 8.015

SCAD 0.925 9.904 7.813

alasso 0.925 9.853 7.677

StackingGroup 0.932 9.399 7.318

n = 1500 grSubset+grLasso 0.896 12.985 10.350

grLasso 0.918 10.866 8.579

grSCAD 0.912 10.972 8.643

grSubset+Ridge 0.894 12.083 9.330

grMCP 0.917 10.649 8.435

p = 100 lasso 0.915 10.800 8.587

MCP 0.914 10.872 8.616

SCAD 0.914 10.872 8.612

alasso 0.913 10.934 8.707

StackingGroup 0.918 10.642 8.437

n = 2000 grSubset+grLasso 0.899 13.133 10.350

grLasso 0.925 10.829 8.664

grSCAD 0.922 10.934 8.695

grSubset+Ridge 0.899 12.437 9.815

grMCP 0.925 10.677 8.512

p = 100 lasso 0.924 10.737 8.516

MCP 0.924 10.801 8.584

SCAD 0.925 10.703 8.509

alasso 0.923 10.817 8.612

StackingGroup 0.925 10.667 8.478

https://doi.org/10.1371/journal.pone.0296748.t007
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"Birthwt". The data set has a total of 189 infant weights and 8 predictors related to pregnant

mothers, including the mother’s age (age), mother’s weight during the last menstrual period

(lwt), mother’s race (race), previous preterm births (ptl), number of physician visits within 3

months (ftv), smoking during pregnancy (smoke), history of hypertension (ht), and uterine

stimulation (ui). Among them, age and weight variables are continuous variables, and the

remaining explanatory variables are categorical variables. Because the mother’s age and weight

may have a non-linear relationship, the first-order, second-order, and third-order polynomials

of the age variable and the weight variable are used to replace the original variables, that is, the

age variable is divided into age1, age2, and age3 according to different age groups. Three indi-

cator variables, lwt variable are divided into lwt1, lwt2, and lwt3 according to weight grade.

The ftv variable is divided into three indicator variables ft1, ft2, and ftm according to the num-

ber of visits. The data set has a total of 8 groups. For this data set, we hope to find out the

important factors related to the weight of the newborn through the group variable selection

integration algorithm.

4.2 Experiment environment

The experimental environment includes both software and hardware. On the software side,

the methods are implemented using the R language, the version of which is R.4.2.2. On the

hardware side, the system runs on a 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz. The

datasets generated and/or analyzed during the current study are not publicly available due all

experimental and empirical data in this paper are generated and pulled from R.4.2.2 simula-

tions but are available from the corresponding author on reasonable request.

4.3 Results

In order to verify the effectiveness of the proposed method in this paper, grSubset+grLasso,

grLasso, grSCAD, and other models in the simulation experiments are introduced to compare

with the proposed method, and we randomly divide the dataset into a training set (70% of the

observations) and a test set (30% of the observations), in which the proposed method adopts a

5-fold cross-validation and obtains the results of the comparison experiments in Table 8, in

which the optimal performance indexes are bold; the important variables screened out by each

algorithm are given in Table 9, and in order to have a more intuitive understanding of each

algorithm’s performance in the dataset, the results of the plotted images are shown in Fig 3.

As we can see, combining the three evaluation metrics in Table 8 and Fig 3, the method pro-

posed in this paper has a higher model fit R2, and both the root mean square error (RMSE) and

Table 8. Comparison of modeling results of different models for Brithwt dataset.

Model R2 RMSE MAE
grSubset+grLasso 0.075 0.751 0.579

grLasso 0.266 0.704 0.544

grSCAD 0.177 0.719 0.562

grSubset+Ridge 0.204 0.705 0.551

grMCP 0.193 0.706 0.553

lasso 0.255 0.709 0.549

MCP 0.194 0.715 0.557

SCAD 0.235 0.692 0.539

StackingGroup 0.301 0.668 0.508

Note: StackingGroup (Base Models:grSubset+grLasso, grLasso, grSCAD; Meta Model:lasso)

https://doi.org/10.1371/journal.pone.0296748.t008
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the mean absolute error (MAE) are smaller than those of several other models, thus it can be

shown that the integrated algorithm has a better model fit and model error of the integrated

model compared to a single model. will be better compared to a single model. In conclusion,

Table 9. Comparison of variable selection results of different models for Brithwt dataset.

Variable grSubset+grLasso grLasso grSCAD grSubset+Ridge grMCP lasso MCP SCAD StackingGroup

age1

age2

age3

lwt1 ✓ ✓ ✓ ✓ ✓ ✓

lwt2 ✓ ✓ ✓ ✓

lwt3 ✓ ✓ ✓

white ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

black ✓ ✓ ✓ ✓ ✓

smoke ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ptl1 ✓ ✓ ✓ ✓ ✓ ✓

ptl2m ✓ ✓ ✓ ✓

ht ✓ ✓

ui ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ftv1

ftv2

ftv3m

ZJ 2 9 9 4 6 6 4 5 9

Note: ZJ is a count of the number of variables selected by a particular model, and "✓ " indicates that the indicator was selected by that model.

https://doi.org/10.1371/journal.pone.0296748.t009

Fig 3. Evaluation results of all methods for modeling the Brithwt dataset: Model fit R2, root mean square error

(RMSE) and mean absolute error (MAE).

https://doi.org/10.1371/journal.pone.0296748.g003
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StackingGroup produces excellent performance on this dataset, and in real-world applications,

we look forward to using the integrated model to solve problems in practice.

In Table 9, the grLasso, grSCAD, and StackingGroup algorithms select 9 explanatory vari-

ables from 16 explanatory variables and 8 groups. The grMCP and lasso algorithms select six

explanatory variables; the SCAD algorithm selects five explanatory variables; grSubset + Ridge

and MCP selected 4 explanatory variables; the grSubset + grLasso algorithm selects two

explanatory variables. Therefore, the method proposed in this paper is effective and suitable

for real data with group structure.

5 Conclusion

Variable selection is a hot research issue in the field of statistics, in this paper, we propose a

multi-algorithm fusion model (StackingGroup) based on the Stacking integrated learning

framework, which is constructed by using grSubset+grLasso, grLasso, and grSCAD as the base

learners and lasso as the meta-learners, the algorithm proposed can solve the variable selection

problem of high-dimensional group structure data, and it features high recognition of impor-

tant inter-group variables and important intra-group variables; the effectiveness and stability

of the method is verified through numerical simulation and empirical analysis, thus indicating

that the algorithm has certain practical application value. However, it still has some limitations,

for example, due to the multiple algorithm fusion strategy adopted by the algorithm, the com-

putation of the algorithm changes with the model complexity of the base learner and the meta-

learners; algorithm optimization and parallel computation may be required when facing the

computation of large-scale data. In our next work, we will continue to investigate how to per-

form bilayer variable selection and its application to disease prediagnosis and economic fore-

casting under the Stacking integrated learning framework when the response variable is

discrete. In addition, optimization of algorithms, computation, and processing of large-scale

datasets are also future research directions in this area.
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