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Abstract

Anterior Vertebral Body Tethering (AVBT) is a growing alternative treatment for adolescent

idiopathic scoliosis (AIS), offering an option besides spinal fusion. While AVBT aims to cor-

rect spinal deformity through growth correction, its outcomes have been mixed. To improve

surgical outcomes, this study aimed to develop a machine learning-based tool to predict

short- and midterm spinal curve correction in AIS patients who underwent AVBT surgery,

using the most predictive clinical, radiographic, and surgical parameters. After institutional

review board approval and based on inclusion criteria, 91 AIS patients who underwent

AVBT surgery were selected from the Shriners Hospitals for Children, Philadelphia. For all

patients, longitudinal standing (PA or AP, and lateral) and side bending spinal Radiographs

were retrospectively obtained at six visits: preop and first standing, one year, two years, five

years postop, and at the most recent follow-up. Demographic, radiographic, and surgical

features associated with curve correction were collected. The sequential backward feature

selection method was used to eliminate correlated features and to provide a rank-ordered

list of the most predictive features of the AVBT correction. A Gradient Boosting Regressor

(GBR) model was trained and tested using the selected features to predict the final correc-

tion of the curve in AIS patients. Eleven most predictive features were identified. The GBR

model predicted the final Cobb angle with an average error of 6.3 ± 5.6 degrees. The model

also provided a prediction interval, where 84% of the actual values were within the 90% pre-

diction interval. A list of the most predictive features for AVBT curve correction was pro-

vided. The GBR model, trained on these features, predicted the final curve magnitude with a

clinically acceptable margin of error. This model can be used as a clinical tool to plan AVBT

surgical parameters and improve outcomes.

Introduction

Anterior Vertebral Body Tethering (AVBT), a novel growth-friendly modulation technique, is

used to guide spinal growth to correct scoliosis deformity via the application of the Heuter-
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Volkmann principle [1–5]. AVBT is used for skeletally immature adolescent idiopathic sco-

liosis (AIS) patients with thoracic curves measuring 30 to 65 degrees that continue to prog-

ress despite bracing. Since its approval by the US Food and Drug Administration (FDA) as

a Humanitarian Use Device in 2019, AVBT has shown promising short- and mid-term

results in several clinical studies [6–10]. However, the predictability and reliability of spinal

growth modulation in vivo remain uncertain and hinge on a complex interplay of factors,

including magnitude of the curve, expected growth remaining, and the surgical parameters

[7–21].

Several studies have attempted to improve the predictability of AVBT outcomes. Yucekul

et al [22] performed a retrospective analysis of demographic and radiographic data in 38 AIS

patients who underwent Vertebral Body Tethering (VBT) surgery. They employed various

methods, including Risser, Sanders Simplified Skeletal Maturity Staging (SSMS), Thumb-Ossi-

fication Composite Index (TOCI), Combined Hand Maturity Scale (CHMS), and Cervical

Vertebral Maturity (CVM), to determine the patient’s skeletal maturity. Subsequently, they

used regression models to assess longitudinal growth and growth modulation. They found that

the Growth Modulation Scale (GMS), created by integrating CVM with CHMS, had the high-

est predictive ability for growth modulation years after VBT surgery [2–4]. Although the GMS

demonstrated a strong correlation with longitudinal growth and growth modulation, external

validation of the GMS in larger cohorts is necessary, and staging of the CVM presents

challenges.

Mandel et al [23–25] published a series of studies on the use of statistical and machine

learning models for predicting the surgical outcomes of Anterior Vertebral Body Tethering

(AVBT) procedures in adolescents with idiopathic scoliosis. They developed statistical frame-

works and predictive networks that use 3D spine reconstructions from follow-up radiographs

to predict the surgical outcomes of AVBT. The models are based on subject-specific correction

trajectories, temporal dynamics in curve progression, and clinical parameters. Although the

results showed that the models were accurate in predicting the surgical outcomes with errors

of around 2.1 degrees in main curve magnitude, the process of reconstructing 3D models from

2D radiographs is complicated.

The use of a 3D finite element methods (FEM) to simulate spine correction has emerged as

a promising approach for predicting surgical outcomes in patients with scoliosis [3–5, 26, 27].

Studies have shown that transforming preoperative models of scoliotic patients to the intra-

operative lateral decubitus position significantly corrected the thoracic spine [28]. The concept

of FEM has been further explored in the context of growth dynamics by analyzing the internal

stress distributions within the intervertebral discs and growth plates of compressive growth

modulation devices [29, 30]. These studies have demonstrated the capability of reducing asym-

metrical loading on growth plates and the possibility of progressive growth correction. How-

ever, integrating several physiological and clinical parameters to modulate the stresses applied

to the epiphyseal plate remains a challenge [29, 30]. Despite the potential of biomechanical

models to reproduce surgical outcomes in AVBT, they are computationally complex and

require further advancement [31].

The current limitations of AVBT outcome prediction models highlight the need for devel-

oping improved prediction models for AVBT procedure. Hence, this study aims to develop a

machine learning-based prognostic tool that utilizes a combination of clinical, radiographic,

and surgical parameters to predict short- and mid-term corrections achieved in AIS patients

who underwent AVBT surgery.
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Methods

Inclusion criteria for patients’ selection

Institutional review board approval (Protocol #PHL2102R) was obtained by western institu-

tional review board. Before accessing the database, all data were fully anonymized and as the

data is retrospective the western institutional review board waived the requirement for

informed consent. A retrospective analysis was conducted on pediatric patients from the

Shriners Hospitals for Children database from 2011 to 2020. The selection of patients was

based on the following inclusion criteria: (1) primary diagnosis of AIS with any Lenke classifi-

cation, (2) patients who were under 21 years of age, (3) patients who underwent VBT treat-

ment for scoliosis, and (4) patients with First Erect (FE) follow-up and at least one follow-up

visit after their initial VBT treatment, including preoperative radiographic images (posteroan-

terior (PA), anteroposterior (AP), lateral, and side bending) taken using X-ray, CT, or EOS

imaging.

Data collection

The data collected for this study included demographic, radiographic, and surgical features

associated with curve correction. A total of twenty continuous variables and seven categorical

variables were analyzed. The complete list of features is provided in Table 1.

Demographic features

Based on the inclusion criteria, 91 pediatric patients with AIS (11 males and 80 females) were

selected for the current study. Demographic information such as gender, age, and the time

elapsed between follow-up visits was collected.

Radiographic features

The radiographic features of the 91 pediatric patients with AIS were analyzed in this study. Stand-

ing (PA or AP, and lateral) and side bending spinal radiographs were obtained from all patients

at six visits: preoperative, first standing, one year, two years, five years postoperative, and at most

recent follow-up. Previously published methods for landmark point (LMP) selection and mea-

surement extraction were used in this study [32]. From the frontal radiographs, four radiographic

features were extracted, including coronal balance, trunk shift, shoulder balance, and the tilt of

Table 1. Features collected from patients’ radiographs and clinical records.

Demographic (n = 3) Radiographic (n = 20)

Age at surgery Major Cobb Coronal Balance

Age at visit Major Cobb tether Shoulder Balance

Gender* Lumbar Cobb angle L4 tilt

Surgical (n = 4) Thoracic Kyphosis Trunk shift

First Erect Cobb angle Lumbar Lordosis Bending Proximal Thoracic

Upper Instrumented Vertebrae (UIV) * Proximal Thoracic Kyphosis Bending Thoracic

Lower Instrumented Vertebrae (LIV) * Mid lower thoracic kyphosis Bending Lumbar

Number of Instrumented Vertebrae (NIV) * Thoracolumbar kyphosis Curve Flexibility

Thoracic curve apex * Sanders Maturity Stage *
Lumbar curve apex * Major curve apex *

Note: Variables marked with an asterisk (*) indicate categorical variables.

https://doi.org/10.1371/journal.pone.0296739.t001
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the fourth lumbar vertebra (L4) (as shown in Fig 1) [33]. Additionally, five features were extracted

from the lateral radiographs, including kyphosis, lordosis, proximal thoracic kyphosis, mid-lower

thoracic kyphosis, and thoracolumbar lordosis (as shown in Fig 2). These angles were measured

between the superior and inferior endplates of the vertebral levels T2-T12, L1-L5, T2-T5, T5-T12,

and T12-L2, respectively. As this study was retrospective, the Cobb angle at the first erect for the

purpose of training and testing the machine learning model was directly measured from the

postop radiograph. Since this model would be used for AVBT surgical planning, where the actual

post-operative first erect Cobb angle measurement will not be available, the Cobb angle at first

erect can be estimated from the preop bending radiograph using a previously published equation

[34]. Where: First erect major Cobb angle (in degrees) = 7.5 + 0.65 × Fulcrum−Bending Cobb

angle (in degrees). Fulcrum-Bending Cobb angle is defined as the reduced Cobb angle when the

patient performs a lateral bend towards the convexity.

Surgical features

Surgical features were extracted from the postoperative radiographs of the patients. The surgi-

cal information collected included one continuous feature, the magnitude of the curve that

Fig 1. Features extracted from frontal radiographs (adapted from [33]). (a) coronal balance was measured as the

shortest horizontal distance between the vertical line which passes through the centroid of the seventh cervical

vertebrae named as C7 plumb line (C7PL) and the vertical line through the centroid of the first sacrum vertebrae

named as Central Sacral Vertical Line (CSVL) (b) to extract the trunk shift measurement, the apical thoracic vertebra is

identified, and a horizontal line (ab) is drawn through its centroid. The trunk shift is then measured as the shortest

distance between the vertical line through the midpoint of the line (ab) and the CSVL (c) shoulder balance was

measured as the shortest vertical distance between two corresponding points on the left and right clavicle bones (d) L4

tilt is the angle measured between the superior endplate of the fourth lumbar vertebrae (L4) and the horizontal.

https://doi.org/10.1371/journal.pone.0296739.g001
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Fig 2. Features extracted from lateral radiographs. (a) thoracic kyphosis and lumbar lordosis (b) proximal thoracic

kyphosis (c) mid lower thoracic kyphosis (d) thoracolumbar lordosis angle measured between the superior endplate

and the inferior endplate of the vertebral levels: T2-T12, L1-L5, T2-T5, T5-T12, and T12-L2, respectively.

https://doi.org/10.1371/journal.pone.0296739.g002
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was instrumented in the first standing radiograph after the AVBT procedure, and three cate-

gorical features namely, Upper Instrumented Vertebra (UIV), Lower Instrumented Vertebra

(LIV), and Number of Instrumented Vertebrae (NIV).

Sequential Backward Floating Selection (SBFS)

To enhance prediction accuracy, reduce model complexity, and eliminate correlated or redun-

dant features, the study utilized the Sequential Backward Floating Selection (SBFS) method.

This method was implemented using mlxtend (version 0.18.0 for python 3.6) [35] as part of a

pipeline that included cross-validation from Scikit-learn (version 0.21.3 for python 3.6) [36].

The SBFS method began with all features listed in Table 2 and evaluated the regression

between each feature and the target (postoperative major Cobb angle). Based on the mean

absolute error (MAE) performance metric, the feature that minimized the MAE after removal

was excluded and the model was refitted. A conditional inclusion step was added after each

removal to determine if the MAE was minimized after a feature was re-added. The subset of

features with the minimum MAE was chosen as the input for the predictive model.

Machine learning model selection and optimization

The final major Cobb angle post-AVBT (at first erect time-point) in pediatric patients with

AIS was predicted by utilizing a dataset of the most predictive features. The dataset (for all

Table 2. Indices of input features to SBFS.

Index Feature

0 Major Cobb Angle

1 Preop secondary Cobb angle

2 First erect major Cobb angle

3 Preop thoracic curve apex

4 Preop lumbar curve apex

5 Major curve Apex

6 Age at Surgery

7 Age at visit

8 Sanders stage

9 Gender

10 Coronal balance

11 Shoulder balance

12 L4 tilt

13 Trunk shift

14 Thoracic Kyphosis

15 Preop proximal thoracic kyphosis

16 Mid lower thoracic kyphosis

17 Thoracolumbar kyphosis

18 Lumbar lordosis

19 Preop proximal thoracic bending curve

20 Preop thoracic bending curve

21 Preop lumbar bending curve

22 UIL tethered levels

23 LLI tethered levels

24 NLI tethered levels

25 Preop tethered Cobb angle

26 Flexibility

https://doi.org/10.1371/journal.pone.0296739.t002
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patients) was randomly split into training (80%) and testing (20%) datasets, and four widely-

used machine learning models, namely Random Forest (RF) [37], Gradient Boosting Regressor

(GBR) [38], Support Vector Machine (SVM) [39, 40], and Artificial Neural Network (ANN)

[41, 42] were trained using a 5-fold cross-validation with the scikit-learn library (version 0.21.3

for python 3.6). To improve the performance of the models and minimize the risk of overfit-

ting, the hyperparameters for each model were optimized through a grid search approach with

Scikit-Learn’s GridSearchCV (version 0.21.3 for python 3.6) [36]. The combination of hyper-

parameters that resulted in the lowest mean absolute error (MAE) was chosen for each model

based on the results of 5-fold cross-validation.

Machine learning offers a data-driven approach to derive patterns and predictions from

large datasets. In this study, we utilized the Gradient Boosting Regressor (GBR), a powerful

and widely recognized technique that builds predictive models from an ensemble of simpler

models, improving its predictions iteratively [38]. Its efficacy in medical predictions, particu-

larly in radiological data, has been previously documented [43].

Sequential Backward Floating Selection (SBFS) is an optimization technique tailored for

feature selection, ensuring the model is not misled by redundant or irrelevant information

[44]. By systematically evaluating and eliminating the least contributive features, SBFS refines

our dataset to the most predictive features.

The success of AVBT surgery is determined by the correction of the major coronal Cobb

angle to less than 35˚, without the requirement for additional surgical intervention or fusion at

the latest follow-up [7–9, 45]. Hence, instead of predicting a single value for curve correction,

the model provides a 90% prediction interval. If the interval falls between 0 and 35 degrees, the

surgery is considered to have achieved a successful outcome. This diagram in Fig 3 outlines the

step-by-step process of data ingestion, preprocessing, feature selection via SBFS, model train-

ing using GBR, and eventual curve prediction.

Deployment of the curve correction prediction model

To ensure the clinical translation of the reported findings, and for the model to be more widely

used, a web user-interface app to predict AVBT-based curve correction in AIS patients was cre-

ated. Model deployment was done using Flask and Heroku, where Flask is a micro web frame-

work to create web applications, and Heroku is a cloud platform to host such web applications.

Results

The current study analyzed data from 84 (out of 91) pediatric patients that met the inclusion

criteria. Seven patients who were excluded had missing clinical or radiographic data. Of these

84 patients, 74 were female and 10 were male, with an average age of 12.2 ± 1.02 years and

12.5 ± 1.96 years, respectively. 82 of the 84 patients had a midterm follow-up at five years or

their latest available visit, while the other two patients had follow-ups at 2.5 and one year post-

operatively. The follow-up duration ranged between one and 9.25 years, with a median of 5.5

(1.3) years. The collected continuous and categorical features from the patients’ initial visit

Fig 3. Flowchart illustrating the development of the machine learning model for predicting AIS curve correction.

https://doi.org/10.1371/journal.pone.0296739.g003

PLOS ONE Predicting radiographic outcomes of vertebral body tethering

PLOS ONE | https://doi.org/10.1371/journal.pone.0296739 January 12, 2024 7 / 17

https://doi.org/10.1371/journal.pone.0296739.g003
https://doi.org/10.1371/journal.pone.0296739


included in the analysis are presented in Tables 3 and 4, respectively. Table 5 illustrates the

curve correction data at the postoperative follow-up visits.

Most predictive features selected from the SBFS method

The input features used by the Sequential Backward Floating Selection (SBFS) method and

their indices are listed in Table 2. The results of the feature selection method are shown in

Table 6, where the average mean absolute error (MAE) from a 5-fold cross-validation is pre-

sented in descending order for the Gradient Boosting Regressor (GBR) model. Out of the 27

features, the top 11 most predictive features were selected by SBFS are listed in Table 7. These

11 features include: first erect major Cobb angle, age at visit, preop thoracic bending curve,

Table 3. Description of continuous features at the initial visit for the subjects included in the data analysis.

Features Mean SD Min. Max.

Major Cobb (˚) 48.75 10.96 23.02 76.18

Major Cobb tether(˚) 46.47 11.67 11.66 76.18

Lumbar Cobb angle (˚) 33.10 11.23 15.96 67.62

Age (in years) at Surgery 12.22 1.13 9 15

Coronal_Balance_preop (mm) 1.15 1.05 0.00 6.54

Shoulder_Balance_preop (mm) 0.96 0.79 0.00 3.42

L4_tilt_preop (˚) 9.53 6.75 0.00 26.92

trunk_shift_preop (mm) 1.51 1.21 0.00 5.79

Thoracic_Kyphosis_preop (˚) 23.64 11.92 0.22 55.30

Proximal_Thoracic_Kyphosis_preop (˚) 10.42 6.53 0.44 30.53

Mid_lower_thoracic_kyphosis_preop (˚) 16.88 9.44 0.37 41.30

Thoracolumbar_kyphosis_preop (˚) 9.61 7.29 0.08 31.29

Lumbar_Lordosis_preop (˚) 70.20 14.41 1.15 102.48

Preop Bending Proximal Thoracic Curve (˚) 16.50 9.61 0.55 48.50

Preop Bending Thoracic (˚) 19.95 11.08 0.51 46.70

Preop Bending Lumbar (˚) 9.53 7.36 0.03 34.00

Flexibility (˚) 0.60 0.20 0.03 0.99

https://doi.org/10.1371/journal.pone.0296739.t003

Table 4. Description of categorical features at the initial visit for the subjects included in the data analysis.

Gender Male Female

10 74

Sanders 1 2 3

1 25 42

4 5 6

14 1 1

Major Apex T7 T8 T9

2 34 26

T10 T11 T12

13 3 1

L1 L2 L3

2 2 1

Min Max Mode

UIV T5 T10 T5

LIV T10 L3 T12

NIV 4 9 8

https://doi.org/10.1371/journal.pone.0296739.t004
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Table 5. Description of spinal curve magnitude and correction at preop and follow-up visits.

Preop (initial visit) First Erect postop 1 yr postop 2 yr postop 5 years postop Latest postop

Number of subjects 84 84 73 71 40 65

Visit months from surgery N/A 0.88±0.54 12.04±1.92 24.51±2.65 62.24±8.65 66.39±15.87

(0–1) (8–21) (20–33) (44–87) (18–111)(Mean±SD)

(Min-Max)

Age (in years) 12.3±1.14 12.3±1.14 13.3±1.2 14.28±1.2 17.4±1.35 17.72±1.44

(Mean±SD) (9.2–15.1) (10.2–16.3) (11.2–16.9) (14.2–19.8) (14.7–23)

(Min-Max)

Cobb angle (˚) 46.47±11.67 24.74±10.98 18.13±10.72 19.39±11.75 20.99±13.08 26.87±12.14

(Mean±SD) (1.1–55.7) (0.24–49.6) (1–52.3) (0.4–57.3) (0.8–52.3)

(Min-Max)

Mean Difference (˚) N/A 21.72±9.83 27.60±12.13 27.01±11.13 21.26±14.10 20.38±14.59

(preop vs. timepoint)

%Correction N/A 46±25 59±26 58±25 50±31 40±34

https://doi.org/10.1371/journal.pone.0296739.t005

Table 6. Output from SBFS ranked in descending order. MAE of final major Cobb angle correction prediction, CI

represents the 95% confidence interval around the computed cross-validation scores.

Features Combination Average

MAE scores

Standard

Deviation

(CI)

bound

(2, 3, 6, 7, 8, 11, 15, 19, 20, 24, 26) 7.97 1.66 2.13

(2, 3, 6, 7, 8, 11, 19, 20, 24, 26) 7.98 1.65 2.12

(2, 3, 6, 7, 8, 11, 19, 24, 25) 8.00 1.66 2.14

(2, 3, 6, 7, 8, 11, 19, 20, 22, 23, 24, 26) 8.03 1.70 2.19

(2, 3, 6, 7, 8, 11, 19, 24) 8.06 1.61 2.07

(2, 3, 6, 7, 8, 11, 12, 19, 20, 22, 23, 24, 26) 8.09 1.74 2.24

(2, 3, 4, 6, 7, 8, 12, 13, 19, 20, 22, 23, 24, 26) 8.11 1.63 2.10

(2, 3, 4, 6, 7, 8, 12, 13, 14, 19, 20, 22, 23, 24, 26) 8.14 1.56 2.01

(2, 6, 7, 8, 11, 19, 24) 8.15 1.58 2.04

(2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 19, 20, 22, 23, 24, 26) 8.21 1.59 2.04

(2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 19, 20, 22, 23, 24, 25, 26) 8.26 1.61 2.07

(2, 6, 7, 8, 19, 24) 8.26 1.44 1.86

(2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 18, 19, 20, 22, 23, 24, 25, 26) 8.35 1.63 2.09

(2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26) 8.46 1.66 2.13

(0, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26) 8.48 1.65 2.12

(2, 3, 7, 19, 24) 9.01 1.52 1.95

(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26) 7.97 1.62 2.08

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26) 7.98 1.58 2.03

(2, 7, 19, 24) 8.00 1.42 1.83

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26) 8.03 1.56 2.00

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26) 8.06 1.49 1.92

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26) 8.09 1.62 2.08

(2, 7, 19) 8.11 1.48 1.91

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25,

26)

8.14 1.69 2.18

(2, 7) 8.15 1.47 1.89

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26)

8.21 1.89 2.43

(2,) 8.26 1.39 1.79

https://doi.org/10.1371/journal.pone.0296739.t006
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preop proximal thoracic bending curve, shoulder balance, age at surgery, flexibility, preop

proximal thoracic curve, Sanders stage, number of instrumented vertebrae, major curve apex.

Gradient Boosting Regressor (GBR) to predict corrected final major Cobb

angle

The range of hyperparameters used to optimize the machine learning models and the selected val-

ues are presented in Table 8. The top 11 most predictive features, as selected by the SBFS algo-

rithm, were used as inputs for each of the models. The performance of the models is summarized

in Table 9. The GBR model predicted the corrected final major Cobb angle with the lowest MAE,

and therefore selected as the method to predict curve correction after AVBT surgery. The testing

errors and their frequencies are shown in Figs 4 and 5 shows that 84% of the actual Cobb angle

values were found to be within the 90% prediction interval generated by the GBR model.

Table 7. Rank and weights of most important features to predict AIS curve correction after AVBT surgery.

Rank Feature Importance (weight)

1 First erect major Cobb angle 0.332

2 Age at visit 0.179

3 Preop thoracic bending curve 0.116

4 Preop proximal thoracic bending curve 0.084

5 Shoulder balance 0.075

6 Age at Surgery 0.066

7 Flexibility 0.048

8 Preop proximal thoracic curve 0.042

9 Sanders stage 0.030

10 Number of instrumented vertebrae 0.022

11 Major curve apex 0.007

https://doi.org/10.1371/journal.pone.0296739.t007

Table 8. Hyperparameters grid values and the selected values for optimized models.

Hyperparameter Range of values Selected Value

Random Forest

n_estimators [100500] 200

max_features [17] ‘sqrt’

max_depth [150] 80

min_samples_split [211] 3

min_samples_leaf [111] 1

Gradient Boosting Regressor

n_estimators [100500] 200

max_features [17] ‘sqrt’

max_depth [150] 70

min_samples_split [211] 6

min_samples_leaf [111] 7

Support Vector Machine

Epsilon [0,1,10,100,1000] 0

Gamma [1,0.1,0.001,0.0001] 0.001

Artificial Neural Network

batch_size [10,20,30,40,50] 20

epochs [10,20,30,40,50] 10

Optimizer [‘adam’, ‘rmsprop’] adam

https://doi.org/10.1371/journal.pone.0296739.t008
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Web user interface app for AIS curve correction prediction after AVBT

surgery

The web user interface app is publicly available at: https://biomed.drexel.edu/labs/obl/toolkits/

predict-curve-correction/.

Discussion

This is the first study to apply machine learning methods to longitudinal data from a cohort of

AIS patients who underwent AVBT surgery to identify a rank ordered list of the most predic-

tive features associated with curve correction post-AVBT. A GBR model was developed and

validated using the list of the most important features to predict short- and mid-term curve

Table 9. Performance of the ML models in terms of mean absolute error (MAE) of final Cobb angle predictions

(degrees) (descending).

Model Training MAE (˚) Testing MAE (˚)

Gradient Boosting Regressor 7.2 6.3

Random Forest 7.3 6.6

Artificial Neural Network 10.2 8.7

Support Vector Machine 10.2 9.3

https://doi.org/10.1371/journal.pone.0296739.t009

Fig 4. The mean absolute error of the testing dataset predictions using GBR model.

https://doi.org/10.1371/journal.pone.0296739.g004
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correction following AVBT surgery. The GBR model predicted curve correction within an

acceptable mean absolute error of 6.3 degrees.

The curve correction following AVBT happens in two phases, namely: immediate intrao-

perative and postoperatively with growth. The immediate intraoperative correction can be esti-

mated using the flexibility rate extracted from supine or fulcrum bending radiographs [34, 46–

48]. However, this method is unable to predict the postoperative correction with the growth

remaining, which the AVBT leverages through the application of the Heuter-Volkmann prin-

ciple of growth modulation. The predictability and reliability of spinal growth modulation are

largely dependent on a complex interplay of factors. These include patient factors such as

preop major Cobb angle, curve flexibility, growth remaining, and the response of the uninstru-

mented compensatory (i.e., nonstructural) curves. Surgical factors also play a role, including

surgical technique, levels selected for instrumentation, number of levels instrumented, and the

initial correction obtained [34]. Hence, for this study we collected clinical, surgical, and radio-

graphic features to predict the magnitude of AVBT surgical correction achieved in AIS

patients. Using SBFS, eleven prognostic features were selected out of 27 collected features.

The selected predictive feature with the highest rank is the initial correction obtained

through AVBT. The initial correction plays a crucial role in the final correction of AIS curves

and is responsible for the majority of the total correction achieved [34, 49]. Small to moderate

gains in correction can be achieved through ongoing spinal growth, unless the patient has

extreme remaining growth [49]. However, the lack of intraoperative radiographs for the

patient cohort included in this study necessitated the use of the first erect radiograph as a sur-

rogate for determining the initial correction. It is important to note that intraoperative correc-

tion during AVBT may deteriorate by an average of 10˚ on the first erect spine radiographs

[50]. This reduction is the result of the application of gravitational force to the dynamic tether

Fig 5. The prediction intervals generated by the GBR model for each observation in the testing dataset.

https://doi.org/10.1371/journal.pone.0296739.g005
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system as the patient stands. Determining the desired initial correction will inform the size of

the residual curve following AVBT surgery and optimize AVBT outcomes. In addition to the

first erect major Cobb angle, the number of instrumented vertebrae (NIV) was also selected as

a predictive surgical parameter in determining curve correction, thereby providing valuable

information to assist surgeons in level selection during surgical planning.

The patient’s age at surgery, the patient’s age at the time of the postoperative visit, and the

Sanders stage [51, 52] were also selected as most predictive features for curve correction. As

AVBT indication criteria include skeletal immaturity [8, 53], substantial growth should remain

to obtain correction and avoid undercorrection or overcorrection complications based on the

residual curve. Age at surgery and age at visit are correlated with the amount of growth

remaining. These features will help with clinical decision making on the timing of surgery.

Sanders maturity was ranked 10th (out of 11) most predictive feature for curve correction. As

patients with Sanders stage of three (out of six Sanders skeletal maturity stages) are considered

as those with the ideal remaining growth for AVBT [14, 52], the majority of the patients in this

study cohort had Sanders stage three (50%) followed by Sanders stage two (30%). This, in turn,

may have reduced the rank of this feature.

Preoperative curve magnitude (Proximal thoracic and thoracic bending) and curve flexibil-

ity are factors used to account for curve stiffness. Silk et al. [34] correlated Fulcrum Flexibility

Rate (FFR) with Correction Rate (CR) and assessed the use of FFR to reliably predict residual

deformity following Anterior Vertebral Body Tethering (AVBT) surgery. The results of their

study demonstrated patients with large and/or stiff curves may exhibit a less favorable initial

response to the tethering technique. Stiff curves were found to be preoperatively larger (54˚ vs

48˚) and to have a lower fulcrum flexibility rate (48% vs 79%) compared to flexible curves. Fur-

thermore, significant difference in the correction rate (50% vs 74%) was observed between the

rigid and the flexible groups, a factor that could be crucial when assessing a patient’s suitability

for AVBT [34].

In Table 5, our cohort data highlights the complex nature of growth modulation post-

AVBT. From the first erect measurement to the 5-year follow-up, we observe a decrease of

around 3.7 degrees in the mean Cobb angle, suggesting that AVBT has a significant influence

on growth modulation, at least in the midterm. However, by the final follow-up, the curve

magnitude surpasses the initial first erect value by an average of 2.2 degrees, indicating vari-

ability in the long-term effectiveness of AVBT. Several factors could explain this trend. First,

the decrease in the Cobb angle up to the 5-year point validates AVBT’s capability in guiding

vertebral growth in the desired direction. Second, the subsequent increase in curve magnitude

showcases potential differences in individual patient responses to AVBT over extended peri-

ods. Lastly, the increase in the Cobb angle by the final follow-up may also be influenced by nat-

ural changes in the biomechanics of the growing spine, not just the effects of AVBT.

This study has a few limitations. Although tether tensioning is an important parameter for

curve correction, the magnitudes of the applied tether tension were not available for the cohort

of AIS patients used in this study. Therefore, tether tension was not included as a feature in the

current study. However, the current GBR model predicts intraoperative correction required

for successful surgery outcome, which is reported to be less than 35 degrees of Cobb angle at

skeletal maturity with no conversion to Posterior Spine Fusion [14, 51–53], combined with

curve flexibility, may help the surgeon determine the appropriate amount of the intraoperative

tether tension needed. Additionally, the GBR model cannot extrapolate beyond the data values

it was trained on [54, 55]. However, expanding the dataset can help address this limitation in

future iterations. Moreover, the outcomes of this current study may be affected by institutional

bias, and future work could include datasets from other institutions.
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Conclusion

The most predictive features of curve correction using AVBT were identified and rank-

ordered. A Gradient Boosting Regression (GBR) model was trained and validated using these

selected features, demonstrating a capability of predicting the final curve magnitude within a

clinically acceptable range. The current model has potential to serve as a valuable clinical tool,

providing insight into the optimal timing of intervention and surgical planning parameters,

which may result in improved surgical outcomes and facilitate informed decision-making in

patient selection and timing for AVBT surgery.
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