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Abstract

The aim of the present study is to identify multiple soliton solutions to the nonlinear coupled
Broer-Kaup-Kupershmidt (BKK) system, including beta, conformable, local-fractional, and
M-truncated derivatives. The coupled Broer-Kaup-Kupershmidt system is employed for
modelling nonlinear wave evolution in mathematical models of fluid dynamics, plasmic, opti-
cal, dispersive, and nonlinear long-gravity waves. The travelling wave solutions to the above
model are found using the Unified and generalised Bernoulli sub-ODE techniques. By modi-
fying certain parameter values, we may create bright soliton, squeezed bell-shaped wave,
expanded v-shaped soliton, W-shaped wave, singular soliton, and periodic solutions. The
four distinct kinds of derivatives are compared quite effectively using 2D line graphs. Also,
contour plots and 3D graphics are given by using Mathematica 10. Lastly, any pair of propa-
gating wave solutions has symmetrical geometrical forms.

1. Introduction

Nonlinear partial differential equations (NLPDEs) [1] have gained a lot of attention. For
modelling phenomena, they are useful. Differential equations (DEs) [2] are one of the best
instruments for explaining a variety of natural processes. NLPDEs have a wide range of uses in
engineering, chemistry, optical fibres, biology, physics, fluid dynamics, and crystallography
[3]. In scholarly communities, they rank among the most appealing topics. To examine and
understand the nature of solutions for NLPDEs, a number of reliable computational tech-
niques were developed. Since nonlinearity characterises all physical incidences, mathematical
models are typically the most suitable way to represent such phenomena. Partial differential
equations (PDEs) [4] have been modelled in order to more fully examine and understand the
nature of physical processes. Each approach has its benefits. Mathematical and physical models
of NLPDEs are important in the theoretical sciences [5]. Aerospace engineering, sea science,
atmospheric science, and other practical disciplines need an understanding of these NLPDEs

[6].
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In the past several decades, handling nonlinear phenomena has significantly benefited from
the direct search for multi solutions [7] to nonlinear evolution equations (NLEEs) [8]. The val-
idation of numerical solvers in solution stability analysis can be substantially facilitated by the
availability of these analytical solutions for those NLEEs [9]. For NLEEs, many kinds of wave
solutions are discovered. The snoidal wave, single wave, cnoidal wave, periodic wave, solitary
wave, shock wave, and solitons wave are some of these forms [10]. Solitons are waves with a
uniform shape and no internal energy dispersion. Soliton has significant value in the disci-
plines of electromagnetic fields and communications as a result of these characteristics. In
many branches of science and engineering, soliton theory is crucial. Particularly, the majority
of the NLPDE:s have solitons-based exact solutions [11].

The analysis of fluid dynamics [12], plasmic, optical, dispersive, and nonlinear long gravity
waves are just a few of the numerous fields that employ the nonlinear BKK equation [13].
When applying the nonlinear water model to port and coastal design, the BKK approach is
extremely beneficial for civil and coastal engineers. The BKK system [14], which may also be
derived from the famous Kadomtsev-Petviashvili (KP) equation by the symmetry constraint,
which was used to model dispersive long gravity waves propagating in two horizontal direc-
tions in shallow water of uniform depth.

The rational, hyperbolic, trigonometric, singular, periodic, and singular solutions also
properly expressed the solitary patterns of the BKK equation [15]. The coupled time-fractional
BKK equation [16] was converted using numerous wave transformations for four distinct
operators into an ordinary differential equation, namely the beta derivative (BD) [17], M-trun-
cated derivatives (M-TD) [18], Local fractional derivative (L-FD) [19], and conformable deriv-
ative (CD) [20], each of which produces a non-linear algebraic equation system when the
technique is used. This was done in order to look at how fractional parameters affected the
equation’s soliton waves in a dynamic reaction.

For the analytical solutions in this study, the (2+1)-dimensional nonlinear coupled BKK
equation [13] had been used as follows:

a +2(aa,), +2b, =0,

tz ayyz

b, +b,, +2(ab), = 0.

The proposed equation in BD has the following form:

D;.a,—a,, +2(aa,), +2b, =0,

Db+ b, +2(ab), =0,

where Dj, is BD and ¢ is fractional parameter.
The proposed equation in M-TD has the following form:

Dila, — a,, +2(aa,), +2b, =0,

Db+ b, + 2(ab), = 0,

where D37, is M-TD and ¢ and & are fractional parameters.

PLOS ONE | https://doi.org/10.1371/journal.pone.0296640 January 31, 2024 2/26


https://doi.org/10.1371/journal.pone.0296640

PLOS ONE A dynamical behavior of the coupled Broer-Kaup-Kupershmidt equation

In L-FD, the proposed equation takes the following form:

N — @, +2(aa,), +2b,, = 0,

hypt™z yyz

Nippib + b, +2(ab), =0,
where N/ ,;W_t is L-FD and ¢ is fractional parameter.

In CD, the proposed equation has the following form:

D:a, —a, +2(aa),+2b, =0,

Wz

D:,b+b,, +2(ab), =0,

where D, is CD and ¢ is fractional parameter.

However, a wider range of physical issues required more intricate mathematical differentia-
tion operators. Fractional differentiation [21-27] and the notion of the fractal derivative have
been combined to form an innovative differentiation concept. As a result, several mathemati-
cians offered various types of fractional derivatives [28, 29]. The recently proposed derivatives
meet a variety of conditions that were previously believed to constitute limitations for frac-
tional derivatives and are utilised to portray various medical circumstances. The conformable
fractional derivative definition contains linearity, chain rule, Rolle’s theorem [30], product
rule, quotient rule, power rule, and mean value theorem in addition to being fundamental and
satisfying the most of the requirements for the ordinary integral derivative. The extended
tanh-coth approach and the Jacobi elliptic function method have been used to solve the (4+1)-
dimensional fractional Fokas equation (FFE) with a M-truncated derivative, yielding hyper-
bolic, trigonometric, elliptic, and rational fractional solutions [31]. This study aims to discover
soliton wave solutions for the given equation with various derivatives. The four substitute
derivatives, which strive to expand the usual derivative by incorporating some natural aspacts,
offer a novel approach for various NLPDEs [32].

It has proven possible to solve these non-linear PDEs using a variety of analytical tech-
niques. Instances include the F-expansion technique [33], the Nucci method [34], the RB-sub
ODE method [35], the modified auxiliary equation method [36], and many other techniques
used to solve PDEs. The Jacobi elliptic functions approach [37] has been used to create a num-
ber of multiple solitons for the new coupled Riemann wave equation [18]. The generalised Ber-
noulli (GB) sub-ODE [38] and the unified methods (UM) [39] are two additional incredibly
important techniques that have been used to interpret the given model. To the greatest extent
of our knowledge, neither the GB sub-ODE approach nor the UM have ever been used to solve
the aforementioned problem. For NLPDEs, reliable travelling wave solutions, peaked soliton
solutions, and multi-soliton wave solutions were the initial goals of the GB sub-ODE
approach.

UM [40] is a novel method for producing accurate DE solutions. It provides a practical
approach for dealing with NLEE results. This effective approach is being used to provide satis-
fying results and enable the discovery of outcomes for several issues that are cropping up in
practical mathematics and physics. Although approximation solution techniques may also be
used to construct a wide variety of travelling wave solutions, exact solution techniques are
more commonly used in the study of evolution equations.

The structure of the paper is as follows: Section 2 explains the fundamental concepts of
derivatives and their features. The transformations and a description of the process are pro-
vided in Section 3. The proposed approaches are mathematically described in Section 4. To
illustrate how the outcome might be physically understood, Section 5 includes graphics along
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with the computations. Section 6 provides a few concluding remarks to bring the study to a
close.

2. Preliminaries

This section discusses the definitions of derivatives as well as their basis characteristics. The
beta derivative (BD) is a improved conformable fractional derivative. The BD was initially
introduced by Atangana. A single-parameter Mittag-Leftler function [41] that also fulfills the
criteria of integer-order calculus is used in an M-fractional derivative (M-FD) that Sousa and
Oliveira introduced in 2017. This is why we are going to provide a truncated M-FD type that
combines the various fractional derivative types already in existence and also meets the classi-
cal properties of integer-order calculus. A unique solution for many FDEs is offered by the
conformable derivative (CD), which aims to raise the traditional derivative while satisfying
certain natural conditions. These derivatives can be thought of as a natural extension of the
classical derivative rather than fractional derivatives. We can see a change in the wave profile
by varying the value of the fractional parameter.

2.1 Beta derivative and its characteristics
Definition 1 The BD is another kind of conformable derivative [18], which can be described as:

h+eh+ ) —ph
fo,hp(h)Zlgig;P( ( 2”) ) p(), 0<c<l.

The BD has the following characteristics.
* D} (ma(h) + r&(h)) = m Dy,a(h) + rDy,E(h), Vm, r € R.
* Dy, (a(h) * E(h)) = <(h)Dj (k) + a(h) Dy, E(h).

o D L) Dt D, 0
B.h é(h) éZ(h) .

« A constant has a zero BD.
Dj,,(u) = 0, for any u constant.

2.2 M-truncated derivative and its characteristics
Definition 2 For the function p : [0, c0) — R of order ¢ € (0, 1), the M-TD [20] is defined, as

lim p(hE}(h™)) — p(h)

Dp(h) = - ,

(5 . . . . . .
for h > 0. Where E}(.), 6 > 0 is defined as a truncated Mittag-Leffler function with a single
parameter as follows:

J
hV
Eh) =) ———0.
i (h) ; I'(or+1)
The M-TD has the following characteristics.
o D3}, (mo(h) + ré(h)) = mD57,d(h) + D57, E(h), Vm, r € R.

» Dipy(a(h) * &(h)) = E(W)D5a(h) + a(h)Di & (h).
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Di? 1l _ & o) —a(h)DE e(h)
* PMh\Em [ T 20 .

« A differentiable function &(h) has the following M-TD:

<10 _ h'™ ﬁ
Diih) = r+1)dh

2.3 A Fractional Local-Derivative
Definition 3 The L-FD is defined as below for every 0 < t:

N o) — tim PSR Tsech(( =) —plh)

e—0 E

Ifthehlirfn+ Ny (p(h)) exists for p - [fo, fil — R with fo < h, It can be stated that

Jim N, (p()) = N, (p()).
and p is ¢-differentiable at fo with respect to N, (p(h)).
The L-FD also satisfies

(p(h)) = h%sech((l — g)h%)df;(h)’

o dh

hyp

in which p : [fo, 1] — R is differentiable for fo < h.

Moreover, theorems and characteristics relating to L-FD are discussed in [19]

2.4 Conformable derivative
Definition 4 For the function p : [0, co) — R, the CD of the order ¢ is written as:

Do) = limPEFE =0 )y

£e—0 E

If p has c-differentiability in any interval (0, q) with q > 0, then
D(p(0) = lim D:(p(h)),

as soon as the limit of the right hand side occur.
Moreover, in [42], CD-related theorems and characteristics are explanied.

3. Explication of the procedure

In this section, we employ the transformations of four distinct derivatives to convert the partial
differential equation into an ordinary differential equation. This allows us to apply the tech-
niques to determine the analytical solutions of the BKK system. Let

a(y,z,t) = A(n), b(y,z,t) = B(n), (6)
satisfy the following general equation:

T(a,a,a,,a,a,.4a,,a,,...... )=0,

2y Pz My Pyyy Yrzzy Pz
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which can be transformed into an O.D.E. as:

For the BKK equation, taking into account the wave transformations.
For BD, 7 has the subsequent form

n:dy—&-pz—&-g(t—i—%);- (7)

For M-TD, n has the subsequent form

re+1) .
n:dy+pz+sgt*. (8)
For L-FD, 7 has the subsequent form
n=d —&—pz—&—issinh((l—”)t%) (9)
y - S .
For CD, n has the subsequent form
S
n=dy+pz+-(t). (10)
S

Where the values of d, p and, s are any constants with p, d and, s # 0. By empolying the trans-
formations of Eq (7), together with Eq’s (8), (9) and (10) we have

psA” — d’pA” + 2dp(AA") + 2d°B" = 0,
(11)
sB' + d*B" + 2d(AB)' = 0.

Integrating twice the first equation of Eq (11) and taking the integration constants to zero, we
have

—psA _pA pA?
B) =S + 15~ 5 12

Now that we have integrated the second equation of Eq (11) and taking the integration con-
stant to zero, we have

sB+ d?B' + 2d(AB) = 0. (13)
Substitute Eq (12) into Eq (13), we have

d A" + d,A® + d,A* + d,A = 0, (14)

—pr g — s g s I dA
whered, =5 d,=-p,d; =5 d, =57, and A" = .

4. Mathematical description of the proposed methods

In this section, we employ a step-by-step procedure to solve the ODE of the BKK system and
find out the constant values to provide a physical description for analytical solutions.
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4.1 Unified method

The suggested expansion can be found in the general solution as follows [39]:
Al =¥+ Y [0, 0"+ ¢, () ). (15)
q=1

where v, and ¢, are arbitrary constants found later. Also u(77) can be obtained using the Ricatti
differential equation.

w(n) = w(n)+9, (16)

where ¢/ = d" . Solutions for the Eq (16) are discussed below.
Family 1 When d<o.
_\/—(H2+R:)$—HV=Jcosh(2vV=3(+B)) _ —+/—(H2+R2)9—Hv=Jcosh(2V=5(n+B))
/.L(ﬂ) - Hsinh(2v/—3(1+B))+R ,OT’,LL(]’]) - Hsinh(2v/—3(+B))+R ’

) = VI or

H+cosh(2v/—3(n+B))—sinh(2v/—3(1+B)) *

_ —2HV=§
ﬂ(’?) - 9 + H+cosh(2v/—3(n+B))—sinh(2v—3(y+B)) *

Family 2 When 9 > 0.
Y (H2+R2)9—H/3cos(2V/3(y+B))

_ —/(H2+R%)9—H/cos(2V/3(n+B))

,u(n) - Hsin(2vV/9(y+B))+R > ,u(r]) - Hsin(2V9(n+B))+R >
u(n) = V9 + —2HiV3 Loru(n) = —iV/I+ —2HiV/§

H-cos(2V9(y+B)) —1sin(2V3(4+B) )
Family 3 When 9 = 0.
uin) = — 5.
where H and R are real arbitrary constants, and B is any arbitrary constant.
The homogeneous balancing principle is used to balance the highest order derivative A”

and highest order nonlinear term A’ in Eq (14), which leads to n = 1.

A(n) =, + pomcoliy, () + ¢1(:“)_1

When each coefficient of u(n) is set to zero, the following set of algebraic equations results:

.“(’7)3 =2dy, + d2l//:;7

H-+cos(2V/3(n+B))—1sin(2V/9(n+B))"

n()” = (dy + 3dypo )7,
u(n)' =, (294, +d, + 2dp, + 3d, (Y5 + 6,,)),
u(n)’ = dp + dyry + dry + 2dy6, 0, + 6d,6, g,
uln) " = 6,(29d, + dy + 2dyphy + 3, (y + 619)),
n(n) ™ = ¢1(d; + 3dyhy).
un)™ = 29,6, + d,.
The equations above being resolved result in the following families:
Family 1 When
o ==, = 0.6, = 2L,

The following cases will occur:

s in/ d2p3(R+Hsinh(2v/—9(B+1)))

szt =g \/—_p(q/(—HZ—RQ).9—H\/:_.§cosh(2\/:_-§(3+;1))) ’

s i/ d2p9(R+Hsinh(2v/—3(B+1)))

. a]yQ(yv Z; t) = — by \/17(7 ’——(7H27R2)9—H\/—_Scosh (2@(3+ﬂ))) )
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in/d2p9
al.:%(y>zv t) = _ﬁ_ \/—P ) )

— Yot 2HV=§
VP ( 4 H-+cosh(2v/—=3(B+1))—sinh(2v/—3(B+1))

) iy/d2p9

a1_4(}/,Z,t>=—ﬁ— e )
— -/ =9 -
i 7 Hetcosh(2V/=9(B+1))—sinh(2V—9(B+n))
s in/d2p3(R+H sin(2V3(B+)))

a, (y,z,t) = —=-
1"’(})’ 1) 2/ (H2R2)9-HVE cos(2V/3(B+))

a ( 2 t) s in/d2p3(R+H sin(2V3(B+1)))
e\ 5= T VB (H2-R2)$-HVT cos(2v/3(B+n))’

. iy/dpY

‘11.7(}’»75, t) = T2a 2HV=9 ,
V=P (l\/j H+ cos[2\/§(3+'7)]’; sinf2v/B(B-+1)
7 . i\/ES
a5(2:8) = =55 = B .
V=P (7'\/6 ‘l H+ cos[2\/5(3+'1>]*li Si“[Z\/g(BH’)])

Family 2 When

Vo=t =~ g = A
0 1 \/d: 1

d
3dy ) \/d'Z :
The following cases will occur:

s i\/@(\/(—HZ—RZ)S—H\/—_()cosh(?x/—_S(B+t7))) _

2d \/__p(R+H sinh(zx/fﬁ(BM)))
ay,(y,z,1) =
iﬁ;s (R+H sinh(Zm(3+’7)))
H(mffl\/f_{) cosh(2m(3+’7))) ’
i@/ o2y B
2d H(HH sinh<2\/?§<3+n>>)
ay5(y,2,t) =

B in/dpy (R+H sinh(2¢f9(3+n)>)
\/:;(7, /(—H2_R2)3—H\/=> cosh(zﬂ(3+n))) ’

. in/dp9
T

= V=39 2HV =3
\/_P( H+ cosh(2V/—9(B+1))— sinh(2\/:—§(B+r1)))

NN Wt 2HY=§
v P( ’ H+ cosh(2V=9(B+n))— sinh(2\/:§(B+r1))>
Ve 7
B in/d%py

— /=9 2HV =3
‘/_p< " H+ cosh(2v/=v(B+n))— sinh(z\/—_9(3+y,)))

a?,S(yv z, t) =

“2,4()’7 Z; t) =
: : 3 2Hy/=v
iy &p (7\/: Ht cosh(2v/—9(B1))— sinh(2\/——H(B+17))>
N )
B in/d2p (\ /(H2+R2)9—HVS cos(z\/§(3+n)))
2 \/—_p(RJrH si.n(2\/§(3+t])))

ay5(y,2,t) =
B i\/.ﬁ;s(km sin(2\/§(3+n)))

\/3(\ J(H2+R2)9—HV cos(?\/§(8+)7))) ’
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. 1\/35;(7, /(H2—R2)9-HV cos(2\/§(B+fl)))

H(R-%—H sin(2\/§(3+’7)))

in/dp8 (R+H sin(Z\/§(B+ﬂ)))
\/IE(—\ /(H2—R2)9—HV/3 cos(2\/§(3+n))) ’

T od

® a2.6(y7 2, t) =

T 2iHV=9
\/TP <l\/j H+ cos(2v/3(B+n))—i sin(?x/g(BJrr])))

Y 2iHV=9
v p(l\/— H+ cos(2V3(B+n))—i sin(2\/§(B+n))>

° a2,7(y7 z, t) =

S

)

3

. iy/dp9
T2

N= (—i\/ﬁ 2iHV=3 )

H+ cos(2V3(B-+n))—i sin(2V3(B+1))

in/d2p| —i 2iHV=3
in/d p( i H+ cos(2V9(B+1))—i sin(z\/ﬁ(m”)))
= :

® QQ.S(}}? 2, t) =

Family 3 When
d iv24/d
lp() = _ﬁalpl = _%7¢1 =0.

The following cases will occur:

B i\/@(\ /(“H2_R%)9-HV—3 cosh(2@(3+ﬂ)))

— _ s
* as,l(y’ z t) Y /=P(R+H sinh(2v/—3(B+1))) ’
i/ @p(—/CHR)5-HVT cosh2vT(B+n)))
« ay,(y2,0) = =5 — PR+ H sinh(2V/—8(B+1))) )
s 2HV=3
- s i/ dp <\/_u H+ cosh(2V/—3(B+1))— mh(m/ﬁ(m@))
'aS,S(yrzat)__ﬁ_ Nai ’
: 2HV—9
! &p (7\/_‘0 Ht cosh(2v/—9(B+))— sinh(zx/—_:;(sw)))
'03’4(}/,2,1')——%— N )
iy /dzp(\ / (H2+R2)9—HV3 cos(2\/§(3+ﬂ)))
* a5 (% Z, t) — T2 VP(R+H sin(2vV/3(B+))) ?
N in/@p( /(P R2)9-HVE cos(2VB(B+1)))
cay5(0,2,t) = =5 — JP(RLH sin(2V/3(B11)) ’
Y 2iHV=3
! &p (“ﬁ Ht cos(2V/8(B )i m(z\/ﬁ(mn)))
061&7(}/,2,1')——%— N=7 ’
. 2iHV=9
! &p (7“/6 Ht cos(2Va(B)—i sm(zﬁ(mq)))
° a:,.g(y,z,t)——ﬁ— Nei .
Family 4 When

lﬂ _—d—BW _iﬂ\/;;(b __i\/i‘i\/d‘l
0 3dy 7 71 T \/‘g P T \/E .
The following cases will occur:

i\/ﬁ;(\/ (~H2—R2)9-HV=3 cosh(2/j9(B+r7))) _

V=P(R+H sinh[2v/—3(B+ny,z.t))])

in/d2ps (R+H sinh(zﬂ(3+;;)))
VB (~H2—R%)9—HV=F cosh(2v=9(B+n)))

-5+
* a4_1(y,z, t) =
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B in/dp (7, /(—H2—R2)9—HV—3 cosh(?\/—_3(8+fl)>)
5t V=P(R+H sinh[2v/—3(B-+[y,z,1])]) B

o qa z,t) =
4'2(}}, ’ ) i d2p9(R+H sinh(zﬁ<s+n>))

V(= (—H2—R2)9—HV/=F cosh(2v/=3(B+n)))
R in/d%p8
T od

+
H(\/—Q 2HV—9 )

H+ cosh(2V/—3(B+1))— sinh(2v/—3(B+7))

® a4.3(y,z, t) =
Y e 2HV 8
v P( o @B ) sinh(Z\/—_-’)(Bﬂ])))

v '
R in/d?p9
2 W 2HV =3 +
— — 9 —u
VP H+ cosh(2V/—9(B+1))— sinh(2v/—3(B+1))
s a,(y,z1) =
Y 2HV=3
v P( V=g H+ cosh(2V/=8(B+1))— sinh(Z\/—_S(Bﬂy)))
VP ’
sy in/d2p(+/ (H2+R2)9—HVS cos(2V3(B+1))) .
2d V=P(R+H sin(2V3(B+1)))

e a,.(y,z,t) =
(021 in/RpS(R+H sin(2v/3(B+n))

VP (H2+R2)9-HVF cos(2V3(B+n))

R in/ d2p(—+/ (H2+R2)9—HV cos(2V3(B+1))) _

% /=p(R+H sin(?\/§(3+’7)))

o 4, zZ,t) =
w(2:2:0) in/@pS(R+H sin(2v/3(B+1)))

V(= (H24R2)9-HVT cos(2v/3(B+n)))
R in/d?p9
T od

- +
N (iﬁ 2iHV—3 )

H+ cos(2V/3(B+))—i sin(2vV/3(B+))
s 2iHV=9
i dp (l\/j H+ cos(2\/§(B+r]))—i sin(2\/§(8+n))>
Ve )
s in/d%p8 +
2 NG 2iHV=3
5| —iV3 =5
P\ Y T s aa(B )i sm(2v/aB )

i Si2o | —iv/3 2iHV =3
W &p ( s Ht cos(2Va(B+n))—i sin(2\/§(ﬂ+i7)))
N :

° 44,7(}’7 Z, t) =

° 6‘4‘8(}’7 2, t) =

Now, by using the values of A(7) from the above equations, we can find the values of b(y, z,
t) for each of the cases mentioned above.
_ —psA  pA'  pA?

bnat) =t~ o

4.2 GB sub-ODE method

The general solution has the given expansion in the form of the GB sub-ODE method [43] as
follows:

Al = b, (w7, (17)
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where y, are arbitrary constants. and y = u(n) satisfies the following equation:
W=’ —op, (18)

where o # 0, Eq (18) is a specific type of Bernoulli equation, and we can find the solution as

uln) = —% (tanh(gn) - 1), or u(n) = —% (coth(gn) - 1).

Balancing the order of A” and A’ appearing in Eq (14), we have n = 1. Consequently, the solu-
tion to Eq (14) assumes the following form in accordance with the sub-ODE technique rule.

A(n) =, + Y1 (19)

The following set of algebraic equations produced by putting Eqs (18) and (19) into Eq (14),
combining all the terms to the similar power of u(7) and setting each exponent to zero is as fol-

lows:
ﬂ(’])o = d4lﬁ0 + d;;lllﬁ + leljé,
M(’?)l = (0%d, +d, + Wo(2dy + 3o
#(’7)2 =, (=300d, + (d; + 3d,,)¥,),
ﬂ(’])g = 20<2d1lﬁ1 + d2lﬁ5f.
Set 1 When

(330 /A \/dy+2idy) W/
y = IRy WP

i (—ifﬁ’)\/——p\/@zf) + i\/dTp(r(—l-%—tanh (%rm))
6p

N ’

i(—m%ﬁﬁ d2pa) ‘i\/gz‘pa(flﬁ»!anh(%))
ip dQPGZSech(%)Z Gp ' 2P

8/~ 242

p< i(—iﬁ%ﬁi\/—_p d2pu) Ii\/ga(umnh(‘;—”)))i)

* al.l(yvza t) =

ps

° bl,l(yv z, t) =

@ ' 7
2d ’

i (73%4&3\/7_1)\/@0) + i\/x;}‘w(fprcoth(%an))
6p

W ’

i al,Q(vaa t)=—

2V-p
- 242 -
o b ,(y,2,t) =
L i(—m%ﬂﬁ d2pa)li\/al§;o(—1+colh(a—2")) ’
ip d2p02Csch(l)2

( i(f%wﬁ d2pa) i\/@n(wcoth(%)))
ps - :

Gp ' 2/
2d 8y/=p

Set 2 When
_i(3V20y/dy\/dy +2id3) a4
‘po - 6dy 7lp1 - \/E :

) i(*m%+3\/7_p\/@a) . i\/tﬁ}’)y(*l#»taﬂh(%ﬂ]))
Gp

° az,l(yvzat = 2/ )
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i(ﬁ’%uﬁ d2pa) i\/dz_pa(—lvtanh(%”))
ip dzpazsm:(%)2 ps W Vp
B SVP B p¥2 -
o by, (y,2,1) = ,
<‘ (*st”ﬁ 4217”) i\/@ﬂ(—lﬂanh(%’) ))
p 6p 2/-p
2d )
i _M‘H;\/—_P &pe in/d%pa( —1+coth Lo
+ apy (v = CETVE) (o))

(i (73%4&3\/5 d217o') 1\/41_2;0(—I+c0th(%) ))
ps p 2D

242

i(—si—fﬁs\/——p d2pa) l\/dz_pn(—l+cotll(%ﬂ)) ’
’ op ip dZPUZCSCh(%”)Q

* b2,2(y7 z,t) =

2/=p
2d V=1

5. Graphical portrayal and interpretation

In this paper, the conformable, local-fractional, beta, and M-truncated derivative operators
were used to solve the nonlinear coupled BKK equation analytically. The solutions were
attained by employing the effective methods known as Unified and GB sub-ODE. The explora-
tion offers certain distinctive wave solutions. To explain the mathematical and physical impli-
cations of waves, the variety of obtained wave solutions is depicted. Solitary waves can be
created using the aforementioned methods in a number of different shapes, such as a single-
wave solitons see Fig 1, extended v-shaped solitons see Fig 3, singular soliton given in Fig 4,
compressed bell-shaped solitons in Fig 5, W-shaped solitons in Fig 6, and periodic-shaped soli-
tons solutions in Fig 7. Two-dimensional line graphs that compare various derivatives, such as
conformable, local fractional, beta, and M-TDs, are very informative. Relating the 2D and 3D
graphs of a; 1(y, z, t), a1 5(y, z, t) and a; 3(y, 2, t), respectively, provided the single wave, bright
wave form and expanded v-shaped solutions for the values H=0.5, R = 3.5, 9 =4, B=0.5,
d=0.1,s=0.09, p = 1.5, within the bound —-10.0 < y <10.0, 0 < ¢ < 10 for 3-dimensional
shapes and time = 1.0 for 2-dimensional graphs, as given in Figs 1-3 demonstrated by UM.

Figs 4 and 5 provide the singular wave and compressed bell-shaped wave soliton 3D solu-
tions of a, 4(y, z, t) and b, 5(y, z, ) for the values H=10.5,R=0.5,9=8,B=1.5,d=0.1,
5=0.009 and 2-dimensional graphs at t = 1.0 in the range -5 < y < 5,0 <t < 2 by UM. Solu-
tions for the hyperbolic and trigonometric functions in as,(y, z, t) and bs ;(y, z, t) being we
obtain the w-shaped soliton and periodic wave solutions, respectively, by selecting the values
H=0.05R=4.5,9=10,B=0.5d=-0.1,s =0.009, p = —1.5, within the bound —10.0 <
y<10.0,0 <t <10, and t = 1.0 for 2D plots in Figs 6 and 7 demonstrated by UM.

Concerning the 3D and 2D graphs of a4 4(y, z, t) and by s(y, z, 1), respectively, provided the
alphabetical-shaped wave and squeezed bell-shaped periodic wave solutions for the parameters
H=0.05R=0.9,9=6,B=25,d=0.1,s=0.01, p = 0.5, within the range —20.0 < y < 20.0,0
<t < 2 for 3D shapes and t = 1.0 for 2D plots, as shown in Figs 8 and 9 by UM. In Figs 10 and
11 the trigonometric and hyperbolic solutions of a, (y, z, t) and b, ;(y, z, t), we acquire the
bell-shaped and W-shaped soliton wave solutions consequently, by selecting the values o= 0.5,
d=-2.5,5=0.002, p = 10, inside the bound -10.0 < y < 10.0,0 < t < 5, and time = 1.0 for
2-dimensional graph by GB sub-ODE method.
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© (d) _

t t

Fig 1. Single wave type shape solution of a; ;(y, 1, t) by UM, (a) 3D plot, (b): Contour plot, when H=0.5,R=3.5,9=4,
B=0.5d=0.1,s=0.09, p = 1.5, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9 (purple), (d): M-TD in 2D
at different values of ¢=0.5,6=0.25(red),c=0.75, 6=0.5(blue),c=0.9,6=0.75(purple), (¢): CD in 2D at different values of c=0.45,
(red),c=0.65(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢c=0.5(red),c=0.75(blue),c=0.9(purple), (g): A
comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.9001
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Fig 2. Bright wave form solution of a, 5(y, 1, £) by UM, (a) 3D plot, (b): Contour plot, when H=0.5,R=3.5,9=7,B=0.5,
d=0.1,s=0.09, p=4.5, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9 (purple), (d): M-TD in 2D at
different values of ¢=0.5,6=0.25(red),=0.75, 6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different values of ¢=0.45,(red),
¢=0.65(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢=0.5(red),c=0.75(blue),c=0.9 (purple), (g): A comparison of
BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g002
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Fig 3. Expanded V-shaped solution of a, 4(y, 1, t) by UM, (a) 3D plot, (b): Contour plot, when H=10.5,R=0.5,9=8,B=1.5,
d=0.1,s=0.009, p= 0.5, (c): BD in 2D at different values of ¢c=0.45(red),c=0.65(blue),c=0.9 (purple), (d): M-TD in 2D at
different values of ¢=0.5,6=0.25(red),c=0.75, 6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different values of ¢=0.45,(red),
¢=0.65(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢=0.5(red),c=0.75(blue),c=0.9 (purple), (g): A comparison of BD
(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.9003
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Fig 4. Singular wave type solution of a, 4(y, 1, t) by UM, (a) 3D plot, (b): Contour plot, when H=10.5,R=0.5,9=8,B=1.5,
d=0.1,s=0.009, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9 (purple), (d): M-TD in 2D at different
values of ¢=0.5,6=0.25(red),c=0.75,6=0.5(blue),c=0.9,6=0.75(purple), (¢): CD in 2D at different values of ¢c=0.45,(red),c=0.65
(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢=0.5(red),c=0.75(blue),c=0.9 (purple), (g): A comparison of BD
(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g004
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Fig 5. Compressed bell-shaped wave form solution of b, 5(y, 1, ) by UM, (a) 3D plot, (b): Contour plot, when H=6.5,R=0.7, 9
=6,B=1.5,d=0.1,s=0.09, p=0.5, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9 (purple), (d): M-TD in
2D at different values of ¢=0.5,6=0.25(red),c=0.75, 6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different values of ¢c=0.45,
(red),c=0.65(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢=0.5(red),c=0.75(blue),c=0.9 (purple), (g): A
comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g005
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Fig 6. Alphabetical-shaped wave type solution of a3 (y, 1, ) by UM,(a) 3D plot, (b): Contour plot, when H = 0.05, R = 4.5, 9
=10,B=0.5,d =-0.1,5s =0.009, p = - 1.5, (¢): BD in 2D at different values of c=0.45(red),c=0.65(blue),c=0.9 (purple), (d):
M-TD in 2D at different values of ¢=0.5,6=0.25(red),c=0.75,6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different
values of ¢=0.45,(red),c=0.65(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢c=0.45(red),c=0.65(blue),c=0.9
(purple), (g): A comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.9006
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Fig 7. Periodic wave form solution of b; ;(y, 1, t) by UM, (a) 3D plot, (b): Contour plot, when H=6.5,R=0.5,9=6,B =15,
d=0.1,s=0.05, p=0.05, (c): BD in 2D at different values of ¢c=0.45(red),c=0.65(blue),c=0.9 (purple), (d): M-TD in 2D at
different values of ¢=0.5,6=0.25(red),=0.75,6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different values of ¢c=0.45,
(red),c=0.65(blue),c=0.9 (purple), (f): L-FD in 2D at different values of ¢c=0.5(red),c=0.75(blue),c=0.9(purple), (g): A
comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g007
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Fig 8. W-shaped wave form solution of a4 4(y, 1, t) by UM, (a): 3D plot, (b): Contour plot, when H = 0.05, R=0.9, 9 =6,
B=2.5,d=0.1,s=0.01, p= 0.5, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9(purple), (d): M-TD in 2D
at different values of ¢=0.5,6=0.25(red),c=0.75,6=0.5(blue),c=0.9,6=0.75(purple), (¢): CD in 2D at different values of c=0.45,
(red),c=0.65(blue),c=0.9(purple), (f): L-FD in 2D at different values of c=0.5(red),c=0.75(blue),c=0.9(purple), (g): A
comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g008
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Fig 9. Squeezed bell-shaped periodic oscillating type solution of bys(y, 1, t) by UM, (a): 3D plot, (b): Contour plot, when
H=0.05R=0.9,9=6,B=2.5,d=0.1,s =0.01,p = 0.5, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9
(purple), (d): M-TD in 2D at different values of ¢=0.5, 6=0.25(red), ¢=0.75, 6=0.5(blue), c=0.9, 6=0.75(purple), (¢): CD in
2D at different values of ¢=0.45(red), c=0.65(blue), ¢=0.9(purple), (f): L-FD in 2D at different values of ¢=0.5(red), c=0.75
(blue), c=0.9(purple), (g): A comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g009
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Fig 10. Downward bell-shaped wave solution of a, ,(y, 1, t) by GB sub-ODE method, (a) 3D plot, (b): Contour plot,
when 0=0.5,d =2.5,5=0.02, p =1, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9(purple), (d):
M-TD in 2D at different values of ¢=0.5,6=0.25(red),c=0.75, 6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different
values of ¢=0.45,(red),c=0.65(blue),c=0.9(purple), (f): L-FD in 2D at different values of ¢=0.5(red),c=0.75(blue),c=0.9
(purple), (g): A comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g010
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Fig 11. Compressed w-shaped wave solution of b (y, 1, t) by GB sub-ODE method, (a): 3D plot, (b): Contour plot, when
0=0.5,d = —2.5,5 =0.002, p = 10, (c): BD in 2D at different values of ¢=0.45(red),c=0.65(blue),c=0.9(purple), (d): M-TD in
2D at different values of ¢=0.5,6=0.25(red),c=0.75, 6=0.5(blue),c=0.9,6=0.75(purple), (e): CD in 2D at different values of
¢=0.45,(red),c=0.65(blue),c=0.9(purple), (f): L-FD in 2D at different values of ¢=0.5(red),c=0.75(blue),c=0.9(purple), (g): A
comparison of BD(red), L-FD(green), M-TD(yellow) and CD(purple) at ¢ = 0.5.

https://doi.org/10.1371/journal.pone.0296640.g011
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6. Conclusions

In this article, the Unified and GB sub-ODE approaches have been used to investigate the non-
linear coupled Broer-Kaup-Kupershmidt (BKK) system, and we have confirmed some bright
soliton, squeezed bell-shaped soliton, expanded v-shaped soliton, W-shaped soliton, singular
soliton, and periodic solutions in terms of hyperbolic, rational, and trigonometric functions
using the definitions of derivatives, i.e. beta, M-truncated, local-fractional, and conformable.
In order to illustrate the compatibility of the solutions, figurative representations of some of
the obtained solutions have been plotted in both two- and three-dimensional formats using
independent values of the unknown parameters. We may better comprehend the dynamical
properties and structures of these solutions by using the contour diagrams. In this paper, the
comparison of four derivatives has been investigated. These derivatives are compared on a 2D
line graph, which is quite instructive. According to the investigation, altering the quantities of
fractional parameters has an impact on the soliton wave solutions; however, M-TD is regarded
as more effective since a smooth wave has been seen while changing its parameter values. This
function is extremely useful and effective. Better results than with other derivatives are
achieved because smooth waves are produced by the Mittag-Leffler function of one parameter.
The researcher may employ them in future instances as well. Future research on solving
NLEEs, which have a high level of effectiveness in the nonlinear field of science and engineer-
ing, may find this work helpful in terms of approaches and precision of solutions. We can also
consider BKK equation with stochastic term. In order to better understand the fluid dynamics
of plasmic, optical, dispersive, and nonlinear long gravity waves, the recently discovered
results, which were discovered utilising a several kinds of dynamical structures and free vari-
ables, are thought to be extremely beneficial.
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