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Abstract

Machine learning was shown to be effective at identifying distinctive genomic signatures

among viral sequences. These signatures are defined as pervasive motifs in the viral

genome that allow discrimination between species or variants. In the context of SARS-CoV-

2, the identification of these signatures can assist in taxonomic and phylogenetic studies,

improve in the recognition and definition of emerging variants, and aid in the characterization

of functional properties of polymorphic gene products. In this paper, we assess KEVOLVE,

an approach based on a genetic algorithm with a machine-learning kernel, to identify multi-

ple genomic signatures based on minimal sets of k-mers. In a comparative study, in which

we analyzed large SARS-CoV-2 genome dataset, KEVOLVE was more effective at identify-

ing variant-discriminative signatures than several gold-standard statistical tools. Subse-

quently, these signatures were characterized using a new extension of KEVOLVE

(KANALYZER) to highlight variations of the discriminative signatures among different clas-

ses of variants, their genomic location, and the mutations involved. The majority of identified

signatures were associated with known mutations among the different variants, in terms of

functional and pathological impact based on available literature. Here we showed that

KEVOLVE is a robust machine learning approach to identify discriminative signatures

among SARS-CoV-2 variants, which are frequently also biologically relevant, while bypass-

ing multiple sequence alignments. The source code of the method and additional resources

are available at: https://github.com/bioinfoUQAM/KEVOLVE.

Introduction

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the etiological agent of coro-

navirus disease 2019 (COVID-19). This highly infectious coronavirus was first identified in

December 2019 in Wuhan, China [1]. It belongs to the betacoronavirus genus, which includes
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SARS-CoV-1 and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [2].

The genome of SARS-CoV-2 is a single-stranded RNA molecule composed of approximately

30,000 nucleotides. The nucleotide sequence identity of SARS-CoV-2 with SARS-CoV-1 and

MERS-CoV is 79.5% and 50%, respectively [3, 4]. The SARS-CoV-2 genome encodes 29 differ-

ent proteins, including 16 nonstructural proteins, 4 structural proteins, and 9 accessory pro-

teins (see Fig 1 adapted from [5]). The N (nucleocapsid) protein contains the viral RNA

genome, while the S (spike), E (envelope), and M (membrane) proteins together form the viral

envelope [6]. SARS-CoV-2 exhibits a notably high mutation rate, with numerous mutations—

particularly in the spike gene—correlated to increased SARS-CoV-2 transmission rates [7],

augmented fusogenic and pathogenic properties of the virus [8], as well as the emergence of

new variants that could diminish the efficacy of existing COVID-19 vaccines and antibody-

based therapies [9].

Given its rapid rate of evolution, it is important to be able to efficiently identify genomic

signatures that can distinguish between different variants of SARS-CoV-2 and highlight poten-

tial functional changes. These signatures, also known as species- or variant-specific motifs that

are prevalent throughout the viral genome [10], can contribute to taxonomic [11] and phyloge-

netic [12] studies to differentiate distinct groups of variants, provide insight into their evolu-

tionary history [10], help to understand the structure of the viral quasispecies [13], and

facilitate mechanistic studies to determine the functional basis of variant-specific differences

in virulence [14]. To identify discriminative motifs, or genomic signatures, among different

groups of biological sequences, the traditional approach is to compute multiple sequence align-

ments using tools such as MUSCLE [15], Clustal W/X [16], or MAFFT [17]. These alignments

are then analyzed to identify divergent genomic regions that constitute the discriminative

motifs. However, multiple alignment approaches have significant limitations when applied to

viral genomes [14].

First, alignment-based approaches are generally computationally and time-intensive, mak-

ing them less well suited for dealing with large viral sequence datasets that are increasingly

available [18]. In fact, computing an accurate multi-sequence alignment is an NP-hard prob-

lem with (2N)!/(N!)2 possible alignments for two sequences of length N [19], which means that

in some cases, the alignment cannot be solved within a realistic time frame or involves signifi-

cant compromise in accuracy [17]. Even with dynamic programming, the time requirement is

on the order of the product of the lengths of the input sequences [20]. Second, alignment algo-

rithms assume that homologous sequences consist of a series of more or less conserved linearly

arranged sequence segments. However, this assumption, named collinearity, is often

Fig 1. SARS-CoV-2 genome organization. Four structural proteins (red), 16 non-structural proteins (NSPs; blue),

and 9 accessory factors (green) are shown. ORFs (open reading frames; yellow) 1a and 1b encode polyproteins. The

protein sequence similarity with SARS-CoV homologues (when homologues exist) is depicted by the color intensity.

https://doi.org/10.1371/journal.pone.0296627.g001
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questionable, especially for RNA viruses [21]. This is because RNA viruses show extensive

genetic variation due to high mutation rates, as well as high frequencies of genetic recombina-

tion, horizontal gene transfer, and gene duplication, leading to the gain or the loss of genetic

material [22]. Finally, performing multiple alignments often requires adjusting several param-

eters, such as substitution matrices, deviation penalties, and thresholds for statistical parame-

ters, which are dependent on prior knowledge about the evolution of the compared sequences

[21]. However, the adjustment of these parameters is sometimes arbitrary and requires a trial-

and-error approach, and research has shown that small variations in these parameters can sig-

nificantly impact the quality of alignments [23].

To address the limitations of discriminative motif identification using multiple sequence

alignment, specialized statistical-based tools were developed, such as MEME [24, 25]. MEME

has a discriminative mode [26] that identifies enriched motifs that distinguish a primary set of

sequences from a control set. Other MEME tools were also developed, including STREME

[27], the most powerful tool for discovering motifs in sequence datasets. STREME uses a gen-

eralized suffix tree and evaluates motifs using a statistical test that compares the enrichment of

matches to the motif in the primary set of sequences to the control set [27]. In recent years, a

series of machine-learning techniques were developed and widely used in the field of geno-

mics, and were proven to be highly effective for solving complex and large-scale data analysis

problems [28]. For example, the CASTOR study [29] demonstrated the usefulness of machine

learning models coupled with restriction fragment length polymorphism (RFLP) signatures

for classifying viral genomic sequences, achieving f1-scores� 0.99 for predicting hepatitis B

virus and human papillomavirus genomes. However, these signatures were found to have limi-

tations in predicting human immunodeficiency viruses (HIV) sequences, resulting in an

f1-score� 0.90. To address this issue, the KAMERIS study [30] used k-mers (nucleotide subse-

quences of length k) to characterize the sequences provided to the learning model. To reduce

the exponential number of features (4k) associated with k-mers, KAMERIS applied truncated

singular value decomposition for dimensionality reduction, but this transformation affected

the ability to identify and analyze relevant features identified by the machine-learning model

for discriminating between groups of sequences.

In response to this challenge, CASTOR-KRFE [31] was developed as a method for identify-

ing minimal sets of genomic signatures based on minimal sets of k-mers to discriminate

among multiple groups of genomic sequences. During cross-validation evaluations covering a

wide range of viruses, CASTOR-KRFE successfully identified minimal sets of motifs, which

when combined with supervised learning algorithms, resulted in average f1-scores� 0.96 [31].

However, this study was limited to identifying the optimal set of motifs, rather than exploring

suboptimal sets in the feature space, which can be a major limitation when dealing with viral

sequences with high genomic diversity or when attempting to infer biological functions based

on the identified motifs. To overcome this limitation, KEVOLVE [32] was developed as a new

method that uses a genetic algorithm incorporating a machine-learning kernel to identify mul-

tiple minimal subsets of discriminative motifs. A preliminary comparative study on HIV

nucleotide sequences showed that the KEVOLVE-identified motifs allowed for the construc-

tion of models that outperformed specialized HIV prediction tools [32]. In the context of the

COVID-19 pandemic, this paper assessed the performance of KEVOLVE in a comparative

study with several reference tools (MEME, STREME, and CASTOR-KRFE) for identifying dis-

criminative motifs in the genomes of SARS-CoV-2 variants. The identified motifs were then

analyzed using the new KEVOLVE extension (KANALYZER) to extract the associated infor-

mation, and this information, which is discussed in light of the available literature to highlight

the potential biological functions of the sequences/motifs in question.
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Materials and methods

To assess the accuracy of KEVOLVE in identifying discriminative motifs, we conducted a

comparative study with specialized tools. This involved using each tool to identify a subset of

discriminating motifs in a set of training sequences of SARS-CoV-2 variants. These sets of

motifs were designed to provide genomic signatures specific to each variant. In a second step,

we used these signatures and a supervised learning algorithm to fit a prediction model on the

training sequences. Then, we evaluated the quality of the signatures by predicting the trained

models on a large test set of unknown sequences. Finally, we used KANALYZER, the latest

extension of KEVOLVE, to analyze the variant-discriminative motifs identified by KEVOLVE

and assess their potential functional impact based on their location in the genome, as previ-

ously described in the literature.

Discriminative motif identification tools

We first evaluated KEVOLVE [32], a machine learning method based on a genetic algorithm

for identifying multiple minimal sets of k-mers to discriminate nucleotide sequences.

KEVOLVE takes as input a set of labeled nucleotide sequences and a parameter k, which corre-

sponds to the length of the k-mers used to represent the sequences in an occurrence matrix.

KEVOLVE starts by using a meta-transformer to remove k-mers with low discriminative con-

tribution based on importance weights assigned by a linear Support Vector Machine (SVM).

Then, the genetic algorithm begins its search by initializing several subsets (chromosomes)

composed of a reduced set of k-mers (genes). Each chromosome is evaluated in a cross-valida-

tion process where prediction models are trained and tested on nucleotide sequences repre-

sented by the genes in the chromosome. The chromosomes with the best scores are then

subjected to mutation/crossover processes. The mutation process involves randomly substitut-

ing a gene with another within a chromosome, and the crossover process involves exchanging

genes between different chromosomes. In addition, the genes in the best chromosome have an

increased probability of being selected in the next iteration. The next generation is then com-

posed of the best current chromosomes and new chromosomes, which are generated based on

the updated probability of selection. This process is repeated and coupled with a progressive

increase in chromosome size until a stopping criterion is met (number of iterations or perfor-

mance score of the solutions). The detailed KEVOLVE pseudo code is available in the original

article [32], and the algorithm code can be accessed in the GitHub repository.

The second tool we evaluated was CASTOR-KRFE [31], an alignment-free machine learn-

ing approach for identifying a set of genomic signatures based on k-mers to discriminate

between groups of nucleic acid sequences. The core of CASTOR-KRFE is based on feature

elimination using SVM (SVM-RFE). It identifies the optimal length of k to maximize classifi-

cation performance and minimize the number of features, providing a solution to the problem

of identifying the optimal length of k-mers for genomic sequence classification [33]. The third

tool we evaluated was MEME (discriminative mode) [26], a tool from the MEME suite [25]

specialized in motif identification. MEME takes two sets of sequences as input and identifies

enriched motifs that discriminate the primary set from the control set. By default, MEME

assumes that all positions in the sequences have an equal chance of being a motif site. How-

ever, in discriminative mode, the algorithm uses additional information such as sequence con-

servation, nucleosome positioning, and negative examples to compute a measure of the

probability that a discriminative motif starts at each position in each sequence [26]. This mea-

sure, called “position specific prior” (PSP), is then used to guide the sequence motif discovery

algorithm in the primary set, resulting in motifs that are more likely to discriminate it from the

control set [34]. MEME also allows for the specification of a potential motif distribution type
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to improve the sensitivity and quality of the motif search. There are two available options in

discriminative mode: zero or one occurrence per sequence (ZOOPS), where MEME assumes

that each sequence may contain at most one occurrence of each motif, and one occurrence per

sequence (OOPS), where MEME assumes that each sequence in the dataset contains exactly

one occurrence of each motif. The last tool we evaluated was STREME [27], which was found

to be more accurate, sensitive, and thorough than several widely used algorithms in a recent

comparative study [27]. STREME’s algorithm uses a data structure called a generalized suffix

tree and evaluates motifs using a one-sided statistical test of the enrichment of matches to the

motif in a primary set of sequences compared to a control set. STREME assumes that each pri-

mary sequence may contain ZOOPS of the motif, but the discovery of the motif will not be

negatively affected if a primary sequence contains more than one occurrence.

Dataset

To set up the most comprehensive evaluation framework possible, we built a dataset of

334,956 SARS-CoV-2 genomes representing the different variants defined by the World

Health Organization (WHO) with at least 100 available sequences. The sequences for this data-

set, covering variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Kappa

(B.1.617.1), Epsilon (B.1.427/B.1.427), Iota (B.1.526), Eta (B.1.525), Lambda (C.37), and Omi-

cron (B.1.1.529/BA.x), were downloaded on November 1, 2022 from the NCBI database [35]

using their command line data download tool (https://www.ncbi.nlm.nih.gov/datasets/docs/

v2/how-tos/virus/get-sars2-genomes/). We only included complete genomes with high cover-

age (less than 1% missing nucleotides) in our dataset (Table 1), and the list of accession ids for

the sequences used in our different datasets is available on our GitHub repository.

Benchmarking. We assessed the performance of the different tools to identify discrimina-

tive motifs using an established approach [31]. We performed a repeated K-fold evaluation 100

times with a different randomization at each repetition. For each iteration, 2,500 sequences

were used to form a training set and the rest (332,456) were used as a testing set. In the training

set, the variants were represented by 250 sequences, with the exception of Kappa, which was

represented by 100 sequences due to the low number of available sequences. Alpha and Omi-

cron were each represented by 350 and 300 sequences, respectively, due to the large number of

available sequences. At each iteration, the training sets were given as input to each tool to iden-

tify the motifs that discriminate the sequences of the variants. The identified motifs, along with

the training sequences, were used to train a machine-learning algorithm (linear-SVM). Indeed,

linear SVMs are one of the most commonly used approaches in the classification of viral

Table 1. Genomic sequence dataset of SARS-CoV-2 variants.

WHO Label Pango Lineage Number of sequences

Alpha B.1.1.7 175,212

Beta B.1.351 695

Gamma P.1 8,129

Delta B.1.617.2 9,408

Kappa B.1.617.1 127

Epsilon B.1.427/B.1.429 14,674

Iota B.1.526 19,274

Eta B.1.525 716

Lambda C.37 428

Omicron B.1.1.529/BA.x 106,293

Total number of sequences 334,956

https://doi.org/10.1371/journal.pone.0296627.t001
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genomes, including SARS-CoV-2 [36]. They have also shown robustness when combined with

k-mer occurrence vectors to represent sequences [32]. The ability to exploit the weights

assigned to characteristics (based on k-mers in our case) makes them particularly interesting

for highlighting regions of interest in viral genomes. This model was then used to predict the

test set, and different performance metrics were calculated. For each iteration, we computed

the unweighted average of precision, recall, and f1-score. By computing each metric as an

unweighted average, we avoided the dominance effect of prevalent variants, as demonstrated

in Eqs 1, 2 and 3.

precision ¼
1

N

XN

i¼1

True Positivesi
True Positivesi þ False Positivesi

ð1Þ

recall ¼
1

N

XN

i¼1

True Positivesi
True Positivesi þ False Negativesi

ð2Þ

f1 � score ¼
1

N

XN

i¼1

2�
Precisioni � Recalli
Precisioni þ Recalli

ð3Þ

The distributions of the different performance metrics for each tool are illustrated through

violin plots in Fig 2A–2C. In addition, to visualize the prediction by class more specifically, we

computed the average confusion matrix with its standard deviation for each tool (Fig 3A–3E).

Finally, Fig 2D illustrates the average number of unique motifs identified by each tool during

the hundred iterations to train the prediction models.

Identification of discriminating motifs and tool settings. In the identification phase of

the discriminative motifs, we set the length of the motifs to k = 9 for two reasons. First, this

length is consistent with other studies that have used k-mers for viral sequence classification

[10, 31, 33]. Second, the selection of a multiple of 3 is consistent with the codon size, and as we

use sliding windows with a step of 1 to calculate the number of k-mers, encompassing all read-

ing frames, we believe this method facilitates the capture of potential amino acid-level muta-

tions. For KEVOLVE, we set the following search parameters: n_chromosomes = 100 (the

number of chromosomes generated at each iteration), and n_genes = 1 (the number of genes

composing the chromosome in the first generation). Initiating with a unitary instance allows

KEVOLVE to ascertain the optimal size during its search process since this is unknown, and

the training sets vary throughout the evaluation. The stopping criterion parameters were set at

n_iterations = 1000 and n_solutions = 10. We utilized the default crossover and mutation rates

from a previous study [32] for these parameters. For CASTOR-KRFE, we set the performance

threshold to be maintained while reducing the number of features to T = 0.99.

To evaluate MEME, considering its limitation to take as input a binary set, we implemented

the following process: for each variant v in the training set V, we selected all sequences belong-

ing to v to form the primary set and used the remaining sequences in V to form the control set.

We then applied MEME to discover motifs that discriminated the primary set from the control

set. This process was repeated for each variant v in order to build a set of motifs that could dis-

criminate each variant from the others. This set of motifs was used to train a model and predict

the testing set in the same configuration as CASTOR-KRFE and KEVOLVE. Both the ZOOPS

and OOPS options were evaluated for the associated distribution site parameters. Additionally,

to strongly characterize the different groups of sequences, we performed experiments to dis-

cover 10 motifs of width 9 for each variant. This choice allows us to theoretically characterize

each training set with 100 motifs, assuming there are no duplicates. We applied the same

PLOS ONE Machine learning-based approach to identify SARS-CoV-2 variant-specific genomic signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0296627 January 19, 2024 6 / 21

https://doi.org/10.1371/journal.pone.0296627


iterative process for identifying motifs to STREME. As mentioned previously, STREME does

not require an input parameter for the motif distribution type and handles this automatically.

Moreover, considering the number of experiments involved in evaluating the tools of the

MEME suite because of their limitation to not handle multi-class sequences, it was not feasible

to perform it on their web platform. To handle this, we set up virtual Linux environments

where we installed the MEME suite version 5.5.0 with all the necessary dependencies for its

functioning. Then several Shell/Python scripts were developed to run the different experi-

ments and process the output files to extract the identified motifs. Finally, we specified that for

the tools that identify multiple sets of motifs (KEVOLVE, MEME and STREME), the union of

the motifs is used to represent the sequences through the feature matrix at each iteration.

Analysis of the biological significance of the motifs identified by KEVOLVE. To

broaden the utility of KEVOLVE beyond identifying discriminative motifs and building pre-

diction models for nucleotide sequences, we developed KANALYZER [37]. KANALYZER is

an extension of KEVOLVE that uses pairwise alignment and parallel computing. It takes as

input a reference sequence in GenBank format, a list of nucleotide sequences labeled by their

Fig 2. Results of the comparative study. A-C) The violin plots illustrate the distributions of the performance metrics, including Precision, Recall, and

F1-score, obtained for the test set predictions during the cross-validation evaluation of 100 iterations. D) The bar plot depicts the average number of

motifs identified by each approach to build their prediction model. The black vertical bar indicates the standard deviation.

https://doi.org/10.1371/journal.pone.0296627.g002
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Fig 3. Results of the comparative study. A-E) The confusion matrices represent the average prediction performance as a function of the different variants

for each tool over the 100 iterations. Each cell shows the average percentage of the assigned instance in the top value, and the standard deviation in the

bottom value.

https://doi.org/10.1371/journal.pone.0296627.g003
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classes related to the organism of the reference sequence, and a list of discriminative motifs

associated with the studied sequences. KANALYZER aims to understand the reasons behind a

motif’s discriminatory potential by identifying the variations associated with it within different

groups of variants. A variation is defined as a nucleotide sequence derived from an initial k-

mer that has undergone one or more nucleotide changes. KANALYZER generates a report for

each motif as output, containing information on their variations that occur in the different

nucleotide sequences, their genomic localization, their frequencies of appearance according to

the different types of variants, and the resulting mutations at the amino acid level in the case of

coding regions. In this study, we used the KANALYZER extension to extract information asso-

ciated with the discriminative motifs identified by KEVOLVE. The information was derived

from the 334,956 sequences we collected and used the SARS-CoV-2 reference sequence

NC_045512.2 (Wuhan-Hu-1 isolate, complete genome) for analysis.

Results and discussion

Prediction performances

Initially, we examined the number of discriminative motifs identified by each tool, as summa-

rized in Fig 2D. CASTOR-KRFE identified the lowest average number of motifs at 10 per itera-

tion, which is minimally constrained by the number of classes in the input dataset. KEVOLVE,

MEME ZOOPS, and MEME OOPS identified an average of 55, 60, and 84 motifs, respectively.

Finally, STREME identified the highest average number of motifs at 107 per iteration, includ-

ing several degenerate motifs that were converted into classical motifs. The predictive perfor-

mance of the models based on the motifs identified by each tool is shown in Fig 2A–2C in

terms of precision, recall, and f1-score, respectively.

KEVOLVE performed the best, with an average score of 0.99 across all metrics. The associ-

ated confusion matrix (Fig 3A) for KEVOLVE indicates that misclassifications sometimes

occur, with Kappa sequences being incorrectly predicted as Delta and Omicron in 4.8% and

2.6% of cases, on average. For Lambda variants, approximately 3.1% of the sequences were

incorrectly predicted as Omicron. STREME models, which are based on approximately twice

as many motifs as KEVOLVE, yielded the second-best predictions with an average perfor-

mance of 0.96, 1.00, and 0.98 for precision, recall, and f1-score, respectively. The associated

confusion matrix for STREME (Fig 3B) revealed some limitations for Lambda sequences, with

more than 12.5% of them being incorrectly predicted as Alpha, Delta, Epsilon, or Omicron, on

average. There was also an average of 9% of Beta sequences that were misclassified in a similar

manner as Lambda sequences. Like KEVOLVE, STREME models had difficulty predicting cer-

tain Kappa variant sequences (� 9% on average), with many of them being incorrectly

assigned as Delta.

The CASTOR-KRFE method had an average precision of 0.86, a recall of 1.00, and an

f1-score of 0.90. The confusion matrix for the CASTOR-KRFE method (Fig 3C) indicates that

it shares the same challenges as the KEVOLVE and STREME methods in inaccurately classify-

ing some Kappa variant sequences, with 19% of these sequences being incorrectly predicted as

Alpha, 17% as Delta, and 11% as Epsilon, on average. There were also limitations in the classifi-

cation of Lambda variants, with nearly 29% of the sequences being incorrectly assigned to

Omicron. In addition, more than 12% of the Beta variant sequences were incorrectly assigned

to Alpha, on average, and 17% of the Eta variant sequences were incorrectly assigned to Alpha.

The MEME OOPS and MEME ZOOPS models showed the poorest prediction performance,

with average precisions of 0.97 and 0.83, average recalls of 0.94 and 0.88, and average f1-scores

of 0.88 and 0.82, respectively. Both models frequently made classification errors with Lambda

variants, which were often incorrectly predicted to be Epsilon. Beta variants were sometimes
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incorrectly predicted to be Epsilon, Delta, or Iota, and Kappa variants were often incorrectly

predicted to be Delta. More detailed results can be seen in the confusion matrices shown in Fig

3D and 3E.

Biological significance of KEVOLVE-identified motifs

To extract biological information related to the motifs identified by KEVOLVE, we first com-

bined all the motifs identified during different iterations. We used these motifs to represent all

334,956 sequences in our dataset and trained a SVM model. We ranked the motifs based on

their discriminant contribution, as determined by the importance weights assigned by the

model. We subsequently used KANALYZER to analyze the top 50 non-overlapping, non-

redundant motifs (with regards to highlighted mutations), which encompass at least the first

third of the most discriminating motif set according to the SVM-assigned weights. This analy-

sis was conducted alongside the full set of sequences and the reference sequence NC_045512.2.

The results are summarized in Table 2. In cases where KANALYZER did not produce results

for a specific motif, we assumed that it was located in a genomic region with high nucleotide

variability (e.g., near residues 203-205 of the nucleocapsid protein [38]) or involved numerous

successive deletions (e.g., the large 9-base SGF deletion in OR1ab [39]). To improve the signal

for these motifs, we extended them to 30 nucleotides based on a consensus sub-sequence from

the genomes where they were initially present. These extended motifs (ID 3, 8, 12, 18, and 38

in Table 2) were then analyzed using KANALYZER like the others. As shown on Table 2, the

majority of the identified motifs were located in the coding regions of structural proteins, par-

ticularly the S protein. These motifs tended to involve missense mutations, which can have sig-

nificant impacts on the infectivity, tropism, and pathogenesis of the virus even when few

changes are involved [40].

Motif 1, located in the S glycoprotein, is an interesting example. It has a variation present in

Beta variants and in 90% of Omicron variants that involves the K417N mutation. A second

variation of motif 1, found in Gamma variants, involves the K417T mutation. Both mutations

occur in the receptor binding domain (RBD) of S protein, which plays a crucial role in viral

infection by interacting with the host ACE2 cell surface receptor. According to published

reports, these mutations may potentially decrease binding ACE2 [41] and facilitate immune

escape [42]. In contrast to the K417N/T mutations, the N501Y substitution found in the

RBD-ACE2 interface was shown to result in one of the largest increases in ACE2 affinity con-

ferred by a single RBD mutation [41]. This substitution, which is associated with the variation

of motif 4, is present in several different variants, including Alpha, Beta, Gamma, and Omi-

cron. According to Nelson et al. [43], the additional presence of the E484K mutation can fur-

ther enhance virus binding to ACE2, while the presence of the K417N substitution can

stabilize this binding. The combination of these mutations may result in the emergence of a

mutant, whith the potential to evade host immune responses [43]. In addition, tests in individ-

uals who received the Moderna or Pfizer-BioNTech SARS-CoV-2 vaccines suggest that the

presence of the K417N, N501Y, and E484K mutations may result in a small but significant

reduction in viral neutralization, potentially impacting the effectiveness of these vaccines

against certain variants [44].

KEVOLVE highlighted several other notable mutations in the S protein, including the

P681H and P681R substitutions. P681H is present in the sequences of both Alpha and Omi-

cron variants, and its proximity to the furin protease cleavage site is thought to increase the

cleavage of the S protein, potentially contributing to the rapid transmission of these variants

[45]. This mutation was suggested to enhance SARS-CoV-2 infectivity [46]. The P681R substi-

tution, which is highly conserved in the Delta and Kappa variants, appears to be associated
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Table 2. Mutational landscape of the motifs identified by KEVOLVE.

ID REFERENCE K-MERS LOCATIONS VARIATIONS AMINO

ACID

CHANGE

VARIANTS

1 CTGGAAAGA S CTGGAAATA K417N Beta (98%) / Omicron

(90%)

CTGGAACGA K417T Gamma (99%)

2 AATTGCTAT M AATTGCTAC I82T Delta (98%) / Eta (99%)

AATTGCTAG I82S Kappa (96%)

3 AGTTGGATGGAAAGTGAGTTCAGAGTTTAT S AGTTGGATGGAAAGTG——GAGTTTAT Del156-157 /

R158G

Delta (92%)

AGTTGTATGGAAAGTGAGTTCAGAGTTTAT W152C Epsilon (98%)

AGTTGGATGAAAAGTGAGTTCAGAGTTTAT E154K Kappa (79%)

4 ACCCACTAA S ACCCACTTA N501Y Alpha (99%) / Beta (98%)

/ Gamma (99%) /

Omicron (97%)

5 GCTAGAAAA ORF8 GCTATAAAA R52I Alpha (99%)

6 CAAACTAAA None CAAACTATA No CDS Epsilon (99%)

CAAACTTAA Lambda (99%) / Omicron

(99%)

7 CCTCGGCGG S CATCGGCGG P681H Alpha (99%) / Omicron

(99%)

CGTCGGCGG P681R Delta (99%) / Kappa

(97%)

8 CCAGGCAGCAGTAGGGGAACTTCTCCTGCT N CCAGGCAGCAGTAAACGAACTTCTCCTGCT R203K /

G204R

Alpha (94%) / Lambda

(96%) / Omicron (98%)

CCAGGCAGCAGTAGGGGAATTTCTCCTGCT T205I Beta (98%) / Epsilon

(99%) / Eta (98%)

CCAGGCAGCAGTATGGGAACTTCTCCTGCT R203M Delta (97%) / Kappa

(92%)

CCAGGCAGCTCTAAACGAACTTCTCCTGCT R203K /

G204R

Gamma (96%)

CTAGGCAGCAGTAGGGGAACTTCTCCTGCT P199L Iota (70%)

CCAGGCAGCAGGAGGGGAACTTCTCCTGCT S202R Iota (27%)

9 CAACCAGAA S TAACCAGAA T19I Omicron (71%)

GAACCAGAA T19R Delta (96%)

CAAACAGAA T20N Gamma (98%)

10 TTCAGAGCG ORF3a TTCATAGCG Q57H Beta (98%) / Epsilon

(99%) / Iota (98%)

11 CTTGGTGCA S TTTGGTGCA L699F Beta (100%) / Iota (71%)

12 TTGGTTCCATGCTATACATGTCTCTGGGAC S TTGGTTCCATGCTA——TCTCTGGGAC Del69 /

Del70

Alpha (97%) / Omicron

(6%)

TTGGTTCCATGTTA——TCTCTGGGAC A67V /

Del69-70

Eta (98%) / Omicron

(6%)

13 AAATGCACC N AAATGGACC A12G Eta (99%)

AAATGCACT P13L Iota (28%) / Lambda

(97%) / Omicron (99%)

14 TTACGCAAT ORF1ab CTACGCAAT L3201P Iota (99%) / Lambda

(99%)

15 TGTATAGAT S GGTATAGAT L452R Delta (98%) / Epsilon

(99%) / Kappa (100%) /

Omicron (5%)

AGTATAGAT L452Q Lambda (99%)

(Continued)
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Table 2. (Continued)

ID REFERENCE K-MERS LOCATIONS VARIATIONS AMINO

ACID

CHANGE

VARIANTS

16 GTTGCAGCC 5’ UTR TTTGCAGCC No CDS Beta (6%) / Delta (98%) /

Kappa (100%)

17 CCACTGAGA S CCATTGAGA T95I Delta (20%) / Kappa

(88%) / Iota (99%) /

Omicron (27%)

18 CATTTTTGGGTGTTTATTACCACAAAAACA S CATTTTTGGGTGT—TTACCACAAAAACA Del144 Alpha (98%) / Eta (99%)

CATTTTTGGATGTTTATTACCACAAAAACA G142D Delta (62%) / Kappa

(69%) / Omicron (70%)

CATTTTTGG———ACCACAAAAACA Del142-144 /

Y145D

Omicron (27%)

19 AGATCAGTT ORF7a AGATCAGCT V82A Delta (94%) / Kappa

(100%)

20 CTAAGAGGT S CTACGAGGT K77T Delta (52%)

TTAAGAGGT T76I Lambda (98%)

21 AGGAATCAC ORF1ab GGGAATCAC K6711R Delta (53%)

GGGAAGCAC K6711R /

S6713A

Kappa (94%)

22 TTAATCTTA S TTAATTTTA L18F Beta (33%) / Gamma

(99%)

23 ATATCCTTT S ATATCCTTG S982A Alpha (99%)

ATATCTTTT L981F Omicron (27%)

24 GACTCAGAC S GACTCACAC Q677H Eta (98%)

TACTCAGAC Q675H Lambda (8%)

25 AACTTCAAG S AACTTCAAA D950N Delta (96%)

AACTCCAAG Silent Kappa (19%)

26 AATGATCCA S AATTATCCA D138Y Gamma (98%)

AATCATCCA D138H Lambda (5%)

27 TACACCAAA N TACACCGAA Silent Eta (99%)

28 CACAACTGT ORF8 CATAACTGT T11I Iota (99%)

29 CTAATTCTC S CTAAGTCTC N679K Omicron (99%)

30 AGAGTTCCT E AGAGTTCTT P71L Beta (99%)

31 CAATGGAAC M GAATGGAAC Q19E Omicron (96%)

32 GCTCCAATT S GCTCCAAAT N969K Omicron (99%)

33 AGACATTGC S AGACATTGA A570D Alpha (99%)

34 AAAGTGGAA ORF1ab AAATTGGAA K1655N Beta (99%)

35 GTTGGACCT S GTTGGACCC F888L Eta (99%)

36 TGTTTTTCT S TGTTTTTTT L5F Iota (99%)

37 AAAATATCT ORF1ab ACAATATCT K1795Q Gamma (99%)

38 ACTAGTTTGTCTGGTTTTAAGCTAAAAGAC ORF1ab ACTAGTTTG———AAGCTAAAAGAC Del3675–

3677

Alpha (99%) / Beta (95%)

/ Gamma (99%) / Eta

(99%) / Iota (99%)

Lambda (99%) / Omicron

(71%)

ACTAG———TTTTAAGCTAAAAGAC Del3674–

3676

Omicron (28%)

39 GTCAACCAA S GTCAACCAT Q954H Omicron (99%)

40 CTTACTGTT S CTTAATGTT T859N Lambda (99%)

41 GTACATCGA ORF8 GTGCATCGA Y73C Alpha (99%)

(Continued)
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with enhanced fusogenicity and pathogenicity [8]. The Omicron variant is distinguished by

the N679K substitution, which is associated with motif 28 and also located near the furin cleav-

age site [47]. When combined with P681H, both substitutions allow for the inclusion of basic

amino acids near the furin cleavage site, facilitating the partition of the S protein into S1 and

S2 subunits and enhancing virus fusion and infection [48]. Among other notable mutations in

the S protein, KEVOLVE identified the double Del156-157 and R158G substitution

(highlighted by motif 3), which are located in the N-terminal domain (NTD) of the protein

and are unique to the Delta variant. These mutations, known as vaccine breakthrough muta-

tions [49], may potentially contribute to enhanced transmissibility or reduced sensitivity to

pre-existing neutralizing antibodies [50].

Motif 3 also allowed the identification of the W152C and E154K mutations, which are pres-

ent in more than 98% of Epsilon variants and� 80% of Kappa variants. The W152C mutation,

in particular, is correlated with the S13I mutation associated with motif 43, which together

have important biological consequences that may allow immune evasion [51]. According to

[51], mass spectrometry and structural studies showed that the S13I and W152C mutations

resulted in a complete loss of neutralization for 10 of 10 NTD-specific monoclonal antibodies,

due to the remodeling of the NTD antigenic supersite by the shift of the signal peptide cleavage

site and the formation of a new disulfide bond. Other examples of mutations that affect the

ability of SARS-CoV-2 to bind to specific antibody molecules (antigenicity) include the L18F,

T19R/I, and T20N substitutions, which are highlighted by motifs 9 and 22. L18F is found in

the Gamma variant and in� 35% of Beta genomes. T19R and T19I are present in 96% of Delta

variants and 71% of Omicron variants, respectively, while T20N is a Gamma-specific muta-

tion. Epitope binding of 41 NTD-specific monoclonal neutralizing antibodies (mAbs) identi-

fied six antigenic sites, one of which, termed the “NTD supersite”, is recognized by all known

NTD-specific mAbs and consists of residues 14-20, 140-158, and 245-264 [52]. The mutations

associated with motifs 9 and 22 therefore include substitutions close to these antigenic regions

of the NTD, including L18F, which is known to reduce neutralization by some antibodies [53].

A last example of motif located in the S protein identified by KEVOLVE that involves major

Table 2. (Continued)

ID REFERENCE K-MERS LOCATIONS VARIATIONS AMINO

ACID

CHANGE

VARIANTS

42 AGAAAAGTA ORF1ab AGAAAAATA Silent Eta (99%)

43 GTCTCTAGT S GTCTCTATT S13I Epsilon (98%)

44 ATCATAACC ORF3a ATCATAACT Silent Omicron (99%)

45 ATCTCAGAT ORF1ab ATCTCATAT D5584Y Epsilon (98%)

46 GGTTCATCC ORF3a GGTTCACCC S253P Gamma (98%)

47 AACTCGTCT 5’ UTR AACTCTTCT No CDS Beta (99%)

48 CCAACCCAC S CCGACCCAC Q498R Omicron (97%)

49 CCTTTCTGC ORF7b CCTTTCTGT Silent Omicron (99%)

50 AAGGAAGAC N AAGGAAGGC D63G Delta (96%)

The ID column is used to reference motifs and their associated information within the text. The REFERENCE K-MERS column comprises the motifs in their original

form as seen in the reference sequence NC_045512.2. The LOCATIONS column pinpoints the genomic region where the motifs reside. The VARIATIONS column

illustrates the changes stemming from the initial motifs that transpire across different sequences. The AMINO ACID CHANGE column details the distinct amino acid

level mutations induced by the variations. The VARIANTS column represents the percentage of variations’ occurrence within different groups of variants. The

nucleotides subject to mutations are highlighted by underlining. All data is sourced from the comprehensive SARS-CoV-2 dataset (334,956 sequences).

https://doi.org/10.1371/journal.pone.0296627.t002
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impacts on the characteristics of SARS-CoV-2 is motif 14. A first variation of this motif, pres-

ent in Delta, Epsilon, Kappa, and a minority of Omicron variants (5%), involves the L452R

substitution. Located in the spike RBD which interacts directly with ACE2, this mutation was

shown to increase spike stability, viral infectivity, viral fusogenicity, and viral replication [54].

The L452Q substitution, which is present in the Lambda variant, appears to be correlated with

the T76I mutation associated with motif 20. These specific mutations are major contributors

to the increased infectivity of the Lambda variant compared to other variants [55].

Regarding the mutations of interest associated with the motifs identified by KEVOLVE out-

side the S protein are I82T and I82S which are located in the M protein. M protein is highly

conserved with low mutation rates and is a key element in virion morphogenesis and assembly,

facilitating the release of viral particles from host cells and enhancing glucose transport during

replication [56]. The I82T mutation, found in Delta and Eta variants, was suggested to enhance

viral replicative fitness by altering cellular glucose uptake [57]. The I82S mutation, which is

currently unique to Kappa, has not yet been well studied for its effects on SARS-CoV-2 [58].

Motif 8, located in the highly immunogenic and abundantly expressed N protein, is a last rele-

vant example of a motif associated with mutations of interest. KANALYZER’s analysis of this

motif has identified variations in that region that involve P199L, S202R, R203K/M, G204R,

and T205I, at least one of which is found in every major natural variant [59]. The R203K/

G204R mutation, which is present in the majority of Alpha, Gamma, Lambda, and Omicron

variants, was shown to confer replication advantages likely related to ribonucleocapsid (RNP)

assembly, and to be associated with increased infectivity, adaptability, and virulence of SARS--

CoV-2 [60]. The R203M mutation, present in Delta and Kappa, as well as the S202R mutation

present in� 27% of Iota variants, were shown to increase viral infectivity by� 50-fold [59].

Addition of the P199L mutation (present in� 70% of Iota variants) to S202R and R203K/M

increases transmissibility by four to seven times and enhances luciferase activity, which is posi-

tively correlated with the more efficient assembly of virus-like particles and more effective

mRNA delivery [59]. Overall, the highly variable region of residues 203-205 in the N protein of

SARS-CoV-2, which includes the T205I substitution specific to Beta, Epsilon, and Eta, was

associated with increased replication and pathogenicity [38]. The motif analysis reports gener-

ated by KANALYZER and the accession numbers of the sequences used in our study are avail-

able on our GitHub directory (https://github.com/bioinfoUQAM/KEVOLVE). In addition, all

identified mutations were manually confirmed using resources found at https://covdb.

stanford.edu/variants/ and https://covariants.org/.

Motifs identified by KEVOLVE/KANALYZER as genomic signature of

SARS-CoV-2 variants

In the comparative study, we used KEVOLVE to identify motifs that discriminate between dif-

ferent classes of SARS-CoV-2 variants. We then selected the top 50 non-overlapping and non-

redundant motifs determined by the importance weights assigned by the model.

These 50 motifs were subsequently input into KANALYZER to characterize and identify

their variations within the different SARS-CoV-2 variant groups (Column “VARIATIONS” of

Table 2).” In total, we obtained 125 motifs and their associated variations, which are repre-

sented in the form of a cluster map (Fig 4). This map illustrates the frequency of absence/pres-

ence of each motif across different SARS-CoV-2 variants. Although these motifs were

identified by KEVOLVE from a training subset of 2,500 sequences, the frequencies shown in

Fig 4 are computed from the entire dataset of 334,956 sequences. By examining the columns, it

is possible to identify different profiles and clusters of absence/presence of motifs specific to

various variants. For example, Omicron has a cluster of 7 motifs that are unique to this variant
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Fig 4. Cluster map of motif occurrence frequency according to SARS-CoV-2 variants.

https://doi.org/10.1371/journal.pone.0296627.g004
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(located in the lower left of the cluster map), with the exception of the ATCATAACT motif,

which is also present in Iota. Towards the middle of the cluster map, we can see a second clus-

ter of 7 motifs that appear in all variants except Omicron. These two Omicron-specific clusters

contribute to its distance from the other SARS-CoV-2 variants. In summary, this figure illus-

trates KEVOLVE’s ability to identify motifs in temporally conserved regions starting with a

limited set of sequences and to generalize to a larger dataset of sequences collected since the

start of the COVID-19 pandemic. The identified motifs provide genomic signatures that can

be used to generate peptide or oligonucleotide libraries for rapid and accurate detection of

listed pathogens with tools such as VirScan [61] or to design specific primer sets for the classi-

fication of SARS-CoV-2 variants with artificial intelligence [62]. These approaches, which use

models built from a restricted number of motifs and sequences, can efficiently classify large

sets of sequences, which is crucial during major viral outbreaks where swift identification of

the virus’ taxonomic classification and genomic sequence origin is necessary for effective stra-

tegic planning, containment, and treatment [10]. In addition, the identified genomic signa-

tures, along with the reports generated by KANALYZER, provide valuable insights that can

help understand the viral evolution and transmission, the mechanisms through which the

virus causes disease, and the development of treatments and vaccines. These approaches,

which use models built from a restricted number of motifs and sequences, can efficiently clas-

sify large sets of sequences, which is crucial during major viral outbreaks where swift identifi-

cation of the virus’ taxonomic classification and genomic sequence origin is necessary for

effective strategic planning, containment, and treatment [10].

Perspective and future directions

For future work, we believe it would be insightful to explore comparisons with approaches that

have been developed concurrently and exhibit similarities. One such tool is CouGaR-g,

recently published, which introduces an approach using a deep learning model (convolutional

neural networks) to classify SARS-CoV-2 sequences represented by frequency chaos game

representation [63]. In their study, CouGaR-g demonstrated strong performance with an accu-

racy exceeding 96% for a test set comprising 19,146 SARS-CoV-2 sequences divided into 11

clades. The authors also utilize saliency maps to highlight relevant k-mers and further demon-

strate their association with known marker variants. It could, therefore, be beneficial to con-

duct experiments to compare the impact of sequence representation, the influence of the

choice of machine learning model (especially to investigate performance on GISAID clades

such as GR, GRY, or O where CouGaR-g’s performance was lower), or to assess the overlap

and differences in the k-mers identified as significant in correlation with known marker

variants.

Another pertinent comparative analysis would consider Nextclade [64] in classifying viral

sequences with significant nucleotide divergence. Nextclade conducts pairwise alignments of

viral genomes against a reference sequence, discerns mutations, and employs mutational dis-

tances to ascertain the nearest match within a phylogenetic framework, thereby designating

the query sequence to a closely related clade [64]. While both Nextclade and KEVOLVE dem-

onstrate robustness in SARS-CoV-2 sequence classification, KEVOLVE may offer superior

performance for viruses exhibiting substantial nucleotide divergence, such as HIV—with

divergence rates between subtypes ranging from 25 to 35% [65] and hepatitis C virus (HCV),

where genotypic differences reach 31 to 33% at the nucleotide level [66]. Notably, Nextclade is

tailored for rapid alignment of sequences with less than 10% divergence [64], a scenario less

applicable to the broad variability seen in HIV or HCV. KEVOLVE employs k-mer occurrence

vectors for sequence representation and a SVM for prediction, a methodology previously
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validated for robust viral classification across diverse divergence levels [30–32]. The sensitivity

of k-mer occurrences, as opposed to mutations at specific positions, is particularly advanta-

geous for sequences with elevated rates of nucleotide divergence [21]. Furthermore, the SVM

framework provides a nuanced approach by relating a set of training sequences to their fea-

tures and assigning weights based on their discriminative value—unlike Nextclade’s distance-

based classification. This feature weighting proves instrumental in prioritizing mutations for

analysis. Nextclade and KEVOLVE each have their place in the genomics toolbox, with specific

scenarios where they can distinguish themselves.

Finally, although our current approach and all those mentioned above operate within a

closed classification framework, which is limited to the classes defined by the training sequence

dataset, we plan to extend it to an open classification context. To achieve this, we propose a

strategy to calculate the distance between each new sequence and the existing genomic signa-

ture profiles, generated in the cluster map (Fig 4). By using an appropriate distance threshold,

we can identify sequences that are significantly distant from known signatures, potentially

indicating a new variant. Thresholds can be determined by leveraging the knowledge of dis-

tances between genomic signature profiles of different known variants. This method could be

based on distance metrics such as Euclidean distance, Manhattan distance, or even a normal-

ized distance based on k-mer similarity. Furthermore, to make our approach more flexible and

adaptable to new variants, we could also implement an incremental learning mechanism. In

this way, each time a new variant is identified above a certain support threshold, the associated

sequences could be integrated into the initial training set, and the model would be retrained to

account for this new information. This would allow our model to learn and progressively

adjust its parameters based on the newly encountered sequences. This approach could facilitate

the detection of new variants and enable regular model updates with the integration of new

sequences associated with emerging variants.

Conclusion

In this study, we compared the performance of the machine learning-based tools KEVOLVE

and CASTOR-KRFE with statistical tools specialized in identifying discriminative motifs in

unaligned sequence sets for the classification of SARS-CoV-2 variants. Overall, the models

based on the motifs identified by KEVOLVE outperformed the models based on the motifs

identified by the statistical tools, while using a lower number of motifs. Models based on

STREME motifs achieved the second-best performance (slightly below KEVOLVE), but these

models require the use of twice as many motifs. The drop in performance was mainly due to

prediction errors for Beta, Kappa, and Lambda variants. CASTOR-KRFE obtained the third-

best performance with models based on 10 times fewer motifs than STREME, as the tool only

identifies a single subset of motifs, unlike the others. The prediction errors of the CAS-

TOR-KRFE models are associated with the same variants as those of STREME, but they are

more pronounced. Finally, the weakest performances were associated with the MEME OOPS/

ZOOPS models, with many more errors for the same variants than STREME and CAS-

TOR-KRFE. This study also demonstrated that KEVOLVE and CASTOR-KRFE are able to

handle multi-class sets, rather than being limited to binary sets like some other tools. This is an

important advantage when analyzing organisms such as SARS-CoV-2, which are constituted

of multiple classes of viral variants.

Subsequently, we analyzed the motifs identified by KEVOLVE using KANALYZER, a new

extension based on pairwise alignment and parallel computing. This analysis allowed us to

identify variations of the discriminative motifs in different classes of SARS-CoV-2 variants,

including their frequency, genomic localization, and mutation at the amino acid level. This
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analysis, performed on all 334,956 sequences belonging to the 10 major variant classes defined

by the WHO, showed that the majority of the motifs identified by KEVOLVE were located in

structural proteins, with a particular focus on the S protein. The motifs and variations identi-

fied were linked to known mutations previously reported in the literature, which are assumed

to affect key characteristics of the virus such as infectivity, pathogenicity, tropism, transmis-

sion, and evolution. In conclusion, this study demonstrates the utility of KEVOLVE as a robust

tool for identifying discriminative motifs of SARS-CoV-2 variants. These motifs provide geno-

mic signatures that can be used to construct oligonucleotide libraries or to build artificial intel-

ligence models for rapid and accurate pathogen detection. Furthermore, KANALYZER allows

the analysis of motifs identified by KEVOLVE, providing valuable insights into the biological

properties of viruses and viral gene products that serve as targets for the development of vac-

cines or antiviral therapy.
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Baniré Diallo.

References
1. Gorbalenya A., Baker S., Baric R., De Groot R., Drosten C., Gulyaeva A., et al. The species Severe

acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.

Nature Microbiology. 5, 536–544 (2020) https://doi.org/10.1038/s41564-020-0695-z

2. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A novel coronavirus from patients with pneu-

monia in China, 2019. New England Journal Of Medicine. (2020) https://doi.org/10.1056/

NEJMoa2001017 PMID: 31978945

3. Lee E., Ng M. & Khong P. COVID-19 pneumonia: what has CT taught us?. The Lancet Infectious Dis-

eases. 20, 384–385 (2020) https://doi.org/10.1016/S1473-3099(20)30134-1 PMID: 32105641

4. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterisation and epidemiology of 2019

novel coronavirus: implications for virus origins and receptor binding. The Lancet. 395, 565–574 (2020)

https://doi.org/10.1016/S0140-6736(20)30251-8 PMID: 32007145

5. Gordon D., Jang G., Bouhaddou M., Xu J., Obernier K., White K., et al. A SARS-CoV-2 protein interac-

tion map reveals targets for drug repurposing. Nature. 583, 459–468 (2020) https://doi.org/10.1038/

s41586-020-2286-9 PMID: 32353859

6. Kandeel M., Ibrahim A., Fayez M. & Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Mov-

ing toward more biased codon usage in viral structural and nonstructural genes. Journal Of Medical

Virology. 92, 660–666 (2020) https://doi.org/10.1002/jmv.25754 PMID: 32159237

7. Toyoshima Y., Nemoto K., Matsumoto S., Nakamura Y. & Kiyotani K. SARS-CoV-2 genomic variations

associated with mortality rate of COVID-19. Journal Of Human Genetics. 65, 1075–1082 (2020) https://

doi.org/10.1038/s10038-020-0808-9 PMID: 32699345

8. Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., et al. Enhanced fusogenicity and pathoge-

nicity of SARS-CoV-2 Delta P681R mutation. Nature. 602, 300–306 (2022) https://doi.org/10.1038/

s41586-021-04266-9 PMID: 34823256

PLOS ONE Machine learning-based approach to identify SARS-CoV-2 variant-specific genomic signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0296627 January 19, 2024 18 / 21

https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
https://doi.org/10.1016/S1473-3099(20)30134-1
http://www.ncbi.nlm.nih.gov/pubmed/32105641
https://doi.org/10.1016/S0140-6736(20)30251-8
http://www.ncbi.nlm.nih.gov/pubmed/32007145
https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1038/s41586-020-2286-9
http://www.ncbi.nlm.nih.gov/pubmed/32353859
https://doi.org/10.1002/jmv.25754
http://www.ncbi.nlm.nih.gov/pubmed/32159237
https://doi.org/10.1038/s10038-020-0808-9
https://doi.org/10.1038/s10038-020-0808-9
http://www.ncbi.nlm.nih.gov/pubmed/32699345
https://doi.org/10.1038/s41586-021-04266-9
https://doi.org/10.1038/s41586-021-04266-9
http://www.ncbi.nlm.nih.gov/pubmed/34823256
https://doi.org/10.1371/journal.pone.0296627


9. Koyama T., Weeraratne D., Snowdon J. & Parida L. Emergence of drift variants that may affect COVID-

19 vaccine development and antibody treatment. Pathogens. 9, 324 (2020)

10. Randhawa G., Soltysiak M., El Roz H., Souza C., Hill K. & Kari L. Machine learning using intrinsic geno-

mic signatures for rapid classification of novel pathogens: COVID-19 case study. Plos One. 15,

e0232391 (2020) https://doi.org/10.1371/journal.pone.0232391 PMID: 32330208

11. Lopez-Rincon A., Tonda A., Mendoza-Maldonado L., Mulders D., Molenkamp R., Perez-Romero C.,

et al. Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learn-

ing. Scientific Reports. 11, 1–11 (2021) https://doi.org/10.1038/s41598-020-80363-5 PMID: 33441822

12. Bauer D., Tay A., Wilson L., Reti D., Hosking C., McAuley A., et al. Supporting pandemic response

using genomics and bioinformatics: A case study on the emergent SARS-CoV-2 outbreak. Transbound-

ary And Emerging Diseases. 67, 1453–1462 (2020) https://doi.org/10.1111/tbed.13588 PMID:

32306500

13. Lau B., Pavlichin D., Hooker A., Almeda A., Shin G., Chen J., et al. Profiling SARS-CoV-2 mutation fin-

gerprints that range from the viral pangenome to individual infection quasispecies. Genome Medicine.

13, 1–23 (2021) https://doi.org/10.1186/s13073-021-00882-2 PMID: 33875001

14. Slezak T., Hart B. & Jaing C. Design of genomic signatures for pathogen identification and characteriza-

tion. Microbial Forensics. pp. 299–312 (2020) https://doi.org/10.1016/B978-0-12-815379-6.00020-9

15. Edgar R.MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids

Research. 32, 1792–1797 (2004) https://doi.org/10.1093/nar/gkh340 PMID: 15034147

16. Larkin M., Blackshields G., Brown N., Chenna R., McGettigan P., McWilliam H., et al. Clustal W and

Clustal X version 2.0. Bioinformatics. 23, 2947–2948 (2007) https://doi.org/10.1093/bioinformatics/

btm404 PMID: 17846036

17. Katoh K., Rozewicki J. & Yamada K. MAFFT online service: multiple sequence alignment, interactive

sequence choice and visualization. Briefings In Bioinformatics. 20, 1160–1166 (2019) https://doi.org/

10.1093/bib/bbx108 PMID: 28968734

18. Bernard G., Chan C., Chan Y., Chua X., Cong Y., Hogan J., et al. Alignment-free inference of hierarchi-

cal and reticulate phylogenomic relationships. Briefings In Bioinformatics. 20, 426–435 (2019) https://

doi.org/10.1093/bib/bbx067 PMID: 28673025

19. Lange K.Mathematical and statistical methods for genetic analysis. ( Springer,2002)

20. Eddy S.What is dynamic programming?. Nature Biotechnology. 22, 909–910 (2004) https://doi.org/10.

1038/nbt0704-909 PMID: 15229554

21. Zielezinski A., Vinga S., Almeida J. & Karlowski W. Alignment-free sequence comparison: benefits,

applications, and tools. Genome Biology. 18, 1–17 (2017) https://doi.org/10.1186/s13059-017-1319-7

PMID: 28974235

22. Duffy S., Shackelton L. & Holmes E. Rates of evolutionary change in viruses: patterns and determi-

nants. Nature Reviews Genetics. 9, 267–276 (2008) https://doi.org/10.1038/nrg2323 PMID: 18319742

23. Wong K., Suchard M. & Huelsenbeck J. Alignment uncertainty and genomic analysis. Science. 319,

473–476 (2008) https://doi.org/10.1126/science.1151532 PMID: 18218900

24. Bailey, T., Elkan, C. & Others Fitting a mixture model by expectation maximization to discover motifs in

bipolymers. (Department of Computer Science,1994)

25. Bailey T., Johnson J., Grant C. & Noble W. The MEME suite. Nucleic Acids Research. 43, W39–W49

(2015) https://doi.org/10.1093/nar/gkv416 PMID: 25953851

26. Bailey T., Bodén M., Whitington T. & Machanick P. The value of position-specific priors in motif discov-

ery using MEME. BMC Bioinformatics. 11, 1–14 (2010) https://doi.org/10.1186/1471-2105-11-179

PMID: 20380693

27. Bailey T.STREME: accurate and versatile sequence motif discovery. Bioinformatics. 37, 2834–2840

(2021) https://doi.org/10.1093/bioinformatics/btab203 PMID: 33760053

28. Libbrecht M. & Noble W. Machine learning applications in genetics and genomics. Nature Reviews

Genetics. 16, 321–332 (2015) https://doi.org/10.1038/nrg3920 PMID: 25948244

29. Remita M., Halioui A., Malick Diouara A., Daigle B., Kiani G. & Diallo A. A machine learning approach

for viral genome classification. BMC Bioinformatics. 18, 1–11 (2017) https://doi.org/10.1186/s12859-

017-1602-3 PMID: 28399797

30. Solis-Reyes S., Avino M., Poon A. & Kari L. An open-source k-mer based machine learning tool for fast

and accurate subtyping of HIV-1 genomes. PloS One. 13, e0206409 (2018) https://doi.org/10.1371/

journal.pone.0206409 PMID: 30427878

31. Lebatteux D., Remita A. & Diallo A. Toward an alignment-free method for feature extraction and accu-

rate classification of viral sequences. Journal Of Computational Biology. 26, 519–535 (2019) https://

doi.org/10.1089/cmb.2018.0239 PMID: 31050550

PLOS ONE Machine learning-based approach to identify SARS-CoV-2 variant-specific genomic signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0296627 January 19, 2024 19 / 21

https://doi.org/10.1371/journal.pone.0232391
http://www.ncbi.nlm.nih.gov/pubmed/32330208
https://doi.org/10.1038/s41598-020-80363-5
http://www.ncbi.nlm.nih.gov/pubmed/33441822
https://doi.org/10.1111/tbed.13588
http://www.ncbi.nlm.nih.gov/pubmed/32306500
https://doi.org/10.1186/s13073-021-00882-2
http://www.ncbi.nlm.nih.gov/pubmed/33875001
https://doi.org/10.1016/B978-0-12-815379-6.00020-9
https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/bioinformatics/btm404
http://www.ncbi.nlm.nih.gov/pubmed/17846036
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1093/bib/bbx108
http://www.ncbi.nlm.nih.gov/pubmed/28968734
https://doi.org/10.1093/bib/bbx067
https://doi.org/10.1093/bib/bbx067
http://www.ncbi.nlm.nih.gov/pubmed/28673025
https://doi.org/10.1038/nbt0704-909
https://doi.org/10.1038/nbt0704-909
http://www.ncbi.nlm.nih.gov/pubmed/15229554
https://doi.org/10.1186/s13059-017-1319-7
http://www.ncbi.nlm.nih.gov/pubmed/28974235
https://doi.org/10.1038/nrg2323
http://www.ncbi.nlm.nih.gov/pubmed/18319742
https://doi.org/10.1126/science.1151532
http://www.ncbi.nlm.nih.gov/pubmed/18218900
https://doi.org/10.1093/nar/gkv416
http://www.ncbi.nlm.nih.gov/pubmed/25953851
https://doi.org/10.1186/1471-2105-11-179
http://www.ncbi.nlm.nih.gov/pubmed/20380693
https://doi.org/10.1093/bioinformatics/btab203
http://www.ncbi.nlm.nih.gov/pubmed/33760053
https://doi.org/10.1038/nrg3920
http://www.ncbi.nlm.nih.gov/pubmed/25948244
https://doi.org/10.1186/s12859-017-1602-3
https://doi.org/10.1186/s12859-017-1602-3
http://www.ncbi.nlm.nih.gov/pubmed/28399797
https://doi.org/10.1371/journal.pone.0206409
https://doi.org/10.1371/journal.pone.0206409
http://www.ncbi.nlm.nih.gov/pubmed/30427878
https://doi.org/10.1089/cmb.2018.0239
https://doi.org/10.1089/cmb.2018.0239
http://www.ncbi.nlm.nih.gov/pubmed/31050550
https://doi.org/10.1371/journal.pone.0296627


32. Lebatteux, D. & Diallo, A. Combining a genetic algorithm and ensemble method to improve the classifi-

cation of viruses. 2021 IEEE International Conference On Bioinformatics And Biomedicine

(BIBM). pp. 688-693 (2021)

33. Zhang Q., Jun S., Leuze M., Ussery D. & Nookaew I. Viral phylogenomics using an alignment-free

method: A three-step approach to determine optimal length of k-mer. Scientific Reports. 7, 1–13 (2017)

34. Narlikar, L., Gordân, R. & Hartemink, A. Nucleosome occupancy information improves de novo motif

discovery. Annual International Conference On Research In Computational Molecular Biology. pp. 107-

121 (2007)

35. Sayers E., Bolton E., Brister J., Canese K., Chan J., Comeau D., et al. Database resources of the

national center for biotechnology information. Nucleic Acids Research. 50, D20–D26 (2022) https://doi.

org/10.1093/nar/gkab1112 PMID: 34850941

36. Ahmed I. & Jeon G. Enabling artificial intelligence for genome sequence analysis of COVID-19 and

alike viruses. Interdisciplinary Sciences: Computational Life Sciences. 14, 504–519 (2022) https://doi.

org/10.1007/s12539-021-00465-0 PMID: 34357528

37. Lebatteux, D., Soudeyns, H., Boucoiran, I., Gantt, S. & Diallo, A. KANALYZER: a method to identify var-

iations of discriminative k-mers in genomic sequences. 2022 IEEE International Conference On Bioin-

formatics And Biomedicine (BIBM). pp. 757-762 (2022)

38. Johnson B., Zhou Y., Lokugamage K., Vu M., Bopp N., Crocquet-Valdes P., et al. Nucleocapsid muta-

tions in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathogens. 18, e1010627 (2022)

https://doi.org/10.1371/journal.ppat.1010627 PMID: 35728038

39. Tamanaha E., Zhang Y. & Tanner N. Profiling RT-LAMP tolerance of sequence variation for SARS-

CoV-2 RNA detection. PLoS One. 17, e0259610 (2022) https://doi.org/10.1371/journal.pone.0259610

PMID: 35324900

40. Zhu C., He G., Yin Q., Zeng L., Ye X., Shi Y. et al. Molecular biology of the SARs-CoV-2 spike protein: A

review of current knowledge. Journal Of Medical Virology. 93, 5729–5741 (2021) https://doi.org/10.

1002/jmv.27132 PMID: 34125455

41. Starr T., Greaney A., Hilton S., Ellis D., Crawford K., Dingens A., et al. Deep mutational scanning of

SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 182,

1295–1310 (2020) https://doi.org/10.1016/j.cell.2020.08.012 PMID: 32841599

42. Barton M., MacGowan S., Kutuzov M., Dushek O., Barton G. & Van Der Merwe P. Effects of common

mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity

and kinetics. Elife. 10 pp. e70658 (2021) https://doi.org/10.7554/eLife.70658 PMID: 34435953

43. Nelson G., Buzko O., Spilman P., Niazi K., Rabizadeh S. & Soon-Shiong P. Molecular dynamic simula-

tion reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N

and N501Y mutations (501Y. V2 variant) induces conformational change greater than N501Y mutant

alone, potentially resulting in an escape mutant. BioRxiv. (2021)

44. Wang Z., Schmidt F., Weisblum Y., Muecksch F., Barnes C., Finkin S., et al. mRNA vaccine-elicited

antibodies to SARS-CoV-2 and circulating variants. Nature. 592, 616–622 (2021) https://doi.org/10.

1038/s41586-021-03324-6 PMID: 33567448

45. Desingu P., Nagarajan K. & Dhama K. Emergence of Omicron third lineage BA. 3 and its importance.

Journal Of Medical Virology. 94, 1808–1810 (2022) https://doi.org/10.1002/jmv.27601 PMID:

35043399

46. Zuckerman N., Fleishon S., Bucris E., Bar-Ilan D., Linial M., Bar-Or I., et al. A unique SARS-CoV-2

spike protein P681H variant detected in Israel. Vaccines. 9, 616 (2021) https://doi.org/10.3390/

vaccines9060616 PMID: 34201088

47. Kannan S., Spratt A., Sharma K., Chand H., Byrareddy S. & Singh K. Omicron SARS-CoV-2 variant:

Unique features and their impact on pre-existing antibodies. Journal Of Autoimmunity. 126 pp. 102779

(2022) https://doi.org/10.1016/j.jaut.2021.102779 PMID: 34915422

48. He X., Hong W., Pan X., Lu G. & Wei X. SARS-CoV-2 Omicron variant: characteristics and prevention.

MedComm. 2, 838–845 (2021) https://doi.org/10.1002/mco2.110 PMID: 34957469

49. Muttineni R., Putty K., Marapakala K., KP S., Panyam J., Vemula A., et al. SARS-CoV-2 variants and

spike mutations involved in second wave of COVID-19 pandemic in India. Transboundary And Emerg-

ing Diseases. 69, e1721–e1733 (2022) https://doi.org/10.1111/tbed.14508 PMID: 35266305

50. Fan L., Hu X., Chen Y., Peng X., Fu Y., Zheng Y., et al. Biological significance of the genomic variation

and structural dynamics of SARS-CoV-2 B. 1.617. Frontiers In Microbiology. 12 pp. 750725 (2021)

https://doi.org/10.3389/fmicb.2021.750725 PMID: 34691002

51. Zhang J., Xiao T., Cai Y., Lavine C., Peng H., Zhu H., et al. Membrane fusion and immune evasion by

the spike protein of SARS-CoV-2 Delta variant. Science. 374, 1353–1360 (2021) https://doi.org/10.

1126/science.abl9463 PMID: 34698504

PLOS ONE Machine learning-based approach to identify SARS-CoV-2 variant-specific genomic signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0296627 January 19, 2024 20 / 21

https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.1093/nar/gkab1112
http://www.ncbi.nlm.nih.gov/pubmed/34850941
https://doi.org/10.1007/s12539-021-00465-0
https://doi.org/10.1007/s12539-021-00465-0
http://www.ncbi.nlm.nih.gov/pubmed/34357528
https://doi.org/10.1371/journal.ppat.1010627
http://www.ncbi.nlm.nih.gov/pubmed/35728038
https://doi.org/10.1371/journal.pone.0259610
http://www.ncbi.nlm.nih.gov/pubmed/35324900
https://doi.org/10.1002/jmv.27132
https://doi.org/10.1002/jmv.27132
http://www.ncbi.nlm.nih.gov/pubmed/34125455
https://doi.org/10.1016/j.cell.2020.08.012
http://www.ncbi.nlm.nih.gov/pubmed/32841599
https://doi.org/10.7554/eLife.70658
http://www.ncbi.nlm.nih.gov/pubmed/34435953
https://doi.org/10.1038/s41586-021-03324-6
https://doi.org/10.1038/s41586-021-03324-6
http://www.ncbi.nlm.nih.gov/pubmed/33567448
https://doi.org/10.1002/jmv.27601
http://www.ncbi.nlm.nih.gov/pubmed/35043399
https://doi.org/10.3390/vaccines9060616
https://doi.org/10.3390/vaccines9060616
http://www.ncbi.nlm.nih.gov/pubmed/34201088
https://doi.org/10.1016/j.jaut.2021.102779
http://www.ncbi.nlm.nih.gov/pubmed/34915422
https://doi.org/10.1002/mco2.110
http://www.ncbi.nlm.nih.gov/pubmed/34957469
https://doi.org/10.1111/tbed.14508
http://www.ncbi.nlm.nih.gov/pubmed/35266305
https://doi.org/10.3389/fmicb.2021.750725
http://www.ncbi.nlm.nih.gov/pubmed/34691002
https://doi.org/10.1126/science.abl9463
https://doi.org/10.1126/science.abl9463
http://www.ncbi.nlm.nih.gov/pubmed/34698504
https://doi.org/10.1371/journal.pone.0296627


52. Harvey W., Carabelli A., Jackson B., Gupta R., Thomson E., Harrison E., et al. SARS-CoV-2 variants,

spike mutations and immune escape. Nature Reviews Microbiology. 19, 409–424 (2021) https://doi.

org/10.1038/s41579-021-00573-0 PMID: 34075212

53. McCallum M., De Marco A., Lempp F., Tortorici M., Pinto D., Walls A., et al. N-terminal domain antigenic

mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 184, 2332–2347 (2021) https://doi.org/10.

1016/j.cell.2021.03.028 PMID: 33761326

54. Motozono C., Toyoda M., Zahradnik J., Saito A., Nasser H., Tan T., et al. SARS-CoV-2 spike L452R

variant evades cellular immunity and increases infectivity. Cell Host & Microbe. 29, 1124–1136 (2021)

https://doi.org/10.1016/j.chom.2021.06.006 PMID: 34171266

55. Kimura I., Kosugi Y., Wu J., Zahradnik J., Yamasoba D., Butlertanaka E., et al. The SARS-CoV-2

Lambda variant exhibits enhanced infectivity and immune resistance. Cell Reports. 38, 110218 (2022)

https://doi.org/10.1016/j.celrep.2021.110218 PMID: 34968415

56. Thakur S., Sasi S., Pillai S., Nag A., Shukla D., Singhal R., et al. SARS-CoV-2 Mutations and Their

Impact on Diagnostics, Therapeutics and Vaccines. Frontiers In Medicine. 9 (2022) https://doi.org/10.

3389/fmed.2022.815389 PMID: 35273977

57. Shen L., Bard J., Triche T., Judkins A., Biegel J. & Gai X. Emerging variants of concern in SARS-CoV-2

membrane protein: a highly conserved target with potential pathological and therapeutic implications.

Emerging Microbes & Infections. 10, 885–893 (2021) https://doi.org/10.1080/22221751.2021.1922097

PMID: 33896413

58. Singh P., Sharma K., Singh P., Bhargava A., Negi S., Sharma P., et al. Genomic characterization unrav-

elling the causative role of SARS-CoV-2 Delta variant of lineage B. 1.617. 2 in 2nd wave of COVID-19

pandemic in Chhattisgarh, India. Microbial Pathogenesis. 164 pp. 105404 (2022) https://doi.org/10.

1016/j.micpath.2022.105404 PMID: 35065253

59. Syed A., Taha T., Tabata T., Chen I., Ciling A., Khalid M., et al. Rapid assessment of SARS-CoV-2–

evolved variants using virus-like particles. Science. 374, 1626–1632 (2021) https://doi.org/10.1126/

science.abl6184 PMID: 34735219

60. Wu H., Xing N., Meng K., Fu B., Xue W., Dong P., et al. Nucleocapsid mutations R203K/G204R

increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host & Microbe. 29, 1788–1801

(2021) https://doi.org/10.1016/j.chom.2021.11.005 PMID: 34822776

61. Xu D. & Tian Y. A comprehensive survey of clustering algorithms. Annals Of Data Science. 2, 165–193

(2015) https://doi.org/10.1007/s40745-015-0040-1

62. McMillen T., Jani K., Robilotti E., Kamboj M. & Babady N. The spike gene target failure (SGTF) genomic

signature is highly accurate for the identification of Alpha and Omicron SARS-CoV-2 variants. Scientific

Reports. 12, 1–8 (2022) https://doi.org/10.1038/s41598-022-21564-y PMID: 36347878

63. Avila Cartes J., Anand S., Ciccolella S., Bonizzoni P. & Della Vedova G. Accurate and fast clade assign-

ment via deep learning and frequency chaos game representation. GigaScience. 12 pp. giac119

(2023)

64. Aksamentov I., Roemer C., Hodcroft E. & Neher R. Nextclade: clade assignment, mutation calling and

quality control for viral genomes. Journal Of Open Source Software. 6, 3773 (2021) https://doi.org/10.

21105/joss.03773

65. Hemelaar J., Gouws E., Ghys P. & Osmanov S. Global and regional distribution of HIV-1 genetic sub-

types and recombinants in 2004. Aids. 20, W13–W23 (2006) https://doi.org/10.1097/01.aids.

0000247564.73009.bc PMID: 17053344
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