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Abstract

Machine learning was shown to be effective at identifying distinctive genomic signatures
among viral sequences. These signatures are defined as pervasive motifs in the viral
genome that allow discrimination between species or variants. In the context of SARS-CoV-
2, the identification of these signatures can assist in taxonomic and phylogenetic studies,
improve in the recognition and definition of emerging variants, and aid in the characterization
of functional properties of polymorphic gene products. In this paper, we assess KEVOLVE,
an approach based on a genetic algorithm with a machine-learning kernel, to identify multi-
ple genomic signatures based on minimal sets of k-mers. In a comparative study, in which
we analyzed large SARS-CoV-2 genome dataset, KEVOLVE was more effective at identify-
ing variant-discriminative signatures than several gold-standard statistical tools. Subse-
quently, these signatures were characterized using a new extension of KEVOLVE
(KANALYZER) to highlight variations of the discriminative signatures among different clas-
ses of variants, their genomic location, and the mutations involved. The majority of identified
signatures were associated with known mutations among the different variants, in terms of
functional and pathological impact based on available literature. Here we showed that
KEVOLVE is a robust machine learning approach to identify discriminative signatures
among SARS-CoV-2 variants, which are frequently also biologically relevant, while bypass-
ing multiple sequence alignments. The source code of the method and additional resources
are available at: https://github.com/bioinfoUQAM/KEVOLVE.

Introduction

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the etiological agent of coro-
navirus disease 2019 (COVID-19). This highly infectious coronavirus was first identified in
December 2019 in Wuhan, China [1]. It belongs to the betacoronavirus genus, which includes
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SARS-CoV-1 and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [2].
The genome of SARS-CoV-2 is a single-stranded RNA molecule composed of approximately
30,000 nucleotides. The nucleotide sequence identity of SARS-CoV-2 with SARS-CoV-1 and
MERS-CoV is 79.5% and 50%, respectively [3, 4]. The SARS-CoV-2 genome encodes 29 differ-
ent proteins, including 16 nonstructural proteins, 4 structural proteins, and 9 accessory pro-
teins (see Fig 1 adapted from [5]). The N (nucleocapsid) protein contains the viral RNA
genome, while the S (spike), E (envelope), and M (membrane) proteins together form the viral
envelope [6]. SARS-CoV-2 exhibits a notably high mutation rate, with numerous mutations—
particularly in the spike gene—correlated to increased SARS-CoV-2 transmission rates [7],
augmented fusogenic and pathogenic properties of the virus [8], as well as the emergence of
new variants that could diminish the efficacy of existing COVID-19 vaccines and antibody-
based therapies [9].

Given its rapid rate of evolution, it is important to be able to efficiently identify genomic
signatures that can distinguish between different variants of SARS-CoV-2 and highlight poten-
tial functional changes. These signatures, also known as species- or variant-specific motifs that
are prevalent throughout the viral genome [10], can contribute to taxonomic [11] and phyloge-
netic [12] studies to differentiate distinct groups of variants, provide insight into their evolu-
tionary history [10], help to understand the structure of the viral quasispecies [13], and
facilitate mechanistic studies to determine the functional basis of variant-specific differences
in virulence [14]. To identify discriminative motifs, or genomic signatures, among different
groups of biological sequences, the traditional approach is to compute multiple sequence align-
ments using tools such as MUSCLE [15], Clustal W/X [16], or MAFFT [17]. These alignments
are then analyzed to identify divergent genomic regions that constitute the discriminative
motifs. However, multiple alignment approaches have significant limitations when applied to
viral genomes [14].

First, alignment-based approaches are generally computationally and time-intensive, mak-
ing them less well suited for dealing with large viral sequence datasets that are increasingly
available [18]. In fact, computing an accurate multi-sequence alignment is an NP-hard prob-
lem with (2N)!/(N!)* possible alignments for two sequences of length N [19], which means that
in some cases, the alignment cannot be solved within a realistic time frame or involves signifi-
cant compromise in accuracy [17]. Even with dynamic programming, the time requirement is
on the order of the product of the lengths of the input sequences [20]. Second, alignment algo-
rithms assume that homologous sequences consist of a series of more or less conserved linearly
arranged sequence segments. However, this assumption, named collinearity, is often
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Fig 1. SARS-CoV-2 genome organization. Four structural proteins (red), 16 non-structural proteins (NSPs; blue),
and 9 accessory factors (green) are shown. ORFs (open reading frames; yellow) la and 1b encode polyproteins. The
protein sequence similarity with SARS-CoV homologues (when homologues exist) is depicted by the color intensity.

https://doi.org/10.1371/journal.pone.0296627.9001
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questionable, especially for RNA viruses [21]. This is because RNA viruses show extensive
genetic variation due to high mutation rates, as well as high frequencies of genetic recombina-
tion, horizontal gene transfer, and gene duplication, leading to the gain or the loss of genetic
material [22]. Finally, performing multiple alignments often requires adjusting several param-
eters, such as substitution matrices, deviation penalties, and thresholds for statistical parame-
ters, which are dependent on prior knowledge about the evolution of the compared sequences
[21]. However, the adjustment of these parameters is sometimes arbitrary and requires a trial-
and-error approach, and research has shown that small variations in these parameters can sig-
nificantly impact the quality of alignments [23].

To address the limitations of discriminative motif identification using multiple sequence
alignment, specialized statistical-based tools were developed, such as MEME [24, 25]. MEME
has a discriminative mode [26] that identifies enriched motifs that distinguish a primary set of
sequences from a control set. Other MEME tools were also developed, including STREME
[27], the most powerful tool for discovering motifs in sequence datasets. STREME uses a gen-
eralized suffix tree and evaluates motifs using a statistical test that compares the enrichment of
matches to the motif in the primary set of sequences to the control set [27]. In recent years, a
series of machine-learning techniques were developed and widely used in the field of geno-
mics, and were proven to be highly effective for solving complex and large-scale data analysis
problems [28]. For example, the CASTOR study [29] demonstrated the usefulness of machine
learning models coupled with restriction fragment length polymorphism (RFLP) signatures
for classifying viral genomic sequences, achieving f1-scores > 0.99 for predicting hepatitis B
virus and human papillomavirus genomes. However, these signatures were found to have limi-
tations in predicting human immunodeficiency viruses (HIV) sequences, resulting in an
f1-score < 0.90. To address this issue, the KAMERIS study [30] used k-mers (nucleotide subse-
quences of length k) to characterize the sequences provided to the learning model. To reduce
the exponential number of features (4%) associated with k-mers, KAMERIS applied truncated
singular value decomposition for dimensionality reduction, but this transformation affected
the ability to identify and analyze relevant features identified by the machine-learning model
for discriminating between groups of sequences.

In response to this challenge, CASTOR-KRFE [31] was developed as a method for identify-
ing minimal sets of genomic signatures based on minimal sets of k-mers to discriminate
among multiple groups of genomic sequences. During cross-validation evaluations covering a
wide range of viruses, CASTOR-KREFE successfully identified minimal sets of motifs, which
when combined with supervised learning algorithms, resulted in average f1-scores > 0.96 [31].
However, this study was limited to identifying the optimal set of motifs, rather than exploring
suboptimal sets in the feature space, which can be a major limitation when dealing with viral
sequences with high genomic diversity or when attempting to infer biological functions based
on the identified motifs. To overcome this limitation, KEVOLVE [32] was developed as a new
method that uses a genetic algorithm incorporating a machine-learning kernel to identify mul-
tiple minimal subsets of discriminative motifs. A preliminary comparative study on HIV
nucleotide sequences showed that the KEVOLVE-identified motifs allowed for the construc-
tion of models that outperformed specialized HIV prediction tools [32]. In the context of the
COVID-19 pandemic, this paper assessed the performance of KEVOLVE in a comparative
study with several reference tools (MEME, STREME, and CASTOR-KRFE) for identifying dis-
criminative motifs in the genomes of SARS-CoV-2 variants. The identified motifs were then
analyzed using the new KEVOLVE extension (KANALYZER) to extract the associated infor-
mation, and this information, which is discussed in light of the available literature to highlight
the potential biological functions of the sequences/motifs in question.
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Materials and methods

To assess the accuracy of KEVOLVE in identifying discriminative motifs, we conducted a
comparative study with specialized tools. This involved using each tool to identify a subset of
discriminating motifs in a set of training sequences of SARS-CoV-2 variants. These sets of
motifs were designed to provide genomic signatures specific to each variant. In a second step,
we used these signatures and a supervised learning algorithm to fit a prediction model on the
training sequences. Then, we evaluated the quality of the signatures by predicting the trained
models on a large test set of unknown sequences. Finally, we used KANALYZER, the latest
extension of KEVOLVE, to analyze the variant-discriminative motifs identified by KEVOLVE
and assess their potential functional impact based on their location in the genome, as previ-
ously described in the literature.

Discriminative motif identification tools

We first evaluated KEVOLVE [32], a machine learning method based on a genetic algorithm
for identifying multiple minimal sets of k-mers to discriminate nucleotide sequences.
KEVOLVE takes as input a set of labeled nucleotide sequences and a parameter k, which corre-
sponds to the length of the k-mers used to represent the sequences in an occurrence matrix.
KEVOLVE starts by using a meta-transformer to remove k-mers with low discriminative con-
tribution based on importance weights assigned by a linear Support Vector Machine (SVM).
Then, the genetic algorithm begins its search by initializing several subsets (chromosomes)
composed of a reduced set of k-mers (genes). Each chromosome is evaluated in a cross-valida-
tion process where prediction models are trained and tested on nucleotide sequences repre-
sented by the genes in the chromosome. The chromosomes with the best scores are then
subjected to mutation/crossover processes. The mutation process involves randomly substitut-
ing a gene with another within a chromosome, and the crossover process involves exchanging
genes between different chromosomes. In addition, the genes in the best chromosome have an
increased probability of being selected in the next iteration. The next generation is then com-
posed of the best current chromosomes and new chromosomes, which are generated based on
the updated probability of selection. This process is repeated and coupled with a progressive
increase in chromosome size until a stopping criterion is met (number of iterations or perfor-
mance score of the solutions). The detailed KEVOLVE pseudo code is available in the original
article [32], and the algorithm code can be accessed in the GitHub repository.

The second tool we evaluated was CASTOR-KRFE [31], an alignment-free machine learn-
ing approach for identifying a set of genomic signatures based on k-mers to discriminate
between groups of nucleic acid sequences. The core of CASTOR-KREFE is based on feature
elimination using SVM (SVM-RFE). It identifies the optimal length of k to maximize classifi-
cation performance and minimize the number of features, providing a solution to the problem
of identifying the optimal length of k-mers for genomic sequence classification [33]. The third
tool we evaluated was MEME (discriminative mode) [26], a tool from the MEME suite [25]
specialized in motif identification. MEME takes two sets of sequences as input and identifies
enriched motifs that discriminate the primary set from the control set. By default, MEME
assumes that all positions in the sequences have an equal chance of being a motif site. How-
ever, in discriminative mode, the algorithm uses additional information such as sequence con-
servation, nucleosome positioning, and negative examples to compute a measure of the
probability that a discriminative motif starts at each position in each sequence [26]. This mea-
sure, called “position specific prior” (PSP), is then used to guide the sequence motif discovery
algorithm in the primary set, resulting in motifs that are more likely to discriminate it from the
control set [34]. MEME also allows for the specification of a potential motif distribution type

PLOS ONE | https://doi.org/10.1371/journal.pone.0296627 January 19, 2024 4/21


https://doi.org/10.1371/journal.pone.0296627

PLOS ONE

Machine learning-based approach to identify SARS-CoV-2 variant-specific genomic signatures

to improve the sensitivity and quality of the motif search. There are two available options in
discriminative mode: zero or one occurrence per sequence (ZOOPS), where MEME assumes
that each sequence may contain at most one occurrence of each motif, and one occurrence per
sequence (OOPS), where MEME assumes that each sequence in the dataset contains exactly
one occurrence of each motif. The last tool we evaluated was STREME [27], which was found
to be more accurate, sensitive, and thorough than several widely used algorithms in a recent
comparative study [27]. STREME’s algorithm uses a data structure called a generalized suffix
tree and evaluates motifs using a one-sided statistical test of the enrichment of matches to the
motif in a primary set of sequences compared to a control set. STREME assumes that each pri-
mary sequence may contain ZOOPS of the motif, but the discovery of the motif will not be
negatively affected if a primary sequence contains more than one occurrence.

Dataset

To set up the most comprehensive evaluation framework possible, we built a dataset of
334,956 SARS-CoV-2 genomes representing the different variants defined by the World
Health Organization (WHO) with at least 100 available sequences. The sequences for this data-
set, covering variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Kappa
(B.1.617.1), Epsilon (B.1.427/B.1.427), Iota (B.1.526), Eta (B.1.525), Lambda (C.37), and Omi-
cron (B.1.1.529/BA.x), were downloaded on November 1, 2022 from the NCBI database [35]
using their command line data download tool (https://www.ncbi.nlm.nih.gov/datasets/docs/
v2/how-tos/virus/get-sars2-genomes/). We only included complete genomes with high cover-
age (less than 1% missing nucleotides) in our dataset (Table 1), and the list of accession ids for
the sequences used in our different datasets is available on our GitHub repository.

Benchmarking. We assessed the performance of the different tools to identify discrimina-
tive motifs using an established approach [31]. We performed a repeated K-fold evaluation 100
times with a different randomization at each repetition. For each iteration, 2,500 sequences
were used to form a training set and the rest (332,456) were used as a testing set. In the training
set, the variants were represented by 250 sequences, with the exception of Kappa, which was
represented by 100 sequences due to the low number of available sequences. Alpha and Omi-
cron were each represented by 350 and 300 sequences, respectively, due to the large number of
avaijlable sequences. At each iteration, the training sets were given as input to each tool to iden-
tify the motifs that discriminate the sequences of the variants. The identified motifs, along with
the training sequences, were used to train a machine-learning algorithm (linear-SVM). Indeed,
linear SVMs are one of the most commonly used approaches in the classification of viral

Table 1. Genomic sequence dataset of SARS-CoV-2 variants.

WHO Label Pango Lineage Number of sequences
Alpha B.1.1.7 175,212
Beta B.1.351 695
Gamma P.1 8,129
Delta B.1.617.2 9,408
Kappa B.1.617.1 127
Epsilon B.1.427/B.1.429 14,674
Iota B.1.526 19,274
Eta B.1.525 716
Lambda C.37 428
Omicron B.1.1.529/BA.x 106,293
Total number of sequences 334,956

https://doi.org/10.1371/journal.pone.0296627.t001
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genomes, including SARS-CoV-2 [36]. They have also shown robustness when combined with
k-mer occurrence vectors to represent sequences [32]. The ability to exploit the weights
assigned to characteristics (based on k-mers in our case) makes them particularly interesting
for highlighting regions of interest in viral genomes. This model was then used to predict the
test set, and different performance metrics were calculated. For each iteration, we computed
the unweighted average of precision, recall, and f1-score. By computing each metric as an
unweighted average, we avoided the dominance effect of prevalent variants, as demonstrated
inEqs 1,2 and 3.

N ape
True Positives,

(1)

precision = — — —
N <= True Positives, + False Positives,

1 True Positives,
recall = — Z — ! .
N 4= True Positives, + False Negatives;

(2)

1 & Precision; x Recall,
fl — =—) 2x d ! 3
SOTETN ; Precision; 4 Recall, ®)

The distributions of the different performance metrics for each tool are illustrated through
violin plots in Fig 2A-2C. In addition, to visualize the prediction by class more specifically, we
computed the average confusion matrix with its standard deviation for each tool (Fig 3A-3E).
Finally, Fig 2D illustrates the average number of unique motifs identified by each tool during
the hundred iterations to train the prediction models.

Identification of discriminating motifs and tool settings. In the identification phase of
the discriminative motifs, we set the length of the motifs to k = 9 for two reasons. First, this
length is consistent with other studies that have used k-mers for viral sequence classification
[10, 31, 33]. Second, the selection of a multiple of 3 is consistent with the codon size, and as we
use sliding windows with a step of 1 to calculate the number of k-mers, encompassing all read-
ing frames, we believe this method facilitates the capture of potential amino acid-level muta-
tions. For KEVOLVE, we set the following search parameters: n_chromosomes = 100 (the
number of chromosomes generated at each iteration), and n_genes = 1 (the number of genes
composing the chromosome in the first generation). Initiating with a unitary instance allows
KEVOLVE to ascertain the optimal size during its search process since this is unknown, and
the training sets vary throughout the evaluation. The stopping criterion parameters were set at
n_iterations = 1000 and n_solutions = 10. We utilized the default crossover and mutation rates
from a previous study [32] for these parameters. For CASTOR-KREFE, we set the performance
threshold to be maintained while reducing the number of features to T'= 0.99.

To evaluate MEME, considering its limitation to take as input a binary set, we implemented
the following process: for each variant v in the training set V, we selected all sequences belong-
ing to v to form the primary set and used the remaining sequences in V to form the control set.
We then applied MEME to discover motifs that discriminated the primary set from the control
set. This process was repeated for each variant v in order to build a set of motifs that could dis-
criminate each variant from the others. This set of motifs was used to train a model and predict
the testing set in the same configuration as CASTOR-KRFE and KEVOLVE. Both the ZOOPS
and OOPS options were evaluated for the associated distribution site parameters. Additionally,
to strongly characterize the different groups of sequences, we performed experiments to dis-
cover 10 motifs of width 9 for each variant. This choice allows us to theoretically characterize
each training set with 100 motifs, assuming there are no duplicates. We applied the same
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Fig 2. Results of the comparative study. A-C) The violin plots illustrate the distributions of the performance metrics, including Precision, Recall, and
F1-score, obtained for the test set predictions during the cross-validation evaluation of 100 iterations. D) The bar plot depicts the average number of
motifs identified by each approach to build their prediction model. The black vertical bar indicates the standard deviation.

https://doi.org/10.1371/journal.pone.0296627.9002

iterative process for identifying motifs to STREME. As mentioned previously, STREME does
not require an input parameter for the motif distribution type and handles this automatically.
Moreover, considering the number of experiments involved in evaluating the tools of the
MEME suite because of their limitation to not handle multi-class sequences, it was not feasible
to perform it on their web platform. To handle this, we set up virtual Linux environments
where we installed the MEME suite version 5.5.0 with all the necessary dependencies for its
functioning. Then several Shell/Python scripts were developed to run the different experi-
ments and process the output files to extract the identified motifs. Finally, we specified that for
the tools that identify multiple sets of motifs (KEVOLVE, MEME and STREME), the union of
the motifs is used to represent the sequences through the feature matrix at each iteration.
Analysis of the biological significance of the motifs identified by KEVOLVE. To
broaden the utility of KEVOLVE beyond identifying discriminative motifs and building pre-
diction models for nucleotide sequences, we developed KANALYZER [37]. KANALYZER is
an extension of KEVOLVE that uses pairwise alignment and parallel computing. It takes as
input a reference sequence in GenBank format, a list of nucleotide sequences labeled by their
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Fig 3. Results of the comparative study. A-E) The confusion matrices represent the average prediction performance as a function of the different variants
for each tool over the 100 iterations. Each cell shows the average percentage of the assigned instance in the top value, and the standard deviation in the
bottom value.

https://doi.org/10.1371/journal.pone.0296627.9003
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classes related to the organism of the reference sequence, and a list of discriminative motifs
associated with the studied sequences. KANALYZER aims to understand the reasons behind a
motif’s discriminatory potential by identifying the variations associated with it within different
groups of variants. A variation is defined as a nucleotide sequence derived from an initial k-
mer that has undergone one or more nucleotide changes. KANALYZER generates a report for
each motif as output, containing information on their variations that occur in the different
nucleotide sequences, their genomic localization, their frequencies of appearance according to
the different types of variants, and the resulting mutations at the amino acid level in the case of
coding regions. In this study, we used the KANALYZER extension to extract information asso-
ciated with the discriminative motifs identified by KEVOLVE. The information was derived
from the 334,956 sequences we collected and used the SARS-CoV-2 reference sequence
NC_045512.2 (Wuhan-Hu-1 isolate, complete genome) for analysis.

Results and discussion
Prediction performances

Initially, we examined the number of discriminative motifs identified by each tool, as summa-
rized in Fig 2D. CASTOR-KRFE identified the lowest average number of motifs at 10 per itera-
tion, which is minimally constrained by the number of classes in the input dataset. KEVOLVE,
MEME ZOOPS, and MEME OOPS identified an average of 55, 60, and 84 motifs, respectively.
Finally, STREME identified the highest average number of motifs at 107 per iteration, includ-
ing several degenerate motifs that were converted into classical motifs. The predictive perfor-
mance of the models based on the motifs identified by each tool is shown in Fig 2A-2C in
terms of precision, recall, and f1-score, respectively.

KEVOLVE performed the best, with an average score of 0.99 across all metrics. The associ-
ated confusion matrix (Fig 3A) for KEVOLVE indicates that misclassifications sometimes
occur, with Kappa sequences being incorrectly predicted as Delta and Omicron in 4.8% and
2.6% of cases, on average. For Lambda variants, approximately 3.1% of the sequences were
incorrectly predicted as Omicron. STREME models, which are based on approximately twice
as many motifs as KEVOLVE, yielded the second-best predictions with an average perfor-
mance of 0.96, 1.00, and 0.98 for precision, recall, and fl-score, respectively. The associated
confusion matrix for STREME (Fig 3B) revealed some limitations for Lambda sequences, with
more than 12.5% of them being incorrectly predicted as Alpha, Delta, Epsilon, or Omicron, on
average. There was also an average of 9% of Beta sequences that were misclassified in a similar
manner as Lambda sequences. Like KEVOLVE, STREME models had difficulty predicting cer-
tain Kappa variant sequences (= 9% on average), with many of them being incorrectly
assigned as Delta.

The CASTOR-KRFE method had an average precision of 0.86, a recall of 1.00, and an
f1-score of 0.90. The confusion matrix for the CASTOR-KRFE method (Fig 3C) indicates that
it shares the same challenges as the KEVOLVE and STREME methods in inaccurately classify-
ing some Kappa variant sequences, with 19% of these sequences being incorrectly predicted as
Alpha, 17% as Delta, and 11% as Epsilon, on average. There were also limitations in the classifi-
cation of Lambda variants, with nearly 29% of the sequences being incorrectly assigned to
Omicron. In addition, more than 12% of the Beta variant sequences were incorrectly assigned
to Alpha, on average, and 17% of the Eta variant sequences were incorrectly assigned to Alpha.
The MEME OOPS and MEME ZOOPS models showed the poorest prediction performance,
with average precisions of 0.97 and 0.83, average recalls of 0.94 and 0.88, and average f1-scores
of 0.88 and 0.82, respectively. Both models frequently made classification errors with Lambda
variants, which were often incorrectly predicted to be Epsilon. Beta variants were sometimes
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incorrectly predicted to be Epsilon, Delta, or Iota, and Kappa variants were often incorrectly
predicted to be Delta. More detailed results can be seen in the confusion matrices shown in Fig
3D and 3E.

Biological significance of KEVOLVE-identified motifs

To extract biological information related to the motifs identified by KEVOLVE, we first com-
bined all the motifs identified during different iterations. We used these motifs to represent all
334,956 sequences in our dataset and trained a SVM model. We ranked the motifs based on
their discriminant contribution, as determined by the importance weights assigned by the
model. We subsequently used KANALYZER to analyze the top 50 non-overlapping, non-
redundant motifs (with regards to highlighted mutations), which encompass at least the first
third of the most discriminating motif set according to the SVM-assigned weights. This analy-
sis was conducted alongside the full set of sequences and the reference sequence NC_045512.2.
The results are summarized in Table 2. In cases where KANALYZER did not produce results
for a specific motif, we assumed that it was located in a genomic region with high nucleotide
variability (e.g., near residues 203-205 of the nucleocapsid protein [38]) or involved numerous
successive deletions (e.g., the large 9-base SGF deletion in OR1ab [39]). To improve the signal
for these motifs, we extended them to 30 nucleotides based on a consensus sub-sequence from
the genomes where they were initially present. These extended motifs (ID 3, 8, 12, 18, and 38
in Table 2) were then analyzed using KANALYZER like the others. As shown on Table 2, the
majority of the identified motifs were located in the coding regions of structural proteins, par-
ticularly the S protein. These motifs tended to involve missense mutations, which can have sig-
nificant impacts on the infectivity, tropism, and pathogenesis of the virus even when few
changes are involved [40].

Motif 1, located in the S glycoprotein, is an interesting example. It has a variation present in
Beta variants and in 90% of Omicron variants that involves the K417N mutation. A second
variation of motif 1, found in Gamma variants, involves the K417T mutation. Both mutations
occur in the receptor binding domain (RBD) of S protein, which plays a crucial role in viral
infection by interacting with the host ACE2 cell surface receptor. According to published
reports, these mutations may potentially decrease binding ACE2 [41] and facilitate immune
escape [42]. In contrast to the K417N/T mutations, the N501Y substitution found in the
RBD-ACE?2 interface was shown to result in one of the largest increases in ACE2 affinity con-
ferred by a single RBD mutation [41]. This substitution, which is associated with the variation
of motif 4, is present in several different variants, including Alpha, Beta, Gamma, and Omi-
cron. According to Nelson et al. [43], the additional presence of the E484K mutation can fur-
ther enhance virus binding to ACE2, while the presence of the K417N substitution can
stabilize this binding. The combination of these mutations may result in the emergence of a
mutant, whith the potential to evade host immune responses [43]. In addition, tests in individ-
uals who received the Moderna or Pfizer-BioNTech SARS-CoV-2 vaccines suggest that the
presence of the K417N, N501Y, and E484K mutations may result in a small but significant
reduction in viral neutralization, potentially impacting the effectiveness of these vaccines
against certain variants [44].

KEVOLVE highlighted several other notable mutations in the S protein, including the
P681H and P681R substitutions. P681H is present in the sequences of both Alpha and Omi-
cron variants, and its proximity to the furin protease cleavage site is thought to increase the
cleavage of the S protein, potentially contributing to the rapid transmission of these variants
[45]. This mutation was suggested to enhance SARS-CoV-2 infectivity [46]. The P681R substi-
tution, which is highly conserved in the Delta and Kappa variants, appears to be associated
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Table 2. Mutational landscape of the motifs identified by KEVOLVE.

ID REFERENCE K-MERS LOCATIONS VARIATIONS AMINO VARIANTS
ACID
CHANGE
1 CTGGAAAGA S CTGGAAATA K417N Beta (98%) / Omicron
(90%)
CTGGAACGA K417T Gamma (99%)
2 AATTGCTAI M AATTGCTAQ 182T Delta (98%) / Eta (99%)
AATTGCTAG 1828 Kappa (96%)
3 | AGTTGGATGGAAAGTGAGTTCAGAGTTTAT S AGTTGGATGGAAAGTG——GAGTTTAT Del156-157 / Delta (92%)
E— R158G
AGTTGIATGGAAAGTGAGTTCAGAGTTTAT W152C Epsilon (98%)
AGTTGGATGAAAAGTGAGTTCAGAGTTTAT E154K Kappa (79%)
4 ACCCACTAA S ACCCACTTA N501Y Alpha (99%) / Beta (98%)
/ Gamma (99%) /
Omicron (97%)
5 GCTAGAAAA ORF8 GCTATAAAA R521 Alpha (99%)
6 CAAACTAAA None CAAACTATA No CDS Epsilon (99%)
CAAACTTAA Lambda (99%) / Omicron
(99%)
7 CCTCGGCGG S CATCGGCGG P681H Alpha (99%) / Omicron
(99%)
CGTCGGCGG P681R Delta (99%) / Kappa
(97%)
8 | CCAGGCAGCAGTAGGGGAACTTCTCCTGCT N CCAGGCAGCAGTAAACGAACTTCTCCTGCT R203K / Alpha (94%) / Lambda
G204R (96%) / Omicron (98%)
CCAGGCAGCAGTAGGGGAAITTCTCCTGCT T2051 Beta (98%) / Epsilon
(99%) / Eta (98%)
CCAGGCAGCAGTATGGGAACTTCTCCTGCT R203M Delta (97%) / Kappa
(92%)
CCAGGCAGCTCTAAACGAACTTCTCCTGCT R203K / Gamma (96%)
G204R
CTAGGCAGCAGTAGGGGAACTTCTCCTGCT P199L Tota (70%)
CCAGGCAGCAGGAGGGGAACTTCTCCTGCT S202R Tota (27%)
9 CAACCAGAA S TAACCAGAA T191 Omicron (71%)
GAACCAGAA TI9R Delta (96%)
CAAACAGAA T20N Gamma (98%)
10 TTCAGAGCG ORF3a TTCATAGCG Q57H Beta (98%) / Epsilon
(99%) / Tota (98%)
11 CTTGGTGCA S TTTGGTGCA L699F Beta (100%) / Iota (71%)
12 TTGGTTCCATGQTATACATGTCTCTGGGAC S TTGGTTCCATGCTA——TCTCTGGGAC Del69 / Alpha (97%) / Omicron
Del70 (6%)
TTGGTTCCATGTTA——TCTCTGGGAC A67V / Eta (98%) / Omicron
Del69-70 (6%)
13 AAATGCACC N AAATGGACC A12G Eta (99%)
AAATGCACT P13L Tota (28%) / Lambda
(97%) / Omicron (99%)
14 TTACGCAAT ORFlab CTACGCAAT L3201P Tota (99%) / Lambda
(99%)
15 IGTATAGAT S QGTATAGAT L452R Delta (98%) / Epsilon
(99%) / Kappa (100%) /
Omicron (5%)
AGTATAGAT L452Q Lambda (99%)
(Continued)
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Table 2. (Continued)

ID REFERENCE K-MERS LOCATIONS VARIATIONS AMINO VARIANTS
ACID
CHANGE
16 GTTGCAGCC 5 UTR TTTGCAGCC No CDS Beta (6%) / Delta (98%) /
Kappa (100%)
17 CCACTGAGA S CCATTGAGA T951 Delta (20%) / Kappa
(88%) / Tota (99%) /
Omicron (27%)
18 | CATTTTTGGGTGTTTATTACCACAAAAACA S CATTTTTGGGTGT—TTACCACAAAAACA Del144 Alpha (98%) / Eta (99%)
CATTTTTGGATGTTTATTACCACAAAAACA G142D Delta (62%) / Kappa
(69%) / Omicron (70%)
CATTTTTGG———ACCACAAAAACA Del142-144 / Omicron (27%)
Y145D
19 AGATCAGTT ORF7a AGATCAGCT V82A Delta (94%) / Kappa
(100%)
20 CTAAGAGGT S CTACGAGGT K77T Delta (52%)
TTAAGAGGT T761 Lambda (98%)
21 AGGAATCAC ORFlab GGGAATCAC K6711R Delta (53%)
GGGAAGCAC K6711R / Kappa (94%)
S6713A
22 TTAATCTTA S TTAATTTTA L18F Beta (33%) / Gamma
(99%)
23 ATATCCTTT S ATATCCTTG S982A Alpha (99%)
ATATCTTTT L981F Omicron (27%)
24 GACTCAGAC S GACTCACAC Q677H Eta (98%)
TACTCAGAC Q675H Lambda (8%)
25 AACTTCAAG S AACTTCAAA D950N Delta (96%)
AACTCCAAG Silent Kappa (19%)
26 AATGATCCA S AATTATCCA D138Y Gamma (98%)
AATCATCCA D138H Lambda (5%)
27 TACACCAAA N TACACCGAA Silent Eta (99%)
28 CACAACTGT ORF8 CATAACTGT T111 Tota (99%)
29 CTAATTCTC S CTAAGTCTC N679K Omicron (99%)
30 AGAGTTCCT E AGAGTTCTT P71L Beta (99%)
31 CAATGGAAC M GAATGGAAC QI9E Omicron (96%)
32 GCTCCAATT S GCTCCAAAT N969K Omicron (99%)
33 AGACATTGC S AGACATTGA A570D Alpha (99%)
34 AAAGTGGAA ORFlab AAATTGGAA K1655N Beta (99%)
35 GTTGGACCT S GTTGGACCC F888L Eta (99%)
36 TGTTTTTCT S TGTTTTTTT L5F Tota (99%)
37 AAAATATCT ORFlab ACAATATCT K1795Q Gamma (99%)
38 | ACTAGTTTGTCTGGTTTTAAGCTAAAAGAC ORFlab ACTAGTTTG———AAGCTAAAAGAC Del3675- | Alpha (99%) / Beta (95%)
3677 / Gamma (99%) / Eta
(99%) / Tota (99%)
Lambda (99%) / Omicron
(71%)
ACTAG———TTTTAAGCTAAAAGAC Del3674- Omicron (28%)
3676
39 GTCAACCAA S GTCAACCAT Q954H Omicron (99%)
40 CTTACTGTT S CTTAATGTT T859N Lambda (99%)
41 GTACATCGA ORF8 GTGCATCGA Y73C Alpha (99%)
(Continued)
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Table 2. (Continued)

D REFERENCE K-MERS
42 AGAAAAGTA
43 GTCTCTAGT
44 ATCATAACC
45 ATCTCAGAT
46 GGTTCATCC
47 AACTCGTCT
48 CCAACCCAC
49 CCTTTCTGC
50 AAGGAAGAC

LOCATIONS VARIATIONS AMINO VARIANTS
ACID
CHANGE

ORFlab AGAAAAATA Silent Eta (99%)

S GTCTCTATT S131 Epsilon (98%)
ORF3a ATCATAACT Silent Omicron (99%)
ORFlab ATCTCATAT D5584Y Epsilon (98%)
ORF3a GGTTCACCC S253P Gamma (98%)
5 UTR AACTCTTCT No CDS Beta (99%)

S CCGACCCAC Q498R Omicron (97%)
ORF7b CCTTTCTGT Silent Omicron (99%)

N AAGGAAGGC D63G Delta (96%)

The ID column is used to reference motifs and their associated information within the text. The REFERENCE K-MERS column comprises the motifs in their original

form as seen in the reference sequence NC_045512.2. The LOCATIONS column pinpoints the genomic region where the motifs reside. The VARIATIONS column

illustrates the changes stemming from the initial motifs that transpire across different sequences. The AMINO ACID CHANGE column details the distinct amino acid

level mutations induced by the variations. The VARIANTS column represents the percentage of variations” occurrence within different groups of variants. The

nucleotides subject to mutations are highlighted by underlining. All data is sourced from the comprehensive SARS-CoV-2 dataset (334,956 sequences).

https://doi.org/10.1371/journal.pone.0296627.t002

with enhanced fusogenicity and pathogenicity [8]. The Omicron variant is distinguished by
the N679K substitution, which is associated with motif 28 and also located near the furin cleav-
age site [47]. When combined with P681H, both substitutions allow for the inclusion of basic
amino acids near the furin cleavage site, facilitating the partition of the S protein into S1 and
S2 subunits and enhancing virus fusion and infection [48]. Among other notable mutations in
the S protein, KEVOLVE identified the double Del156-157 and R158G substitution
(highlighted by motif 3), which are located in the N-terminal domain (NTD) of the protein
and are unique to the Delta variant. These mutations, known as vaccine breakthrough muta-
tions [49], may potentially contribute to enhanced transmissibility or reduced sensitivity to
pre-existing neutralizing antibodies [50].

Motif 3 also allowed the identification of the W152C and E154K mutations, which are pres-
ent in more than 98% of Epsilon variants and =~ 80% of Kappa variants. The W152C mutation,
in particular, is correlated with the S13I mutation associated with motif 43, which together
have important biological consequences that may allow immune evasion [51]. According to
[51], mass spectrometry and structural studies showed that the S13I and W152C mutations
resulted in a complete loss of neutralization for 10 of 10 NTD-specific monoclonal antibodies,
due to the remodeling of the NTD antigenic supersite by the shift of the signal peptide cleavage
site and the formation of a new disulfide bond. Other examples of mutations that affect the
ability of SARS-CoV-2 to bind to specific antibody molecules (antigenicity) include the L18F,
T19R/I, and T20N substitutions, which are highlighted by motifs 9 and 22. L18F is found in
the Gamma variant and in ~ 35% of Beta genomes. T19R and T191 are present in 96% of Delta
variants and 71% of Omicron variants, respectively, while T20N is a Gamma-specific muta-
tion. Epitope binding of 41 NTD-specific monoclonal neutralizing antibodies (mAbs) identi-
fied six antigenic sites, one of which, termed the “NTD supersite”, is recognized by all known
NTD-specific mAbs and consists of residues 14-20, 140-158, and 245-264 [52]. The mutations
associated with motifs 9 and 22 therefore include substitutions close to these antigenic regions
of the NTD, including L18F, which is known to reduce neutralization by some antibodies [53].
A last example of motif located in the S protein identified by KEVOLVE that involves major
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impacts on the characteristics of SARS-CoV-2 is motif 14. A first variation of this motif, pres-
ent in Delta, Epsilon, Kappa, and a minority of Omicron variants (5%), involves the L452R
substitution. Located in the spike RBD which interacts directly with ACE2, this mutation was
shown to increase spike stability, viral infectivity, viral fusogenicity, and viral replication [54].
The 1L452Q substitution, which is present in the Lambda variant, appears to be correlated with
the T76I mutation associated with motif 20. These specific mutations are major contributors
to the increased infectivity of the Lambda variant compared to other variants [55].

Regarding the mutations of interest associated with the motifs identified by KEVOLVE out-
side the S protein are I82T and I82S which are located in the M protein. M protein is highly
conserved with low mutation rates and is a key element in virion morphogenesis and assembly,
facilitating the release of viral particles from host cells and enhancing glucose transport during
replication [56]. The I82T mutation, found in Delta and Eta variants, was suggested to enhance
viral replicative fitness by altering cellular glucose uptake [57]. The I82S mutation, which is
currently unique to Kappa, has not yet been well studied for its effects on SARS-CoV-2 [58].
Motif 8, located in the highly immunogenic and abundantly expressed N protein, is a last rele-
vant example of a motif associated with mutations of interest. KANALYZER's analysis of this
motif has identified variations in that region that involve P199L, S202R, R203K/M, G204R,
and T205], at least one of which is found in every major natural variant [59]. The R203K/
G204R mutation, which is present in the majority of Alpha, Gamma, Lambda, and Omicron
variants, was shown to confer replication advantages likely related to ribonucleocapsid (RNP)
assembly, and to be associated with increased infectivity, adaptability, and virulence of SARS--
CoV-2 [60]. The R203M mutation, present in Delta and Kappa, as well as the S202R mutation
present in ~ 27% of Iota variants, were shown to increase viral infectivity by ~ 50-fold [59].
Addition of the P199L mutation (present in ~ 70% of Iota variants) to S202R and R203K/M
increases transmissibility by four to seven times and enhances luciferase activity, which is posi-
tively correlated with the more efficient assembly of virus-like particles and more effective
mRNA delivery [59]. Overall, the highly variable region of residues 203-205 in the N protein of
SARS-CoV-2, which includes the T205I substitution specific to Beta, Epsilon, and Eta, was
associated with increased replication and pathogenicity [38]. The motif analysis reports gener-
ated by KANALYZER and the accession numbers of the sequences used in our study are avail-
able on our GitHub directory (https://github.com/bioinfoUQAM/KEVOLVE). In addition, all
identified mutations were manually confirmed using resources found at https://covdb.
stanford.edu/variants/ and https://covariants.org/.

Motifs identified by KEVOLVE/KANALYZER as genomic signature of
SARS-CoV-2 variants

In the comparative study, we used KEVOLVE to identify motifs that discriminate between dif-
ferent classes of SARS-CoV-2 variants. We then selected the top 50 non-overlapping and non-
redundant motifs determined by the importance weights assigned by the model.

These 50 motifs were subsequently input into KANALYZER to characterize and identify
their variations within the different SARS-CoV-2 variant groups (Column “VARIATIONS” of
Table 2).” In total, we obtained 125 motifs and their associated variations, which are repre-
sented in the form of a cluster map (Fig 4). This map illustrates the frequency of absence/pres-
ence of each motif across different SARS-CoV-2 variants. Although these motifs were
identified by KEVOLVE from a training subset of 2,500 sequences, the frequencies shown in
Fig 4 are computed from the entire dataset of 334,956 sequences. By examining the columns, it
is possible to identify different profiles and clusters of absence/presence of motifs specific to
various variants. For example, Omicron has a cluster of 7 motifs that are unique to this variant
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Fig 4. Cluster map of motif occurrence frequency according to SARS-CoV-2 variants.

https://doi.org/10.1371/journal.pone.0296627.9004
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(located in the lower left of the cluster map), with the exception of the ATCATAACT motif,
which is also present in Iota. Towards the middle of the cluster map, we can see a second clus-
ter of 7 motifs that appear in all variants except Omicron. These two Omicron-specific clusters
contribute to its distance from the other SARS-CoV-2 variants. In summary, this figure illus-
trates KEVOLVE’s ability to identify motifs in temporally conserved regions starting with a
limited set of sequences and to generalize to a larger dataset of sequences collected since the
start of the COVID-19 pandemic. The identified motifs provide genomic signatures that can
be used to generate peptide or oligonucleotide libraries for rapid and accurate detection of
listed pathogens with tools such as VirScan [61] or to design specific primer sets for the classi-
fication of SARS-CoV-2 variants with artificial intelligence [62]. These approaches, which use
models built from a restricted number of motifs and sequences, can efficiently classify large
sets of sequences, which is crucial during major viral outbreaks where swift identification of
the virus’ taxonomic classification and genomic sequence origin is necessary for effective stra-
tegic planning, containment, and treatment [10]. In addition, the identified genomic signa-
tures, along with the reports generated by KANALYZER, provide valuable insights that can
help understand the viral evolution and transmission, the mechanisms through which the
virus causes disease, and the development of treatments and vaccines. These approaches,
which use models built from a restricted number of motifs and sequences, can efficiently clas-
sify large sets of sequences, which is crucial during major viral outbreaks where swift identifi-
cation of the virus’ taxonomic classification and genomic sequence origin is necessary for
effective strategic planning, containment, and treatment [10].

Perspective and future directions

For future work, we believe it would be insightful to explore comparisons with approaches that
have been developed concurrently and exhibit similarities. One such tool is CouGaR-g,
recently published, which introduces an approach using a deep learning model (convolutional
neural networks) to classify SARS-CoV-2 sequences represented by frequency chaos game
representation [63]. In their study, CouGaR-g demonstrated strong performance with an accu-
racy exceeding 96% for a test set comprising 19,146 SARS-CoV-2 sequences divided into 11
clades. The authors also utilize saliency maps to highlight relevant k-mers and further demon-
strate their association with known marker variants. It could, therefore, be beneficial to con-
duct experiments to compare the impact of sequence representation, the influence of the
choice of machine learning model (especially to investigate performance on GISAID clades
such as GR, GRY, or O where CouGaR-g’s performance was lower), or to assess the overlap
and differences in the k-mers identified as significant in correlation with known marker
variants.

Another pertinent comparative analysis would consider Nextclade [64] in classifying viral
sequences with significant nucleotide divergence. Nextclade conducts pairwise alignments of
viral genomes against a reference sequence, discerns mutations, and employs mutational dis-
tances to ascertain the nearest match within a phylogenetic framework, thereby designating
the query sequence to a closely related clade [64]. While both Nextclade and KEVOLVE dem-
onstrate robustness in SARS-CoV-2 sequence classification, KEVOLVE may offer superior
performance for viruses exhibiting substantial nucleotide divergence, such as HIV—with
divergence rates between subtypes ranging from 25 to 35% [65] and hepatitis C virus (HCV),
where genotypic differences reach 31 to 33% at the nucleotide level [66]. Notably, Nextclade is
tailored for rapid alignment of sequences with less than 10% divergence [64], a scenario less
applicable to the broad variability seen in HIV or HCV. KEVOLVE employs k-mer occurrence
vectors for sequence representation and a SVM for prediction, a methodology previously
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validated for robust viral classification across diverse divergence levels [30-32]. The sensitivity
of k-mer occurrences, as opposed to mutations at specific positions, is particularly advanta-
geous for sequences with elevated rates of nucleotide divergence [21]. Furthermore, the SVM
framework provides a nuanced approach by relating a set of training sequences to their fea-
tures and assigning weights based on their discriminative value—unlike Nextclade’s distance-
based classification. This feature weighting proves instrumental in prioritizing mutations for
analysis. Nextclade and KEVOLVE each have their place in the genomics toolbox, with specific
scenarios where they can distinguish themselves.

Finally, although our current approach and all those mentioned above operate within a
closed classification framework, which is limited to the classes defined by the training sequence
dataset, we plan to extend it to an open classification context. To achieve this, we propose a
strategy to calculate the distance between each new sequence and the existing genomic signa-
ture profiles, generated in the cluster map (Fig 4). By using an appropriate distance threshold,
we can identify sequences that are significantly distant from known signatures, potentially
indicating a new variant. Thresholds can be determined by leveraging the knowledge of dis-
tances between genomic signature profiles of different known variants. This method could be
based on distance metrics such as Euclidean distance, Manhattan distance, or even a normal-
ized distance based on k-mer similarity. Furthermore, to make our approach more flexible and
adaptable to new variants, we could also implement an incremental learning mechanism. In
this way, each time a new variant is identified above a certain support threshold, the associated
sequences could be integrated into the initial training set, and the model would be retrained to
account for this new information. This would allow our model to learn and progressively
adjust its parameters based on the newly encountered sequences. This approach could facilitate
the detection of new variants and enable regular model updates with the integration of new
sequences associated with emerging variants.

Conclusion

In this study, we compared the performance of the machine learning-based tools KEVOLVE
and CASTOR-KREFE with statistical tools specialized in identifying discriminative motifs in
unaligned sequence sets for the classification of SARS-CoV-2 variants. Overall, the models
based on the motifs identified by KEVOLVE outperformed the models based on the motifs
identified by the statistical tools, while using a lower number of motifs. Models based on
STREME motifs achieved the second-best performance (slightly below KEVOLVE), but these
models require the use of twice as many motifs. The drop in performance was mainly due to
prediction errors for Beta, Kappa, and Lambda variants. CASTOR-KRFE obtained the third-
best performance with models based on 10 times fewer motifs than STREME, as the tool only
identifies a single subset of motifs, unlike the others. The prediction errors of the CAS-
TOR-KRFE models are associated with the same variants as those of STREME, but they are
more pronounced. Finally, the weakest performances were associated with the MEME OOPS/
ZOOPS models, with many more errors for the same variants than STREME and CAS-
TOR-KRFE. This study also demonstrated that KEVOLVE and CASTOR-KRFE are able to
handle multi-class sets, rather than being limited to binary sets like some other tools. This is an
important advantage when analyzing organisms such as SARS-CoV-2, which are constituted
of multiple classes of viral variants.

Subsequently, we analyzed the motifs identified by KEVOLVE using KANALYZER, a new
extension based on pairwise alignment and parallel computing. This analysis allowed us to
identify variations of the discriminative motifs in different classes of SARS-CoV-2 variants,
including their frequency, genomic localization, and mutation at the amino acid level. This
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analysis, performed on all 334,956 sequences belonging to the 10 major variant classes defined
by the WHO, showed that the majority of the motifs identified by KEVOLVE were located in
structural proteins, with a particular focus on the S protein. The motifs and variations identi-
fied were linked to known mutations previously reported in the literature, which are assumed
to affect key characteristics of the virus such as infectivity, pathogenicity, tropism, transmis-
sion, and evolution. In conclusion, this study demonstrates the utility of KEVOLVE as a robust
tool for identifying discriminative motifs of SARS-CoV-2 variants. These motifs provide geno-
mic signatures that can be used to construct oligonucleotide libraries or to build artificial intel-
ligence models for rapid and accurate pathogen detection. Furthermore, KANALYZER allows
the analysis of motifs identified by KEVOLVE, providing valuable insights into the biological
properties of viruses and viral gene products that serve as targets for the development of vac-
cines or antiviral therapy.
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