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Abstract

The Tennessee Eastman Process (TEP) is widely recognized as a standard reference for

assessing the effectiveness of fault detection and false alarm tracking methods in intricate

industrial operations. This paper presents a novel methodology that employs the Adaptive

Crow Search Algorithm (ACSA) to improve fault identification capabilities and mitigate the

occurrence of false alarms in the TEP. The ACSA is an optimization approach that draws

inspiration from the observed behavior of crows in their natural environment. This algorithm

possesses the capability to adapt its search behavior in response to the changing dynamics

of the optimization process. The primary objective of our research is to devise a monitoring

strategy that is adaptable in nature, with the aim of efficiently identifying faults within the

TEP while simultaneously minimizing the occurrence of false alarms. The ACSA is applied

in order to enhance the optimization of monitoring variables, alarm thresholds, and decision

criteria selection and configuration. When compared to traditional static approaches, the

ACSA-based monitoring strategy is better at finding faults and reducing false alarms

because it adapts well to changes in process dynamics and disturbances. In order to assess

the efficacy of our suggested methodology, we have conducted comprehensive simulations

on the TEP dataset. The findings suggest that the monitoring strategy based on ACSA dem-

onstrates superior fault identification rates while concurrently mitigating the frequency of

false alarms. In addition, the flexibility of ACSA allows it to efficiently manage process varia-

tions, disturbances, and uncertainties, thereby enhancing its robustness and reliability in

practical scenarios. To validate the effectiveness of our proposed approach, extensive simu-

lations were conducted on the TEP dataset. The results indicate that the ACSA-based moni-

toring strategy achieves higher fault detection rates while simultaneously reducing the

occurrence of false alarms. Moreover, the adaptability of ACSA enables it to effectively han-

dle process variations, disturbances, and uncertainties, making it robust and reliable for

real-world applications. The contributions of this research extend beyond the TEP, as the

adaptive monitoring strategy utilizing ACSA can be applied to other complex industrial
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processes. The findings of this study provide valuable insights into the development of

advanced fault detection and false alarm monitoring techniques, offering significant benefits

in terms of process safety, reliability, and operational efficiency.

1. Introduction

Due to the potential benefits it offers, the chemical industry has undergone a notable transition

towards automation and intelligence in the current era of advanced computing. Nevertheless,

in conjunction with these technological advancements, the industry is confronted with an

escalating predicament of substantial failures and security incidents occurring on various

devices. The aforementioned challenge stems from the progressively intricate nature of process

technology, which gives rise to novel risks and vulnerabilities. Consequently, there exists a

pressing requirement to formulate resilient and efficient methodologies for the identification

of faults and mitigation of false alarms, with the ultimate objective of safeguarding the well-

being and integrity of industrial operations within the contemporary chemical sector.

The Tennessee Eastman Process (TEP) is widely acknowledged as a formidable benchmark

for assessing the efficacy of fault detection and false alarm monitoring strategies in complex

industrial processes [1]. The precise identification of malfunctions and the mitigation of erro-

neous alerts are of utmost importance in guaranteeing optimal operational security and effi-

cacy [2–4]. The primary objective of this scholarly research article is to elucidate the

development of a cutting-edge soft computing-based approach known as the adaptive crow

search algorithm (ACSA) aimed at the detection of faults and the mitigation of false alarms

within the context of the TEP. The primary goal is to augment the monitoring capabilities and

optimize the performance of the monitoring systems, with the aim of attaining heightened reli-

ability and enhanced process control.

Presently, within the realm of the industry, it is widespread to employ fault detection and

false alarm methodologies to uphold productivity benchmarks, guarantee safety, and facilitate

an economically viable maintenance strategy [5]. Indeed, it is possible to develop corrective

actions, deploy redundant systems, and to determine safety procedures by employing fault

identification and false alarm approaches. The literature presents a plethora of fault detection

and isolation (FDI) approaches, which can be categorized into quantitative, and qualitative

frameworks [6, 7], offering diverse avenues for effectively detecting and isolating faults in

industrial process. In general, quantitative frameworks require prior knowledge of mathemati-

cal design for the process, whereas qualitative techniques rely on pattern analysis of historical

process data, offering a valuable means to extract meaningful insights.

In recent decades, a significant methodological and analytically oriented approach, centered

around the utilization of observers as well as screening based, has emerged as a prominent

solution to the FDI problem [8, 9]. This approach aims to generate discerning signals that

accurately capture the inconsistencies between normal and faulty system operations, showcas-

ing its instrumental role in effectively addressing the challenges associated with FDI. Exempli-

fying the real-world utility of the approaches, noteworthy implication can be found in

esteemed works such as [10, 11]. Ten et al. conducted research on innovative data-driven

methods [12]. They introduced a hybrid spatiotemporal network using a convolutional neural

network for feature extraction, a novel approach in FDI. In another study, the same group

explored deep transferred learning for machinery FDI [13]. They validated their method

through in-depth analysis of two practical case studies. Notably, in the realm of fault detection
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issues within dynamic systems, the consideration of time delays becomes imperative. Address-

ing this concern, dedicated observer/filter-based methods [14] have been developed to approx-

imate and effectively handle the presence of time delay in fault detection scenarios. Within the

scholarly literature, strategies employing observer-based methodologies are frequently formu-

lated in the framework of an observer with unknown inputs, owing to their notable efficacy in

addressing uncertainties and nonlinearities, which can be encompassed within the umbrella of

unknown input characteristics [15, 16]. Undoubtedly, the problem of fault identification

becomes notably more challenging when confronted with systems exhibiting parametric

uncertainties within the model, as the conventional residual generation for fault detection fails

to account for these inherent uncertainties. Among the various analytical approaches, it is

worth mentioning the incorporation of parity relations [17] and the implementation of Kal-

man or robust filters [18–20]. Nevertheless, the use of a mathematical model to execute these

strategies can give rise to numerous difficulties, which arise from elements such as the intricate

nature of the system, the large number of dimensions involved, the presence of nonlinear rela-

tionships, and the existence of uncertainties related to parameters.

Within the field of qualitative designs approaches, researchers have investigated various

methods that depend on the analysis of patterns in historical process data, aiming to gain valu-

able insights. The techniques employed in this study include the application of signed directed

graph models [21], fault trees [22], qualitative trend analysis and the novel investigation of

hybrid strategies [23], among other approaches. The domain of qualitative designs methodolo-

gies pertaining to FDI encompasses a noteworthy discourse centred on the subject of multivar-

iate statistical procedure tracking. Within this particular framework, methodologies that

involve principal component analysis (PCA) [24] as well as partial least squares (PLS) [25]

have garnered significant recognition in the realm of industrial application due to their

remarkable effectiveness in detecting and diagnosing faults. These methodologies utilise a

dual-phase procedure: firstly, the multivariate as well as collinear information is projected

onto a smaller space of reduced dimensions, subsequently leading to the formulation of test

statistics including T2 and SPE, which serve as efficient monitors for the multivariate data.

The optimization of monitoring efficiency can be attained by embracing fully automated

monitoring systems that integrate resilient mechanisms to mitigate false alarms. Determining

the optimal system alarm sensitivity is a challenging task, as the precise economic cost trade-

off between the failure to detect a system alarm and the burden of managing a false alarm is

often obscure and elusive [26]. This underscores the imperative for false alarm mitigation

strategies that effectively regulate false alarms and non-detection, while preserving the capabil-

ity to detect and diagnose faults within industrial water distribution systems. The implementa-

tion of false alarm moderation techniques is of utmost importance within industrial systems,

as it serves the purpose of mitigating the frequency of false alarms while simultaneously pre-

serving the system’s capacity to identify and address legitimate faults [27]. These methodolo-

gies employ sophisticated algorithms [28], statistical analysis [29], and machine learning

techniques to effectively differentiate between spurious positives and genuine anomalies [30].

Through the reduction of erroneous alerts, they effectively enhance operational efficiency, alle-

viate the cognitive burden placed upon operators, and optimise the allocation of resources.

While demonstrating efficacy in certain domains, these methods typically necessitate a sub-

stantial volume of training data containing instances of “false alarms,” thereby incurring esca-

lated computational requirements and associated labeling costs [31]. In the realm of industrial

control systems, acquiring data from well-defined false alarm scenarios can present practical

challenges, primarily due to the inherent non-stationarity nature of the system over time. As a

result, obtaining reliable and representative training data for false alarm situations becomes a

formidable task in practice.
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Recent research has explored alternative and intriguing anomaly detection methods, such

as density-based spatial clustering of applications with noise (DBSCAN) and isolation forest,

demonstrating their efficacy in noise elimination, anomaly detection, and related areas [32].

These methods offer promising approaches for effectively identifying and isolating anomalies,

expanding the repertoire of tools available for comprehensive fault detection and false alarm

minimization strategies. However, it is important to note that these approaches may not be

inherently well-suited for the intricacies of industrial control process, as they frequently

encounter difficulties in achieving satisfactory results when faced with information sets of high

dimensionality [33]. While DBSCAN is commonly employed for noise elimination, it is

important to note that noise in industrial systems encompasses more than just outliers. It may

encompass infrequent occurrences that are not necessarily indicative of faults, as well as signif-

icant variations that deviate from the norm. In the context of process monitoring, the occur-

rence of false alarms in system alarms can be traced back to the fundamental definition of the

α-control limit [1]. By design, a confidence level of, say, 95% implies that approximately 5% of

routine operating data may surpass the α-control limit, potentially triggering false alarms.

While the imperative of minimizing false alarms and fault detection rates is evident, the

research in this particular domain remains relatively limited, leaving ample room for further

exploration and investigation.

Meta-heuristic approaches have been recognised as highly effective optimization techniques

for addressing complex challenges across diverse domains, encompassing real-time industrial

operations [34–36]. These techniques provide efficient and effective solutions through the

exploration of the search space, applying intelligent algorithms that draw inspiration from nat-

ural phenomena, social behaviour, and various computational paradigms. The exigencies of

contemporary industrial processes necessitate the implementation of efficacious optimization

strategies that possess the capacity to adapt to ever-changing environments, effectively manage

uncertainties, and concurrently optimize multiple objectives [37–39]. Meta-heuristic method-

ologies have garnered considerable attention due to their exceptional ability to tackle these

complex quandaries, presenting resilient and adaptable optimization resolutions. Recently,

researchers have widely used different techniques for fault identification such as gorilla troop

optimization [40], sine cosine algorithm [41], evolutionary-based optimization approaches

[42], and adaptive chirp mode decomposition [43]. These approaches harness advanced algo-

rithms to explore extensive search spaces, successfully unveiling solutions that are either highly

accurate or optimal, even when dealing with complex, multifaceted, and nonlinear problem

domains.

In the context of practical scenarios transformed into optimization problems, there exist

three fundamental elements: variables or design vector, objectives, and constraints. Variables

or design vector represent the factors that necessitate optimization, while objectives pertain to

the target functions that call for either minimization or maximization [44]. Banga et al. [45]

provided an overview and synthesis of metaheuristic optimization techniques, specifically Evo-

lutionary Computation and Simulated Annealing, as applied to the field of large-scale indus-

trial processing engineering. Their work encompassed a comprehensive examination of these

methods, exploring their potential and applicability in optimizing various aspects of industrial

processing engineering. In the scholarly contributions of Madoumier et al. [46], the applica-

tion of optimization techniques in the field of food engineering was extensively explored. This

work showcased the successful implementation of Tabu Search as powerful optimization tools

for addressing complex problems and improving performance in the domain of processing

engineering. The authors showcased the versatility and adaptability of these techniques in

tackling a wide range of real-world energy grids control processes, further solidifying the sig-

nificance and efficacy of their research contributions [47–49].

PLOS ONE An adaptive metaheuristic optimization approach for Tennessee Eastman process

PLOS ONE | https://doi.org/10.1371/journal.pone.0296471 February 21, 2024 4 / 24

https://doi.org/10.1371/journal.pone.0296471


1.1 Contribution

In this study, authors make a significant contribution to the field of fault detection and false

alarm minimizing techniques by introducing a novel approach that leverages the ACSA. The

proposed method aims to enhance the efficacy and performance of fault detection and false

alarm minimizing, with a specific focus on achieving higher fault detection rates while mini-

mizing false alarms. The main contribution of this study lies in the development and applica-

tion of the ACSA-based optimization approach to address the challenges associated with fault

detection and false alarm minimizing in industrial systems. The present study yields several

notable contributions, outlined as follows:

1. Method Efficacy: The efficacy of our proposed method is demonstrated through its perfor-

mance across various aspects of fault detection and false alarm minimizing. By utilizing the

ACSA, the proposed approach takes advantage of its ability to dynamically adapt the search

parameters, striking a balance between exploration and exploitation. This adaptive nature

allows our method to effectively handle the complexities and variations present in real-

world industrial systems, leading to improved fault detection capabilities as compared to

other statistical approaches presented in [24, 50, 51].

2. Performance in Fault Detection: One of the key objectives of our proposed method is to

achieve higher fault detection rates. The ACSA-based optimization approach optimizes the

fault detection parameters by exploring the solution space and identifying the optimal con-

figurations. By leveraging the ACSA ability to balance exploration and exploitation, our

method effectively tunes the parameters to enhance fault detection sensitivity. This results

in improved fault detection rates, enabling early identification and mitigation of faults in

industrial systems [52, 53].

3. Performance in False Alarm Minimization: Another important aspect of proposed method

is its ability to minimize false alarms. By formulating the fault detection and false alarm mini-

mizing problem as an optimization task, our approach incorporates a fitness function that

simultaneously evaluates fault detection rates and false alarm minimization. Through the

ACSA-based optimization process, our method finds an optimal balance between sensitivity

and specificity. This robust optimization enables a significant reduction in false alarm occur-

rences, contributing to a more reliable and efficient operation of industrial systems [50, 51].

4. Proficiency, Robustness, and Ease of Implementation: The proposed method demon-

strates proficiency, robustness, and ease of implementation, making it well-suited for prac-

tical applications [54, 55]. The ACSA-based approach harnesses the power of the ACSA,

which is known for its efficiency in optimization tasks. By leveraging this algorithm, our

method achieves optimal parameter configurations for fault detection and false alarm mini-

mizing, enhancing its proficiency in identifying faults and reducing false alarms.

5. Convergence Analysis: The convergence analysis of the optimal solution in the ACSA in

comparison to SQP reveals notable distinctions in their convergence behaviors. ACSA, char-

acterized by its bio-inspired optimization approach, demonstrates superior performance in

terms of early convergence when contrasted with SQP [56]. This adaptability allows ACSA

to efficiently explore the solution space, facilitating a swift convergence towards the optimal

solution. The algorithm’s ability to dynamically respond to the evolving landscape of the

objective function contributes to its accelerated convergence (please refer Fig 1).

Moreover, the strength of our approach lies in the adaptability of the ACSA to changing

system conditions and diverse fault characteristics. The inherent adaptability of the system
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guarantees the continued effectiveness and reliability of its fault detection capabilities, even

when faced with uncertainties and varying operational conditions. Furthermore, the suggested

approach exhibits a high level of feasibility in terms of implementation, thereby facilitating its

smooth incorporation into pre-existing fault detection and alarm systems. The ACSA’s sim-

plicity and adaptability make it conducive to the practical implementation of the algorithm in

diverse industrial contexts. This reduces the obstacles to its adoption and facilitates a seamless

transition to enhanced fault detection and false alarm mitigation techniques. Within the com-

plex framework of the TEP, the selection of features is guided by the ever-changing nature of

the system. The proposed approach guarantee that the chosen characteristics are responsive to

variations in process dynamics, which is vital for accurate fault identification and the ability to

track false alarms. The incorporation of the ACSA provides additional validation for our meth-

odology. The adaptability of ACSA is not only used to optimize monitoring variables but also

extends to dynamic feature selection. This adaptive modification ensures that the chosen attri-

butes are in line with the changing traits of the TEP, hence improving the overall resilience of

our approach. Comparative assessments comparing statistical approaches in [24, 50, 51, 56]

procedures with ACSA demonstrate the shortcomings of traditional methods in adjusting to

dynamic industrial processes, hence emphasizing the suitability of ACSA in our specific

situation.

The subsequent sections of this article are structured as follows. Section 3 provides a

description of the mathematical objective functions background for the TEP problem. Section

4 provides a concise overview of the theoretical foundation underpinning the proposed

approach. In Section 5, the simulation results obtained from implementing the approach are

Fig 1. SQP fitness progress for TEP [56].

https://doi.org/10.1371/journal.pone.0296471.g001
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elaborated upon in detail. Finally, Section 6 consolidates the key findings and presents a com-

prehensive summary of the conclusions drawn from this study.

2 Mathematical background

In this section, we explain the various optimization functions, definition for fault detection

rate (FDR) and false alarm rate (FAR).

False Alarms Rate (FAR): The FAR measures the frequency of false alarms triggered by the

monitoring system when no actual faults are present. A lower FAR is desirable to avoid unnec-

essary interventions and reduce false alarms. It is defined by the following equation,

FAR% ¼ 100�

Psn
i¼1

Qn

Nn
ð1Þ

In this context, Qn represents the count of normal samples that are mistakenly identified as

faulty, sn denotes the index of the last normal sample observed as faulty, and Nn indicates the

total number of normal samples.

Fault Detection Rate (FDR): This metric measures the account of detecting the faulty signal

or anomaly after it has actually occurred. It indicates the system’s responsiveness in identifying

faults promptly. It is defined as,

FDR% ¼ 100�

Psr
i¼1

Qr

Nr
ð2Þ

In this context, Qr represents the count of faulty samples, sr denotes the index of the last faulty

sample, and Nr indicates the total number of faulty samples.

2.1 Objective function for fault detection

From a mathematical standpoint, it is customary to formulate an objective optimization func-

tion for fault detection (FD) that entails the maximization of a performance measure associ-

ated with the rate of fault detection, while simultaneously minimizing another measure linked

to the occurrence of false alarms. Presented here is an illustrative instance of a mathematical

function pertaining to the pursuit of objective optimization in the realm of FD.

Max ¼ �� ðFDRÞ � Z� ðFARÞ ð3Þ

In this function (3), ϕ and η are weights that represent the relative importance or emphasis

given to the fault detection rate and false alarm rate, respectively. These weights can be

adjusted based on the specific requirements and priorities of the FD problem. The quantifica-

tion of the FDR and FAR can be accomplished through the application of diverse statistical

indicators, including but not limited to true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN). Herein lie a compendium of customary metrics that may be

employed:

FDR sensitivityð Þ ¼
TP

TPþ FN
ð4Þ

FARðspecificityÞ ¼
FP

FPþ TN
ð5Þ

By optimizing the FDR while simultaneously minimizing the FAR, the optimization function

incentivizes the discovery of parameter configurations and decision boundaries that achieve a

harmonious equilibrium between precise identification of true positives and the reduction of
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false positives. It is imperative to acknowledge that the precise configuration of the objective

optimization function may exhibit variability contingent upon the specific prerequisites, per-

formance metrics, and limitations inherent to the FD quandary under consideration. The

selection of weights and measures ought to be in accordance with the particular objectives and

trade-offs sought within the given context.

2.2 Objective function for fault alarm

Within the framework of FA minimization, the primary objective optimization function

endeavors to mitigate the frequency of false alarms. Presented here is an illustrative instance of

a mathematical function pertaining to the pursuit of objective optimization, specifically in the

context of minimizing the occurrence of FA.

Min ¼ FARð Þ ¼
FP

FPþ TN
ð6Þ

The variable FP in this function denotes the count of false positives, which refers to the

instances where a non-fault condition is erroneously classified as a fault. On the other hand,

the variable TN represents the count of true negatives, which corresponds to the instances

where a non-fault condition is accurately identified as a non-fault. The FAR is a metric that

quantifies the ratio of non-fault conditions that are erroneously classified as faults. The pri-

mary goal is to decrease the FAR, which pertains to the reduction of false alarms in the detec-

tion mechanism. The primary objective of the optimization process is to reduce this rate,

thereby enhancing the precision and dependability of the system in differentiating between

genuine faults and non-fault situations. The formulation of the objective optimization function

for the FR minimization problem may vary depending on the specific context and require-

ments. Additional variables, such as the financial implications of FR or the desired balance

between the rate of detecting faults and the rate of FR, can be integrated into the objective

function to further customize it according to the specific requirements of the problem.

Through the process of optimizing the objective function, it becomes possible to discern

parameter configurations, decision boundaries, or algorithms that yield a reduced FAR. This,

in turn, enhances performance and instills greater reliability in the system’s ability to effec-

tively mitigate FR.

2.3 Multi-objective optimization for FD and FR minimization

In the context of multi-objective optimization for the purpose of Fault Detection and minimiz-

ing false alarms, the objective function entails the simultaneous optimization of multiple objec-

tives that may be in conflict with one another. Presented here is a mathematical formulation

pertaining to multi-objective optimization, devised for the express purpose of addressing the

given objective.

Min ¼ f1ðFDRÞ � f2ðFARÞ ð7Þ

The function presented herein utilizes f1(FDR) to quantify the performance of FDR, and

f2(FAR) to assess the measure of FAR. The objective is to identify a collection of solutions that

effectively minimize the occurrence of false alarms while simultaneously maximizing the rate

at which faults are detected. The choice of the specific performance measures f1 and f2 depends

on the desired trade-offs and priorities. Some commonly used measures include:

1. FDR: Represents the proportion of actual faults correctly identified by the detection

mechanism.
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2. FAR: Represents the proportion of non-fault conditions incorrectly identified as faults by

the detection mechanism.

In the context of FDR and FAR minimizing, in this study the ACSA can be tailored to opti-

mize parameters and decision boundaries associated with fault detection mechanisms. By for-

mulating the problem as an optimization task in (7), the algorithm searches for optimal

parameter configurations that enhance the FDR while minimizing FA.

3 Proposed ACSA paradigm for FAR and FDR

The pioneering work on the Crow Search Optimization Algorithm (CSOA) was initially pre-

sented by Askarzadeh et al. in their groundbreaking study [57]. The CSOA emerges as a com-

pelling approach to tackle complex constrained optimization problems in engineering. Inspired

by the remarkable intelligence and social behavior of crows, the CSOA capitalizes on their

innate abilities. Crows, recognized as highly intelligent creatures within the avian kingdom,

thrive in cohesive flocks governed by a well-developed social system. Notably, their superior

brain-to-body size ratio endows them with exceptional cognitive capabilities. Consequently,

crows effortlessly remember significant locations and efficiently communicate any imminent

danger or threat to their fellow flock members. Furthermore, akin to other resource-storing

species such as ants and honey bees, crows possess the remarkable capacity to store and conceal

food reserves [58]. Their sophisticated communication network ensures seamless coordination

when retrieving hidden reserves or when confronted with potential hazards [59].

The initialization process of the CSOA for the Multi-Objective FAR abd FDR Problem

involves determining the size of the flock (population) and the number of iterations. Each

crow’s position, denoted as x, is tracked over time using a vector Xx,itr = (x = 1, 2, ‥, N;iter = 1,

2, ‥, xtermax), where vtermax represents the maximum number of iterations. In an environment

with N groups in a d–dimensional space, the initial positions of the crows are randomly dis-

tributed. Consider two crows, x and y, which give rise to the following two scenarios:

• Scenario 1: In the scenario where crow y has no knowledge or awareness of crow x following

it, the position update of crow x can be expressed as follows:

Xx;itrþ1 ¼ Xx;itr þ Ri � blx;itr � ðmy;itr � Xx;itrÞ ð8Þ

In the given context, Ri represents a random number uniformly distributed in the range of 0

to 1, while blx,itr denotes the flight path taken by crow x at the particular instant itr. The flight

length capability is denoted by bl, where a longer length signifies a global search, while a

smaller value corresponds to a local search

• Scenario 2: Crow y is aware of the presence of crow x following behind, it can strategically

choose a random position. To capture both Scenario 1 and Scenario 2, a combined formula-

tion is expressed as follows:

Xx;itrþ1 ¼
Xx;itr þ Ri � blx;itr � ðmy;itr � Xx;itrÞ Ri � APx;itr;

Random Position otherwise

(

ð9Þ

3.1 Adaptive Crow Search Algorithm (ACSA)

This section focuses on introducing the Adaptive Crow Search Algorithm (ACSA), which

addresses the limitations of the basic CSOA discussed earlier. It is evident from a thorough

analysis of the basic CSOA that its suboptimal performance stems from fixed parameter
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settings for its essential parameters, namely Ap and blx,itr. Fixed values for Ap and blx,itr fail to

ensure effective exploration and exploitation simultaneously, as they may perform well in one

stage but not in another. In addressing this challenge, our article introduces two fundamental

contributions. The first involves the adjustment of the Ap parameter, and the second influences

the blx,itr parameter. The dynamism introduced to these parameters across iterations serves as

a pivotal strategy for markedly improving the performance of the conventional CSOA. This

adaptive methodology effectively leverages the advantages inherent in both exploration and

exploitation stages, resulting in superior outcomes. The specific procedures underlying these

contributions are expounded upon in the following:

ApðitrÞ ¼
ApðminÞ � ApðmaxÞ

Itrmax
� itr þ ApðmaxÞ ð10Þ

To begin with, the awareness probability Ap will undergo a linear decrease from its maximum

value Ap(max) to its minimum value Ap(min) as the iterations progress.

Moreover, it has been noted that in the COSA Eq (8), the blx,itr parameter is simply multi-

plied by a randomly generated number uniformly distributed between 0 and 1. This practice

hinders the effective utilization of blx,itr as a control parameter in COSA, as it is significantly

impacted by the substantial random variations multiplied by it throughout the iterations. In

order to overcome this limitation and empower blx,itr to genuinely enhance the performance

of COSA, a modification is proposed. The modified version of Eq (9) is as follows:

Xx;itrþ1 ¼
Xx;itr þ Ri � blx;itr � ðmy;itr � Xx;itrÞ Ri � APx;itr;

Random Position otherwise

(

ð11Þ

Here, the flight length control parameter bl is introduced, which plays a crucial role in control-

ling the flight length. The blx is defined as follows:

blx ¼
bl� d

Tmax

10

� �

� d
Tmax

10

� �

� d Tminð Þ � rand
� �

ibitr � t � itermax ðaÞ

bl� ½dðTmaxÞ � dðTmaxÞ � dð0:5� TmaxÞ � rand� ðelse ðbÞÞ

8
><

>:
ð12Þ

In Eq (12), bl and t represents basic flight length and control time for limits 0 and 1, respec-

tively. The variable “T” is a discontinuous regular variable that ranges between Tmin and Tmax.

In this case, Tmin is set to 0, and Tmin is set to 10. The interval between Tmin and Tmin is divided

into 1000 uniform variables, ensuring equal spacing between each variable. This unique modi-

fication makes ACSA more efficient and it converges to optimal solution more quickly as com-

pared to original CSA algorithm. The comparison for this modification is shown in Fig 2 [60].

Logical steps of ACSA for FDR and FAR minimization. In order to address the issue of

FD and FA reduction through the effective application of the ACSA, one can proceed by

implementing the subsequent procedures:

1. Step 1: Define the problem of FD and FA minimizing in a specific industrial context. Identify

the variables and parameters associated with fault detection mechanisms, such as thresholds,

decision boundaries, or algorithmic parameters. Formulate the problem as an optimization

task (7), aiming to maximize the fault detection rate while minimizing false alarms.

2. Step 2: Initialize a population of crows, where each crow represents a potential solution or

set of parameters for fault detection and false alarm minimization. Assign random initial

positions to the crows within the search space, respecting any constraints or bounds on the

variables.
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3. Step 3: Evaluate the fitness of each crow in the population. The fitness function should

reflect the performance of fault detection mechanisms, considering both the fault detection

rate and the false alarm rate. Calculate the fitness value based on how well the solution per-

forms in detecting faults while avoiding false alarms.

4. Step 4: Update the positions of the crows based on their current fitness values. Employ the

exploration and exploitation mechanisms of the ACSA to adjust the positions of the crows.

During exploration, crows perform random movements to explore new areas of the search

space. During exploitation, crows share information and communicate to exploit promising

regions that have shown better fitness values.

5. Step 5: Define a termination criterion to stop the optimization process. This criterion can

be based on the maximum number of iterations, reaching a satisfactory fitness threshold, or

a predefined convergence criterion. If the termination criterion is not met, proceed to the

last step. Otherwise, go to Step 6.

6. Step 6: Once the optimization process is complete, extract the best solution or set of param-

eters obtained from the ACSA. Analyze the performance of the optimized fault detection

mechanism, considering the fault detection rate and false alarm rate. Compare the results

with baseline approaches or previous studies to evaluate the effectiveness of the ACSA-

based solution.

7. Step 7: If necessary, perform further fine-tuning or iteration of the ACSA. Adjust the

parameters of the algorithm, such as population size, exploration and exploitation rates, or

local search mechanisms, based on the performance and results obtained in Step 6. Repeat

the steps from Step 1 to Step 6 until a satisfactory solution is achieved.

Fig 2. ACSA convergence profile.

https://doi.org/10.1371/journal.pone.0296471.g002
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The proposed ACSA effectively solves the problem of minimising FD and FA by adhering

to the following steps. The algorithm’s iterative nature facilitates ongoing refinement of fault

detection parameters, resulting in enhanced fault detection rates and reduced occurrence of

false alarms in practical industrial processes. The flowchart of ACSA is shown in Fig 3. The

pseudocode for ACSA is shown in Table 1, demonstrating ACSA’s effectiveness by achieving

improved fault detection rates, stability margins, and optimal process operation, showcasing its

prowess in managing complex, multi-objective challenges in industrial fault-tolerant control.

4 Case study

4.1 Tennessee Eastman (TE) process

In this section, we present the implementation of the suggested fault detection scheme using

the TE Process, a widely recognized benchmark process. Our study focuses on evaluating the

scheme’s ability to detect faults, measure detection times, and assess false alarm rates.

The TE Process, originated in 1993 by Vogel [61], serves as a practical industrial procedure

for assessing control strategies and operating techniques. Over the years, it has been exten-

sively employed to evaluate various defect detection and diagnosis methods.

The TE Process consists of five fundamental unit activities: Reactor, Condenser, Compres-

sor, Separator, and Stripper. It is composed of eight components labeled A through H, as

Fig 3. ACSA flowchart.

https://doi.org/10.1371/journal.pone.0296471.g003
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illustrated in Fig 6. Within the reactor, four gaseous reactants, namely A, C, D, and E, undergo

exothermic reactions that result in the production of products G and H.

The dataset used for testing comprises 52 variables and a total of 960 samples, while the

training dataset contains 480 samples. The data was collected at regular intervals of 20 samples.

For each dataset, a simulation was conducted to represent the normal operation mode (no

faults), and another set of simulations was carried out, introducing 21 programmable faults

based on the information provided in Table 2. The original waveform of TEP fault 14 and 15

Table 1. ACSA pseudo code for proposed control process.

Pseudo code of ACSA for Tennessee Eastman Process

1-Randomly initialize positions in search space

2-Asses the position and memory of each crow

3-While iiter<itermax

4-For i=1:N
5-Define AP
6-If Ri � APx,itr

7-Xx,itr + Ri × blx,itr × (my,itr − Xx,itr)

8-Else

9-Random Position

10- End If and End For

11-Verify optimality and new position

12- Update memory

13-End While

https://doi.org/10.1371/journal.pone.0296471.t001

Table 2. Process fault of Tennessee Eastman process.

Faults Type Deviated variable

Fault(1) Step A/C-ratio stream 4 A/C ratio, Composition constant of element B

Fault(2) Step Composition of element B (stream 4), constant ratio of A/C

Fault(3) Step Temperature of D feed (stream 2)

Fault(4) Step Temperature of cooling water inlet of reactor

Fault(5) Step Temperature of cooling water inlet temperature of separator

Fault(6) Step Feed loss of element A (stream 1)

Fault(7) Step Pressure loss of C header (stream 4)

Fault(8) Random Composition of A/B/C (stream 4)

Fault(9) Random Temperature of D feed (Stream 2)

Fault(10) Random Temperature C feed (Stream 4)

Fault(11) Random Temperature of cooling water inlet of reactor

Fault(12) Random Cooling water inlet Temperature of cooling water inlet of separator

Fault(13) Drift Reaction kinetics

Fault(14) Sticking Setting of cooling water outlet valve of reactor

Fault(15) Sticking Setting of cooling water outlet valve of separator

Fault(16) Random Deviations of heat exchange within stripper

Fault(17) Random Deviations of heat exchange within reactor

Fault(18) Random Deviations of heat exchange within condenser

Fault(19) Sticking Setting of recycle valve of compressor

Fault(20) Random Unknown

Fault(21) Constant Constant setting of valve for stream 4

https://doi.org/10.1371/journal.pone.0296471.t002
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exhibits distinct oscillations indicative of a specific fault pattern and Figs 4 and 5 displays char-

acteristic irregularities corresponding to its unique fault signature. The training set simulations

were run for 48 hours, resulting in a total of 480 observations generated for each run without

faults and 960 observations for each run with faults, with the fault being introduced at the 40th

hour.

Fig 4. Original waveform of fault 14.

https://doi.org/10.1371/journal.pone.0296471.g004

Fig 5. Original waveform of fault 15.

https://doi.org/10.1371/journal.pone.0296471.g005
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The TEP, a notable benchmark in process systems engineering, involves a thorough data

collecting approach that employs a range of strategically positioned sensors across the simu-

lated chemical plant. The sensors, including as temperature, pressure, flow meters, concentra-

tion sensors, level sensors, and valve position sensors, consistently observe crucial parameters

that are vital for process control and problem detection. The datasets produced by the TEP are

notable for their significant magnitude, often consisting of a large number of time-stamped

recordings, and demonstrate an uneven distribution of classes, reflecting the infrequency of

fault events in comparison to normal operations. These datasets usually consist of time series

data that is organized in regular intervals. The obstacles inherent in fault diagnosis in this set-

ting are the intricate design of the system, the uneven distribution of data, the non-linear

dynamics, and the multivariate characteristics of the monitored variables [62].

5 Results and simulation

To evaluate the accuracy and efficiency of the ACSA in optimizing the function for TEP

described in Eq (7), a set of simulations were carried out utilizing the MATLAB/Simulink soft-

ware. The simulations were executed on a 64-bit PC with an Intel(R) Core(TM) i7-10510U

CPU operating at 1.8GHz and 8GB of RAM. The utilization of the TEP, as illustrated in Fig 6,

has become prevalent as a standardized benchmark for evaluating the efficacy of novel meth-

odologies in the realm of complex process control and performance monitoring. By employing

Fig 6. Schematic diagram of TEP.

https://doi.org/10.1371/journal.pone.0296471.g006
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this well-established framework, researchers are able to conduct rigorous assessments and

make meaningful comparisons of innovative approaches within a controlled and representa-

tive environment. Consequently, this practice plays a pivotal role in fostering advancements in

the field of instrumentation engineering, allowing for the development of cutting-edge tech-

niques and strategies for the minimization of FAR and FDR.

The ACSA has demonstrated remarkable efficacy and performance in minimizing false

alarms and enhancing fault detection rates. Through its adaptive nature and intelligent search

mechanisms, the ACSA exhibits a superior ability to adapt to changing conditions and opti-

mize the fitness progress of the false alarm minimization and fault detection objectives. Experi-

mental results and comparative analyses have consistently showcased the ACSA algorithm’s

superior performance in achieving a high fault detection rate while effectively minimizing false

alarms. The Table 3 for qualitative analysis in the TEP process succinctly summarizes qualita-

tive data, offering insights of process characteristics, or subjective evaluations. It serves as a

valuable reference for understanding qualitative aspects crucial to the TEP process.

The algorithm’s robustness and reliability make it a valuable tool in various industrial con-

trol processes where accurate fault detection and mitigation of false alarms are critical for

Table 3. Quantitative analysis of ACSA for TEP process.

Approach Min = f1(FDR) − f2(FAR)

ACSA STD MEAN BEST

2.01E+01 -2.15E+02 -1.74E+02

https://doi.org/10.1371/journal.pone.0296471.t003

Fig 7. ACSA fitness progress for TEP.

https://doi.org/10.1371/journal.pone.0296471.g007
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ensuring operational safety and system integrity. The fitness progress of the ACSA optimizer

exhibits a remarkable ability to minimize false alarms and enhance fault detection rates. As

shown in Fig 7, the optimizer consistently improves the fitness values over iterations, indicat-

ing its effectiveness in achieving the desired objectives. Compared with other well-established

optimizing approaches such as SQP in [56], the proposed ACSA quickly converge to optimal

solution with finer iteration count. The ACSA adaptive nature and intelligent search mecha-

nisms enable it to swiftly converge towards optimal solutions, resulting in a high fault detec-

tion rate while minimizing false alarms. These findings demonstrate the robust performance

and efficacy of the ACSA optimizer in TEP control. The proposed ACSA fitness progress is

illustrated in Fig 7, depicting the plots of average fitness and best fitness. The figures demon-

strate the convergence of the ACSA algorithm towards optimal solutions for minimizing false

alarms and enhancing fault detection rates. Notably, the ACSA exhibits a strong capability to

converge to the desired solution with a finer number of iterations, highlighting its efficiency

and effectiveness in tackling the problem at hand. This observation underscores the robustness

and powerful optimization capabilities of the ACSA algorithm, making it a promising

approach for addressing the challenge of minimizing false alarms and improving fault detec-

tion rates in industrial control processes.

The fault detection rate vs false alarm rate plot serves as a crucial evaluation tool to assess

the efficiency of a proposed approach in fault detection systems. In the context of the proposed

approach, the plot showcases its efficacy by demonstrating a favorable trade-off between the

fault detection rate and false alarm rate as shown in Fig 8. The approach achieves a high fault

Fig 8. ACSA plots for FAR vs FDR.

https://doi.org/10.1371/journal.pone.0296471.g008
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detection rate, indicating its capability to accurately identify and classify actual faults. Simulta-

neously, it maintains a low false alarm rate, indicating its ability to minimize the occurrence of

false alarms. This plot affirms the efficiency of the proposed approach in achieving the desired

balance between accurate fault detection and false alarm mitigation, thus bolstering its suitabil-

ity for real-world industrial applications.

Fig 9 presents the combined figure showcasing the fault detection rate and false alarm rate,

a visual testament to the impressive performance of the ACSA algorithm. The plot demon-

strates the algorithm’s remarkable ability to achieve superior results in maximizing the fault

detection rate while simultaneously minimizing the false alarm rate. This exceptional perfor-

mance places ACSA at the forefront of fault detection systems, exemplifying its prowess in

accurately identifying and classifying faults while minimizing unnecessary alarms. The figure

serves as a testament to the robustness and effectiveness of the ACSA algorithm, solidifying its

position as a cutting-edge solution for fault detection applications where the utmost precision

and reliability are paramount.

The 21 faults of TE process is analyzed based on the threshold for each fault. For instance,

the 14th fault occurred at 40th hour and is shown in Fig 10. Similarly, another Fig 11 is pre-

sented to show the physical fault of the valve position of the condenser cooling water valve.

These figures illustrate the detection of faults at 40th hour during 48 hours of simulation. The

ACSA has major implications and prospective uses in optimizing TEP diagnostics. ACSA

improves flaw identification efficiency by dynamically modifying search parameters, improv-

ing diagnostic algorithm accuracy and convergence. The optimization algorithms employed

are critical for TEP defect identification. ACSA adapts its search approach to navigate complex

Fig 9. Combined ACSA plots for FAR and FDR progression.

https://doi.org/10.1371/journal.pone.0296471.g009

PLOS ONE An adaptive metaheuristic optimization approach for Tennessee Eastman process

PLOS ONE | https://doi.org/10.1371/journal.pone.0296471 February 21, 2024 18 / 24

https://doi.org/10.1371/journal.pone.0296471.g009
https://doi.org/10.1371/journal.pone.0296471


solution spaces and detect defects. This adaptability helps localize and characterize errors in

the dynamic and complex TEP. The properties of ACSA differ from genetic algorithms (GA)

and particle swarm optimization (PSO). ACSA uses crow social behavior and collective intelli-

gence for adaptive exploration. GA evolves solutions using crossover and mutation processes.

Designed to mimic particle motion, PSO emphasizes individual and group knowledge.

ACSA’s adaptability, inspired by crow behavior, may help it handle complex TEP fault scenar-

ios better than GA and PSO [63–66].

6 Conclusions and future research directions

In conclusion, this study has proposed and demonstrated the effectiveness of the ACSA for

fault detection and false alarm mitigation in industrial control processes. The results have

shown that ACSA achieves a high fault detection rate while effectively minimizing false alarms,

highlighting its superior performance in ensuring process reliability and safety. Moving for-

ward, several future research directions can be pursued. Firstly, further investigation can be

conducted to optimize the parameters and fine-tune the performance of ACSA in different

industrial control settings. Additionally, the integration of ACSA with other advanced tech-

niques such as machine learning algorithms or deep neural networks can be explored to

enhance the fault detection capabilities. Furthermore, the scalability and applicability of ACSA

can be examined in larger and more complex industrial systems, assessing its performance in

real-world scenarios. The incorporation of additional sensors and data sources can also be

considered to improve the accuracy and robustness of the fault detection process. Lastly,

addressing the interpretability aspect of ACSA results and providing actionable insights for

Fig 10. Detection of fault 14.

https://doi.org/10.1371/journal.pone.0296471.g010
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operators and decision-makers can be an interesting avenue for future research. Developing

user-friendly interfaces and visualization tools can aid in the effective utilization of ACSA in

industrial control processes. Overall, the application of ACSA in fault detection and false

alarm mitigation has shown promising results, and future research endeavors can further

advance its capabilities, such as deep learning algorithms, recurrent neural networks, or

ensemble methods, can improve fault detection accuracy and reduce false alarms. Investigating

the combination of these techniques with traditional fault detection approaches may lead to

more robust and reliable systems. In future, the proposed approach will be validated for stan-

dard optimization functions along with nonlinear constraint. This analysis will allow us to

thoroughly assess the algorithm’s performance across different problem domains and provide

a more comprehensive understanding of its capabilities.
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