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Abstract

This study proposes an extendable modelling framework for Digital Twin-Oriented Complex

Networked Systems (DT-CNSs) with a goal of generating networks that faithfully represent

real-world social networked systems. Modelling process focuses on (i) features of nodes

and (ii) interaction rules for creating connections that are built based on individual node’s

preferences. We conduct experiments on simulation-based DT-CNSs that incorporate vari-

ous features and rules about network growth and different transmissibilities related to an epi-

demic spread on these networks. We present a case study on disaster resilience of social

networks given an epidemic outbreak by investigating the infection occurrence within spe-

cific time and social distance. The experimental results show how different levels of the

structural and dynamics complexities, concerned with feature diversity and flexibility of inter-

action rules respectively, influence network growth and epidemic spread. The analysis

revealed that, to achieve maximum disaster resilience, mitigation policies should be tar-

geted at nodes with preferred features as they have higher infection risks and should be the

focus of the epidemic control.

Introduction

Over the years, Complex Networked Systems (CNSs) have been modelled with increasing

structural complexity levels that resulted in models with higher and higher accuracy. The ulti-

mate goal of these research efforts is to build models that are an accurate reflection and, some-

times, extension of reality. Family of models that perfectly reflect real world networked

systems can be seen as Digital Twin Oriented Complex Networked Systems (DT-CNSs) [1].

In DT-CNS space, Digital Twins (DTs) are expected to provide an accurate reflection and

extension of reality, which enables us to recreate existing scenarios and conduct what-if analy-

ses on scenarios that have never happened before. A DT is an ultimate goal, rather than a

modelling approach or paradigm, for the representation and modelling of Complex Net-

worked Systems, which has not been realised yet. The modelling and extension of CNS in the

context of DT are to represent the observable information faithfully in the form of a network
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together with dynamics of and on this network, while enabling the fulfilment of the model’s

aim and, in its ultimate realisation, seamlessly intertwining and interacting with reality in real-

time. The DT-CNSs of social networked systems, as they approach a DT, focus on temporal

spreading processes on temporal social networks, characterised by continuous, interrelated

changes and a real-time feedback loop that enables the two-way real-time information acquisi-

tion between the DT-CNS and reality [1]. There are no current realisations of these conceptual

ideas in social network space and the goal of the research presented in this paper is to build

and asses an extendable DT-CNS for social networked systems that can bring us closer to the

ultimate goal of DT.

The complexity of CNSs results from the heterogeneity of CNSs’ components and interac-

tions between them as well as dynamic processes (e.g. epidemic spread) on those systems [1].

For example, the CNS, which models a social networked system, is composed of (i) the social

networks concerning the nodes (e.g. people), edges (e.g. interactions, relationships, etc.) and

their corresponding attributes (which describe the features of nodes and edges), and (ii)

dynamic processes that aim to model the spreading phenomena on social networks, such as

epidemic spread [2], opinion spread [3], rumour spread [4], news spread [5], etc.

Current studies on CNSs focus on the least complex scenario where a single dynamic pro-

cess takes place on a static network without changes of the network components (nodes and

edges) or the process parameters [6–11]. In addition, the spreading phenomenon on the net-

works is generally modelled by classic epidemiologic models such as the Susceptible-Infected

(SI) model and its extensions, including the Susceptible-Infected-Susceptible (SIS) model [12],

Susceptible-Infected-Recovered (SIR) model [13] and the Susceptible-Exposed-Infectious-

Recovered (SEIR) model [14]. Therefore, to increase complexity of modelling, and in this way

to approach Digital Twin, a natural way forward is to increase the heterogeneity of nodes’ fea-

tures (characteristics of each specific node) and their preferences to create relationships as well

as allow the system to evolve over time, both from the perspective of structure and process. To

enable the flexible extension of a DT-CNS and its generic applications across disciplines, the

Susceptible-Infected (SI) model can serve as a promising starting point to model the spreading

phenomenon on the networks with increasing complexity.

The complexity of modelling CNS is constrained by the system’s observability. The observ-

ability is concerned with the ability to faithfully reconstruct the state of a system from a limited

set of measured variables in finite time [1, 15]. It not only determines the available ground-

truth information to be represented and modelled but also the information to be simulated

towards achieving the ultimate goal of a Digital Twin (DT). With different levels of observabil-

ity, we categorise the CNS components as data-driven, simulation-based and hybrid [1], each

composed of real data [16–18], purely simulated data [19] and both real and simulated data

respectively. Current studies generally build CNSs with hybrid components (e.g. real networks

and simulated dynamic processes) due to the partial observability of a real-world scenario [5–

11, 20, 21].

To achieve a faithful CNS representation of a real-world social networked system, we need

to preserve as much information as needed in the modelling process for a better model perfor-

mance under the observability constraints [1]. The evaluation of model performance in mim-

icking a social networked system generally involves the discussion on the similarity of

approaching complex real-world patterns [19, 22, 23], the simulation efficiency [1, 24] and the

ability to reproduce the fundamental results with the purpose of result verification and model

extension [25]. However, there is a need to clarify the evaluation protocol on faithfulness con-

sidering the requirements on CNS model performance and their relations with the observabil-

ity constraints, which thus poses a research gap to be addressed in this study.
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In this study, we propose an extendable modelling framework for the DT-CNSs of social

networked system, composed of (i) a flexible social network model that allows for static net-

work formation based on heterogeneous node features and interaction rules related to connec-

tion preferences, and (ii) a epidemic spreading process model for the Susceptible-Infected (SI)

spread with a predetermined seed selection strategy and an infection rate. We propose a set of

evaluation metrics to validate the faithfulness of DT-CNSs, considering their similarity with

real system, efficiency and reproducibility of the network patterns and the infection occur-

rence on such networks. We present a case study on the disaster resilience of social networks

considering their infection occurrence within specific time and social distance given an epi-

demic outbreak. Our experiments focus on various simulated networks, where nodes have het-

erogeneous attributes and the interactions between the nodes are driven by various rules (e.g.

social networks driven by age features and an interaction rule—preference for a similar age

when nodes interact). The results show that the heterogeneous features and interaction rules

(related to preference for features) influence the network structure and can enhance epidemic

outbreak. Nodes with preferred by others features have more connections and, as a result, get

exposed to higher infection risk within the same proximity to the initial infection node.

Finally, we have implemented an open source python toolbox with all the functionalities of the

proposed modelling framework and facilitating its extension towards a DT-CNS with higher

complexity levels (https://github.com/UTS-CASLab/DT-CNS).

The main contributions of this study are:

• Constructing an extendable DT-CNS modelling framework composed of a network model

based on heterogeneous nodes’ features and rules driving the interactions between nodes

and a process model spreading over the network;

• Creating an evaluation protocol for faithfulness, concerned with similarity, efficiency and

reproducibility;

• Validating the influence of heterogeneous nodes’ features and interaction rules on network

growth and level of epidemic spread;

• Suggesting disaster mitigation policies dependent on age diversity and social preference.

The rest of this study is structured as follows. Background provides background in the

space of dynamics of and on the networks. Digital Twin Orientated Complex Networked Sys-

tem presents the methodology of building and driving a CNS towards a DT. Following this,

Results builds and evaluates the simulation-based CNSs. Finally, in Conclusion, we conclude

the study and outline future directions.

Background

This section presents the network and process models developed and employed in the current

studies in Network and process models. It discusses (i) interaction rules that drive the network

growth through preference for node features and (ii) transmission rules governing the node

adaptability to an epidemic spread in different conditions. We also discuss the evaluation met-

rics involved in DT-CNS research in Evaluation metrics, including (i) complexity of DT-CNSs,

(ii) performance in mimicking real-world social networked systems and (ii) faithfulness that

pose different requirements in.

Network and process models

Network model. Network model aims at providing a faithful representation of a network

that minimises information loss [1]. There are two widely employed principles for network
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formation and growth: preferential attachment [26–29] and homophily [30–33]. By incorpo-

rating these two principles, this study starts to build DT-CNSs based on observable networked

information.

Preferential attachment describes the “rich get richer” principle [27], where highly con-

nected nodes increase their connectivity faster than their less-connected peers [26]. A scale-

free network model based on the preferential attachment to higher node degrees was first pro-

posed in [28]. With time, more and more studies in the network science space started looking

into other topological features, such as clustering coefficient, closeness centrality and eigenvec-

tor centrality [27, 29]. In our study, we allow preferential attachment to the nodes with specific

feature values concerned with topology and attributes.

Homophily desribes the tendency to associate ourselves with similar others [30]. It can

either be choice homophily or induced homophily. The first one is a preference for similar

attributes, e.g. people tend to interact with those similar interests. Induced homophily is a

result of the interaction opportunities due to structural proximity [31–33] (e.g. people who

interact because they work in the same building). In the network embedding paradigms, the

induced homophily generally suggests that highly connected nodes should be embedded

closely in the latent representation space [34]. In contrast, the choice homophily effect leads to

the consideration of attribute proximity [35]. In our study, we account for both choice homo-

phily and induced homophily based on the proximity of structures and attributes.

Process model. Process model for the spreading phenomenon on networks has two com-

ponents: (i) seed selection strategy for the first contagious nodes, and (ii) the transmissibility

that describes the spread conditional on node features [36–38].

Seed selection strategies identify single/multiple seeds (source nodes of the spreading pro-

cess) in the initial/subsequent steps (single-stage seeding/sequential seeding) from which the

spread starts. Current studies generally select seeds based on the centrality measures, such as

degree centrality, betweenness centrality, closeness centrality and eigenvector centrality [39,

40] or identify driver nodes and using them as seeds [38].

Transmissibility involved in the contagion models depends on many, different elements.

For example, node adoptability, concerning the probability to adopt a spread, rises when there

are multiple exposures for multiple contagions/simplicial contagion, compared with a simple

contagion [20, 41]. In addition, the transmissibility can also vary with specific interactions

(e.g. physical contact, airborne spread, etc.) among node pairs or groups [42]. Particularly,

[41] explains the current contagion models with conditional transmissibility, such as the

threshold model, stochastic contagion model, diffusion percolation model, independent cas-

cade model and Reed–Frost model.

Overall, current network models are built on interaction rules, either related to preference

for topological features (preferential attachment) or preference for similar node attributes

(homophily). Current rule-based process models focus on seed selection strategies and trans-

mission rules. However, none of the studies combines heterogeneous features and interaction

rules and investigates their influence on the network growth and the corresponding epidemic

spread. Therefore, this study proposes an extendable modelling framework for DT-CNSs

based on heterogeneous node features and diverse interaction rules.

Evaluation metrics

Complexity. Complexity metrics, in DT-CNS space, focus on the conceptual differences

in DT-CNSs and the quantitative patterns generated by DT-CNSs.

Complexity generations, proposed in our previous survey on CNSs conceptually evaluate

the complexity of DT-CNSs and guide their extension towards a DT, which progress from the
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generation 1 DT-CNS to the generation 5 DT-CNS (a DT) with an increasing complexity level

[1]. The DT-CNSs, in different complexity generations, each systemically vary in three key

aspects: evolvability in dynamics of networks and processes, interrelations in these dynamics

and their interplay with the real world.

As shown in Fig 1, in generation 1, the DT-CNSs focus on dynamic processes on static net-

works. The generation 2 DT-CNSs focus on the evolving networks and processes, whose

dynamics change over time and are captured in snapshots. In generation 3, the DT-CNS get

even more complex when considering the interrelations between the evolving dynamics in

DT-CNSs. The models have a paradigm shift in generation 4 as DT-CNSs focus on instanta-

neous changes in DT-CNS and model temporal dynamic processes on temporal networks

with interrelations between them and the continuous acquisition of real-time information.

The generation 5 DT-CNSs further introduce the generation 4 DT-CNSs with a feedback loop

between the CNSs and the real system, approaching the ultimate goal of a DT. More specifi-

cally, the generation 5 DT-CNSs (DTs) focus on temporal dynamic processes on temporal net-

works with interrelations between them and a real-time feedback loop that enables the two-

way real-time information flow and acquisition between the DT-CNS and reality [1]. For

example, in the generation 5 DT-CNSs (DT) of the social networked systems, the real-time

interrelated changes of epidemic spread and social interactions can be observed and modelled

simultaneously, which simulation results for the unforeseeable future can be fed back to reality

to assist policy making.

From generation 1 to generation 5, the real system can be represented more faithfully with

richer information captured, and finally a CNS-based DT can be created in generation 5 [1].

Current studies generally fall in generation 1 and generation 2. This study aims to build an

extendable DT-CNS framework in generation 1 that can be further extended towards higher

complexity generations and approach a DT.

Complexity measures quantitatively evaluate the complex patterns emerging from the

DT-CNSs. In a DT-CNS of the social networked systems in an epidemic outbreak, we focus on

the network patterns concerning the network topology and attributes, and the epidemic

Fig 1. The generations of DT-CNSs that progress with increasing complexity levels towards a DT.

https://doi.org/10.1371/journal.pone.0296426.g001

PLOS ONE Towards digital twin-oriented complex networked systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0296426 January 2, 2024 5 / 36

https://doi.org/10.1371/journal.pone.0296426.g001
https://doi.org/10.1371/journal.pone.0296426


spreading patterns including the transmissibility of epidemic spread, and the resulting

infections.

Current studies on network simulations and network analysis generally focus on the evalua-

tion of network topology, which involves discussing the global level structure measures such as

degree distribution [43], shortest path length [43] and modularity [43, 44] as well as the local

structure measures such as triad [45], clustering coefficient [46] and closure coefficient [46]. In

contrast, CNS studies on specific modelling tasks, such as change point detection [47], link

prediction [48] and node classification [49], tend to emphasise the pin-point level characteris-

tics including nodes [47], edges [48] and the corresponding attributes [49]. However, none of

these studies analyse the distributions of attributes (features of nodes and edges) or evaluate

the diversity of these attributes. Considerable studies in ecological space investigate the impact

of population diversity levels on the population evolution phenomenon [50–52], which

involves diversity measures such as Hill numbers [51]. There is also a need to map these mea-

sures into the research on DT-CNSs to better understand the complex attributes (features) in

networks.

In addition, considerable studies investigate the epidemic spreading patterns in social net-

works, which involves discussing the infection numbers under the impact of different epi-

demic transmissibilities and social network structures [53]. The investigation of the relations

between infection numbers and complex network patterns has been investigated over the

years [2, 11, 54]. However, the combined quantitative evaluation of infection numbers and dif-

ferent complex network patterns still remains a research gap to be addressed for our future

study.

Performance. Performance of modelling DT-CNSs, given the evaluation of the complex

patterns generated by DT-CNS, can be evaluated based on DT-CNS patterns’ reproducibility,

the corresponding similarity between the DT-CNS patterns with a target state (e.g. the target

network topology required in link prediction tasks; etc.) as well as efficiency.

Similarity of the CNS representation with the target patterns observed in real-world CNSs

has been evaluated and pursued as an optimisation objective over the years in considerable

studies [19, 22, 23]. The target patterns, as measured by the complexity measures, range from

(i) pinpoint complex patterns related to nodes and edges such as network topology and attri-

butes and infection number [49, 55], (ii) local interaction structures which can be measured by

local complexity meaures like clustering coefficient distribution [45, 56], to (iii) global level

complexity metrics such as the degree distribution [24]. The similarity measures depends on

the value types of these target patterns, including the values (measured by e.g. precision [48,

57]), data sequences (measured by e.g. Euclidean distances [58]) and data distributions (mea-

sured by e.g. Jensen–Shannon divergence [59]).

Efficiency of CNS representation and modelling has been recently discussed as a funda-

mental element of CNS evaluation protocol [1, 24]. This involves the efficiency of data process-

ing, concerned with the time delays compared with the real-time data flow [60], as well as the

efficiency of modelling, connected to the runtime of CNS simulations [19, 61]. Few studies

have considered the modelling efficiency and proved that the runtime of the CNS simulations

can be influenced by the network components, such as the number of simulated features and

the network size [19, 61]. Meanwhile, developing CNS towards DT-CNSs with increasing

complexity levels poses new research challenges to real-time data processing and related effi-

ciency evaluation.

Reproducibility generally refers to carrying out modelling tasks with an equivalent result

to the original one, aiming for model verification and extension [25]. The equivalent results

may differ in ways that are not expected to be significant to the final result. The requirements

of equivalence depend on the research scenarios, ranging from reproducing the same
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phenomenon, the same statistics, the same data to the same bits [25]. Current studies on CNS

simulations generally focus on the reproducible phenomenon and statistics, such as the switch-

over phenomenon induced by epidemic seeding on geometric networks [62] and the power-

law degree distribution from the scale-free network simulations based on preferential attach-

ment to popular nodes [26, 29]. In contrast, CNS studies on specific modelling tasks such as

link prediction [48] and node classification [49], aim at reproduce the same data as the target

CNS representation. Although fulfilled to a different extent in different studies on CNSs,

reproducibility remains an unclarified evaluation criterion in DT-CNS space and thus is fur-

ther discussed in this study.

Overall, to faithfully represent the complex patterns existing in real-world social networked

systems, we need to build a DT-CNS at a necessary complexity level that can efficiently con-

duct similar simulations with the target and reproduce the complex patterns observable in

reality. Therefore, considering the observability constraints, this study aims to propose an eval-

uation protocol for faithfulness regarding specific requirements and measures for similarity,

efficiency and reproducibility.

Digital Twin Orientated Complex Networked System

In this part, we provide a description of an extendable DT-CNS simulator for real-world social

networked systems in An extendable DT-CNS framework and propose an evaluation protocol

for the faithfulness of DT-CNSs in An Evaluation Protocol on Faithfulness. In Optimisation

towards a Digital Twin we describe the optimisation process to obtain DT-CNSs model that

faithfully represent reality and approach DT.

An extendable DT-CNS framework

The extendable DT-CNS simulator enables to model the dynamics of and on the networks. It

is devised with (i) a network model based on the interaction rules of homophily and preferen-

tial attachment, as well as (ii) a process model (transmission mechanism) that uses different

seed selection strategies and transmission rules dependent on varying conditions.

Network and network dynamics. In this study, we focus on social networks composed of

nodes (people), edges (people’s interactions) and the attributes of nodes and edges. We model

the interactions between nodes with network dynamics governed by the interaction rules,

including (i) the preferential attachment to nodes with preferred node features and (ii) the

homophily (heterophily) effect that describes nodes’ preferences for connecting with similar

others. These two interaction rules have been each researched in considerable studies, as

reviewed in Background, and thus, our modelling framework first proposes combining these

two to characterise the preferences for features and the preferences concerning the feature

differences.

We employ the following example to facilitate an understanding of the interaction rules. As

shown in Fig 2, the nodes (people) in the social networks can have features such as age (e.g.

age at 18, 40, 50 and 60) and evaluate the other’s age to determine their preferred connections.

We assume there are only three social connections and nodes interact based on preferential

attachment to young age (See Fig 2(a)), homophily effect (preferences for a similar age; See Fig

2(b)) and the combined effect of these two interaction rules (See Fig 2(c)). In Fig 2(a), the

youngest node at 18 is densely connected with others due to nodes’ preferences for a young

age. In Fig 2(b), the nodes of a similar age (nodes aged 40, 50 and 60) cluster due to the homo-

phily effect. Finally, in Fig 2(c), the combination of preferential attachment and homophily

effect enables the nodes aged 18, 40 and 50 to cluster based on an equally weighted preferences

for young and similar ages. As we introduce more heterogeneous node features and flexible
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set-ups of interaction rules, the network patterns become more complex and hard to predict.

Therefore, in this section, we propose the following network dynamics to incorporate the com-

bined effect of preferential attachment and homophily and approach the real-world complex

social network patterns.

Network at time t can be represented as Gt = {Vt, Et, At, Zt} based on the observable and

simulated information of the changeable network components: nodes Vt = {v1,t, � � �, vnt, t},
edges Et = {e(vi,t, vj,t)|vi,t, vi,t 2 V, i 6¼ j}, node attributes At = {a(v1,t), � � �, a(vNt, t)} and the edge

attributes Zt = {z(vi,t, vj,t)|vi,t, vi,t 2 V, i 6¼ j}. Network dynamics drives network formation and

growth over time.

The node attribute vector a(vi,t) for node vi, referring to [19], is defined as

aðvi;tÞ ¼ ffðvi;tÞ; pðvt;iÞ;wpðvt;iÞ; hðvi;tÞ;whðvt;iÞg vi 2 V ð1Þ

which includes an l-length feature vector f(vi,t) (l is the number of features) and a social-DNA

(sDNA) defined with another four l-length vectors. Features presented in f(vi,t) are characteris-

tics that describe each individual vi,t, such as age, gender and interests. p(vt,i) determines the

preference for features with a trinary value: 0, 1, or −1, which each, respectively, indicates: 0—

no preferential attachment to the corresponding node feature in f(vi,t), 1—preferential attach-

ment to a higher feature value or −1—to a lower feature value. For example, the scale-free net-

work model, where nodes connect with other popular nodes, uses pure preferential

attachment (a favourable preference) to node degrees. Similarly, h(vt,i) determines the prefer-

ence for similar features with a trinary value: 0, 1, −1, each, respectively, representing no

homophily (0), heterophily (1) and homophily (−1). For example, in a social network where

people like to interact with people of similar ages, we would use pure homophily to describe

the negative preference for age differences. Both of these preferences are followed with a

weighting factor wp(vt,i) and wh(vt,i) within the range of (0, 1].

The feature f(vi,t) and the sDNA {p(vt,i), wp(vt,i), h(vi,t), wh(vt,i)} can vary with nodes in a

frozen time scale and/or mutate over time. They can also co-evolve with the network topology

based on the rules of network growth:

pðvi;t; vj;tÞ ¼
1

2
ppðvi;t; vj;tÞ þ

1

2
phðvi;t; vj;tÞ þ �ij;t

� �

∗Iij;t vi; vj 2 V; i 6¼ j ð2Þ

where the network growth is driven by ranks of score π(vi,t, vj,t) of any node pair through

mutual evaluation concerned about their preferences. It is calculated as the sum of preferential

Fig 2. An illustrative example of network formation process based on preferential attachment (a), homophily (b), and the

combination of these two interation rules (c).

https://doi.org/10.1371/journal.pone.0296426.g002
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attachment score πp(vi,t, vj,t), the homophily score πh(vi,t, vj,t) and the random interference

�ij;t � N ð0; s2Þ that follows a random normal distribution. Iij,t(η) is a binary vector that

denotes the an encounters or zero encounters of this node pair with 1 or 0 dependent on the

encounter rate η 2 [0, 1].

The preferential attachment score πp(vi,t, vj,t) incorporates the preference p(vi,t) for the

other nodes with higher/lower feature values for f(vi,t):

ppðvi;t; vj;tÞ ¼
1

2l
fðvj;tÞ

t
ðpðvi;tÞ � wpðvi;tÞÞ þ

1

2l
fðvi;tÞ

t
ðpðvj;tÞ � wpðvj;tÞÞ þ 1 ð3Þ

The homophily score πh(vi,t, vj,t) incorporates the preference p(vi,t) for the other nodes with

similar/dissimilar feature values f(vi,t):

phðvi;t; vj;tÞ ¼
1

2l
jfðvi;tÞ � fðvj;tÞj

t
ðhðvi;tÞ � whðvi;tÞÞ

þ
1

2l
jfðvi;tÞ � fðvj;tÞj

t
ðhðvj;tÞ � whðvj;tÞÞ þ 1

ð4Þ

The score listPt = {π(vi,t, v(j, t))|vi,t, vi,t 2 V, i 6¼ j} stays frozen with fixed nodes and node

attributes (features and sDNA). The DT-CNS simulator connects λe,t pairs of nodes based on

the score ranks and generates a static network to represent discrete interactions at this frozen

time point, with an edge intensity of

gðvi;t; vj;tÞ ¼

pðvi;t; vj; tÞ þ 2l
4l

if le;t is reached;

0 if else:

8
><

>:
ð5Þ

The score listPt changes with any node feature change/preference mutation. This may

result in changes of node pair ranks and their connections, finally leading to network

evolution.

Process and process dynamics. In this study, we also investigate the Susceptible-Infected

(SI) epidemic spreading process on social networks based on the seed selection strategy and

the transmission rules concerning the epidemic transmissibility impacted by different condi-

tions (See Background).

We use the following example to illustrate the process dynamics. As shown in Fig 3(a), we

select the first infectious node in the social network, the youngest node, aged 18. In Fig 3(b),

we assume an epidemic transmissibility at 100%, implying an epidemic spread at 100% proba-

bility given exposure to the infectious node. The epidemic spread from the seed node (aged

18) to its neighbours (node aged 40 and node aged 50). In Fig 3(c), we consider the impact of

vaccination conditions, where vaccinated nodes are immune from epidemic spread. As a

result, the node aged 50 keeps healthy in epidemic spread due to vaccination. The epidemic

spreading patterns get even more complex and reach the real-world epidemic spreading char-

acteristics when we consider different seed selection strategies, changes in transmissibilities

and influences from heterogeneous nodes’ conditions. Therefore, we propose the following

process dynamics to approach and extend the simulations of real-world epidemic-spreading

phenomena by incorporating various seed selection strategies and transmission rules.

Process Dynamics drives the spreading process P = {O, Prt, Bt, Rt} on the networks and is

defined by the following elements: seed selection strategy O, transmission probability Prt given

the epidemic spread’s transmissibility βt, the nodes’ adoptability Bt = {b(vi,t)|vi,t 2 Vt} and the

resulting infection status Rt = {r(vi,t)|vi,t 2 Vt}.
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The seed selection strategy identifies the first contagious nodes at the beginning of epidemic

spread. The seed selection strategy O = {ω1, ω2, � � �} for single/multiple seeds in the initial/

sequential stages is defined with a set of rules ωt:

otðst;ws
t; ktÞ ð6Þ

where kt represents the number of seeds selected at time t. st is a l-length vector that deter-

mines the seed preference for node features f(vi,t) with values: 0, 1 or −1, each representing no

preference, preference for higher/lower feature values, respectively. This is accompanied by a

l-length weighting vector ws
t, including weights of preference within range (0, 1]. The first kt

seeds are selected at time t, dependent on the descending ranks of node score �(vi,t):

�ðvi;tÞ ¼ fðvi;tÞ
t
ðs� wsÞ ð7Þ

For example, we can build a seed selection strategy based on node popularity preference. In

this context, popular nodes, featured with significant node degrees, are preferred and assigned

high score ranks, finally selected as the contagious seeds.

The seed selection results in the nodes’ infection status r(vi,t), am-length vector that deter-

mines whether the node is infected or not with binary values of 0 or 1. Its transition from the

previous infection status r(vi,t−1) to the current status r(vi,t) is dependent on the node adopt-

ability α(vi,t), also termed as the Process DNA (pDNA):

bðvi;tÞ ¼ fcðvi;tÞ;Yðvi;tÞ;wcðvi;tÞg ð8Þ

The pDNA is represented through three q-length vectors: c(vi,t) = [c1(vi,t), � � �, cq(vi,t)] speci-

fies the q independent conditions of node vi,t considering the node infection status r(vi,t) and

the node features f(vi,t). The independent conditions presented in c(vi,t) identify various indi-

vidual characteristics that pose each individual at infection risk and determine how the epi-

demic spreads. As an example, there is an epidemic spread between males with physical

contact. In this context, the independent conditions include gender (male/female) and expo-

sure (with/without physical contact).

Θ(vi,t) = [θ1(vi,t), � � �, θq(vi,t)] represents the adoptability-thresholds to be considered when

evaluating each node condition; and wcðvi;tÞ ¼ ½wc1ðvi;tÞ; . . . ;wcqðvi;tÞ� includes the multiplier

effect of node adoptability on state transition, within the value range (0, 1].

Fig 3. An illustrative example of epidemic spreading process, including seed selection (a) and epidemic transmission with and

without the impact of nodes’ vaccination conditions (b) and (c). We assume the epidemic transmissibility to be 100% and the

nodes, after vaccination, are immune to the epidemic spread.

https://doi.org/10.1371/journal.pone.0296426.g003
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With the pDNA b(vi,t) and the transmissibility βt of the spread, the transition probability Pr
(r(vi,t)|r(vi,t+Δt)) can be calculated as:

Prðrðvi;tjrðvi;t� DtÞÞÞ ¼ bt ∗
Yq

j¼1

½wcj ðvi;tÞ�
dcjðvi;t Þ;yjðvi;t Þ ð9Þ

where δ is a Kronecker function that determines, with binary values between 0 and 1, whether

a specific condition cj(vi,t) for node vi,t meets the threshold θj(vi,t). To be more specific,

dcjðvi;tÞ;yjðvi;tÞ ¼ 0 indicates the elimination of the multiplier effect wcj ðvi;tÞ, while given

dcjðvi;tÞ;yjðvi;tÞ ¼ 1, wcj ðvi;tÞ ! 0 indicates full resilience of the node.

An evaluation protocol on faithfulness

Below, we propose an evaluation protocol to formally capture different interpretations of faith-

fulness under the constraints of observability that vary with the no/complete/partial ground-

truth scenarios.

Complexity. We first evaluate DT-CNSs conceptually by identifying the complexity gen-

erations of DT-CNSs based on three key characteristics, including the evolvability of

DT-CNSs, interrelations within DT-CNSs and the interplay between the DT-CNSs and the

reality (See Introduction; See Fig 1). From generation 1 to generation 5, the DT-CNS compo-

nents, including networks and processes on networks, get increasingly complex by modelling

instantaneous and interrelated changes. The temporal scale ranges from static (fixed over

time), evolving (captured in snapshots) to temporal (continuous in real-time). Meanwhile, the

DT-CNSs start to interplay with reality through real-time data acquisition and feedback

between these two counterparts. This involves the linkage, one-way/two-way real-time infor-

mation flow, between the physical real world and the virtual DT-CNS model, enabling the

DT-CNSs to approach a DT.

Emergent patterns observed in DT-CNSs and their complexity are the starting point of

quantitative evaluation. The evaluation metrics of the emergent patterns existing in DT-CNSs

in the Network dimension and the Process dimension (See Table 1) respectively focus on the

characteristics of network topology, network attributes, the transmissibility of the spread and

the infection occurrence. As DT-CNSs evolve from generation 1 to generation 5, these quanti-

tative metrics start to change over time with a narrowed time gap between each observation

and serve as important indicators to evaluate the similarity between DT-CNSs and reality.

These measures range from (i) the pinpoint level connected to the individual component of

the network/process (e.g. a node/edge added/removed over time; transmissibility to a node,

together with its resulting infection status); (ii) the local level concerned with the local interac-

tions among grouped individuals (e.g. clustering coefficient employed to assess local struc-

ture); and (iii) the global level concerned with the emergent global characteristics resulting

from the interactions within the population (e.g. degree distribution based on the number of

edges connected to each node; Hill numbers that describe the diversity of the population

(nodes) based on node attributes).

Performance. Performance of modelling DT-CNS dynamics, given the quantified com-

plexity of DT-CNS, can be evaluated in respect to different requirements in terms of the

DT-CNS patterns’ reproducibility, the corresponding similarity between the DT-CNS patterns

with a target state (e.g. the target network topology required in link prediction tasks; etc.) as

well as efficiency (See Table 2).
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Based on the measures describing complex emerging patterns in a DT-CNS, similarity

between the created and the target DT-CNS patterns also ranges from the pinpoint level, the

local level, to the global level.

The pinpoint level similarity is generally considered in prediction tasks, like the link predic-

tion and its evaluation with precision [72] where the similarity is interpreted in the context of

the links predicted vs links actually appearing. In contrast, the local and the global similarity

are generally employed in the simulation optimisation of DT-CNSs toward the target network

topological features.

Efficiency required for the DT-CNS dynamics involves the discussion from two perspec-

tives: the efficiency of data processing, concerned with the time delays compared with the real-

time data flow [60], as well as the efficiency of modelling, connected to the runtime of

DT-CNSs [19, 61].

Reproducibility requires the equivalent results of the same tasks [25]. It varies with the

increasingly demanding levels of equivalence in the recreated data, ranging from the same

phenomena and statistic distribution to the same data. Current DT-CNSs generally fall into

the category of the same statistics. For example, the scale-free network model generates net-

works that share the same node degree distributions based on a given parameter set.

Table 1. Measures of complex patterns emerging from DT-CNS representation.

CNS components Pinpoint Local Global

Network Topology Node [47], Edge [48] Triad [45], Quadrangle [56], Community [63–65],

Clustering coefficient [46], Closure coefficient [46]

Degree distribution [43], Shortest path length [43],

Modularity [43, 44], Assortativity, Betweenness,

Closeness.

Attribute Node attribute [66, 67], Edge

attribute [67, 68]

Feature distribution, Hill numbers [69]

Process Spread Transmissibility to nodes Transmissibility to groups Transmissibility to the population

Infection Infected nodes Infected groups Infected population

https://doi.org/10.1371/journal.pone.0296426.t001

Table 2. Measures used to assess performance of simulation, prediction and/or control models of DT-CNS

dynamics.

Requirements Measures

Similarity Pinpoint Precision [48, 57], Recall [70], Area Under the Precision–Recall (AUPR) curve

[71], Receiver Operating Characteristic (ROC) curves, Area Under the ROC

(AUC) [72], Geometric Mean of AUC and PRAUC (GMAUC) [73], Error

Rate [74], SumD [75], Kendall’s Tau Coefficient (KTC) [76], Micro/Macro/

Weighted Average Precision/Recall/F1 Score [77, 78]

Local Kullback-Leibler divergence [59], Jensen–Shannon divergence [59],

Manhattan distance [79], Canberra Distance [79], Euclidean distance [58],

Matusita distance [58]

Global Kullback-Leibler divergence [59], Jensen–Shannon divergence [59],

Manhattan distance [79], Canberra Distance [79], Euclidean distance [58],

Matusita distance [58], Earth Mover’s Distance [80], Similarity metrics

respectively based on entropy distance, spectral distance, modality distance,

cosine of the angle between two graphs [81].

Efficiency Data processing Time delays compared with the real time data flow [60]

Simulation/

Modelling

Runtime of the simulation/modelling [19, 61]

Reproducibility Same data Yes/No

Same statistics Kullback-Leibler divergence [59],Jensen–Shannon divergence [59]

Same phenomena ω-index [82], City organization index [83]

https://doi.org/10.1371/journal.pone.0296426.t002
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Faithfulness. Faithfulness of DT-CNS representation and modelling is defined and evalu-

ated based on the model performance under the respective observability constraints. This is

because we can only evaluate the faithfulness of a DT-CNS regarding the observable real-

world information. Therefore,under different observability constraints, simulation-based,

data-driven, and hybrid DT-CNSs each poses different requirements of efficiency, reproduc-

ibility and similarity, which results in different meanings of faithfulness (See Table 3).

As is shown in Table 3, the solid and the hollow circle each represents the fulfilment or par-

tial fulfilment of the corresponding requirement for each type of modelling. The data-driven

DT-CNSs, as well as the data-driven components of hybrid DT-CNSs, generally require pin-

point similarity with the real data and efficiency in data processing and modelling. The simula-

tion-based DT-CNSs and the simulation components of Hybrid DT-CNSs need global and

local similarity, as well as efficiency of a simulation process. In terms of reproducibility, data-

driven DT-CNSs, in the ideal case, are required to generate the same data, mimicking the real-

ity. In contrast, for the simulation-based DT-CNSs and the hybrid DT-CNSs, the same statis-

tics and phenomena are needed and sufficient. For example, some data-driven DT-CNSs

employ network embedding methods in node classification tasks [19, 84, 85]. They require a

pinpoint level of similarity with ground-truth information about network topology and attri-

butes, data processing and modelling efficiency, and reproducible classification results for vali-

dation and comparative analysis. The simulation-based DT-CNSs, such as the scale-free

network models, simulate realistic networks based on the assumptions of interaction rules—

the preferential attachment to popular nodes [86, 87]. They require a global level similarity

and the reproducibility of the statistics that measure the required network characteristics, such

as the degree distributions reproduced by the same scale-free network model. Some hybrid

DT-CNSs employ real social networks and simulate the spreading processes on these networks

[4]. They first represents the real networks with pinpoint level similarity and then, based on

these networks, simulate spreading processes with reproducible spreading results.

Optimisation towards a Digital Twin

Under observability constraints, we optimise the DT-CNSs for an appropriate level of com-

plexity, which enables a minimised information loss with a limited number of variables. We

also create a set of modelling procedures to drive the optimisation of DT-CNSs considering

different DT-CNS types and their required faithfulness given the level of observability (See Fig

4).

As shown in Fig 4, the devise and optimisation of the DT-CNS towards a DT go through

the DT-CNS preparation, DT-CNS representation and modelling, and the DT-CNS evaluation

Table 3. Requirement of a faithful DT-CNS representation and modelling under observability constraints. The solid and the hollow circle each represents the fulfil-

ment or partial fulfilment of the corresponding requirement for each type of modelling.

Requirements Simulation-based DT-CNSs Data-driven DT-CNSs Hybrid DT-CNSs

Similarity Pinpoint ▶ ▷
Local ▶ ▷

Global ▶ ▷
Efficiency Data processing ▶ ▷

Simulation/Modelling ▶ ▶ ▶
Reproducibility Same data ▶

Same statistics ▶ ▶
Same phenomena ▶ ▶

https://doi.org/10.1371/journal.pone.0296426.t003
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procedures. We prepare a DT-CNS by targeting a specific state of real systems and, under the

observability constraints, deciding the DT-CNS type (See An extendable DT-CNS framework).

After that, we determine the faithfulness needed for a DT-CNS under the evaluation protocol

proposed in An Evaluation Protocol on Faithfulness. In addition, we devise and optimise an

extendable DT-CNS towards a DT through an appropriate selection of features (See Table 4)

and rules (See Table 5).

Features. Features in the DT-CNS context represent the attributes and the topological

characteristics of nodes and edges in DT-CNSs. As is shown in Table 4, the network dimension

has the ascribed and topological features, each resulting in and from the network growth. The

process dimension focuses on the ascribed and the resulting conditions that change transmis-

sibility and influence the spreading process. They are ascribed or resulting conditions depen-

dent on whether they exist before or after the spread. For example, in social networks where

epidemic spreads, nodes with specific ascribed features can have different susceptibilities given

an epidemic exposure, such as gender and age. The epidemic spread can also result in condi-

tions such as the states of infected, immune and susceptible. These resulting conditions also

change the susceptibility of nodes in the next round of epidemic spread.

Rules. Rules are used to govern the behaviours of nodes in the DT-CNSs and they can be

prescribed or learned from data. Those rules drive the network growth and the propagation of

the spreading process based on various DT-CNS features. Rules that are considered in the

framework are presented in Table 5. We parameterise the network growth with the social

DNA vector based on preferential attachment and homophily rules. In addition, we model the

spreading process through seed selection and the process DNA vector for node adoptability.

The experiments on DT-CNSs in this study investigate the network growth based on the inter-

action rules presented in Table 5. The seed selection strategy and the transmission rules in

Table 5 are part of the design but will be developed in the future research.

Fig 4. The procedures of building Digital Twin-Oriented Complex Networked Systems.

https://doi.org/10.1371/journal.pone.0296426.g004
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Trade-offs. Trade-offs between different requirements occur over the entire modelling

and evaluation process to achieve highest possible faithfulness. These requirements involve the

evaluation of DT-CNSs with different measures, respectively, considering the three aspects:

similarity, efficiency and reproducibility. However, constrained by the available DT-CNS mea-

sures and modelling techniques for multi-objective optimisation, we make trade-offs in the

modelling and evaluation process (See An Evaluation Protocol on Faithfulness) including:

• single-objective optimisation that combines different measures of one of these aspects: simi-

larity, efficiency or reproducibility

• multi-objective optimisation considering all three aspects: similarity, efficiency and

reproducibility

• minimised information loss for faithfulness and minimum number of variables under the

constraint of observability

Current studies combine different similarity measures to calculate the loss function for an

optimised DT-CNS [34]. Exceptionally, [29] proposes a comparative directed graph to

Table 4. Examples related to features and the conditions in the DT-CNS representation and modelling for the social networked systems in an epidemic outbreak.

Features&Conditions Data-driven Simulation-based

Network Node Ascribed features Continuous Height, weight, etc. Normal distribution, uniform distribution, etc.

Discrete Age, etc. Poisson distribution, etc.

Categorical Gender, nationality, group, etc Bernoulli distribution

Topological features Continuous Node clustering coefficient, centrality, etc.

Discrete Node degree, shortest path lengths, etc.

Edge Ascribed features Continuous Intensity of contact/relationship, etc. Normal distribution, uniform distribution, etc.

Discrete Poisson distribution, etc.

Categorical Relations, Types of contact, etc. Bernoulli distribution

Topological features Continuous Duration of contact/relationships, etc.

Discrete Frequency of contact/Rating of relationships, etc.

Process Seed Resulting conditions Categorical Infection status.

Spread Ascribed conditions Categorical Immunity, susceptibility, etc.

Resulting conditions Categorical Infection status, an exposure, multiple exposure, etc.

https://doi.org/10.1371/journal.pone.0296426.t004

Table 5. Examples of possible rules governing the interactions, seed selection and epidemic transmission in DT-CNS representation and modelling.

DT-CNS

component

Rule Parameters Value

range

Description Terminology

Network Interaction rule Preferential

attachment

p(vi,t) {−1, 0, 1} Preference for larger/smaller feature values social DNA

wp(vi,t) (0, 1] Corresponding weight pf preference

Homophily h(vi,t) {−1, 0, 1} Preference for similar/dissimilar features

wh(vi,t) (0, 1] Corresponding weight of preference

Process Transmission

rule

Transmissibility β(vi,t) [0, 1] Transmissibility of epidemic spread transmissibility

Node adoptability Θ(vi,t) {0, 1} Adoptability threshold for each condition. process DNA

wc(vi,t) (0, 1] The multiplier effect on transmissibility when meeting

the threshold

Seed selection Seed preference st {−1, 0, 1} seed preference for node features seed strategy

ws
t (0, 1] Corresponding weight of preference

Seed number kt (0, 1] Number of seeds

https://doi.org/10.1371/journal.pone.0296426.t005

PLOS ONE Towards digital twin-oriented complex networked systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0296426 January 2, 2024 15 / 36

https://doi.org/10.1371/journal.pone.0296426.t004
https://doi.org/10.1371/journal.pone.0296426.t005
https://doi.org/10.1371/journal.pone.0296426


compare the similarity of DT-CNSs based on the sum of different ranks considering different

similarity measures.

The integration and trade-offs between similarity, efficiency and reproducibility emerge as

a research gap under the proposed evaluation criteria. The data-driven scenarios have focused

on minimised information loss and a minimum number of variables for years, which involves

the discussion on feature selection/extraction and model validation. However, the features in

the context of DT-CNS, simulation-based, data-driven or hybrid, differ between those scenar-

ios due to the obseravability challenges and the simulation of informative and realistic features

for DT-CNSs call for in-depth study in the future.

Finally, to validate the performance of a DT-CNS under the evaluation criteria, data-driven

DT-CNSs, with more concerns related to the minimised information loss and the reproducible

representation accuracy, can employ the cross-validation approaches through data split and

repeated experiments. In contrast, for the simulation-based and hybrid DT-CNSs with partial

observability, DT-CNS ensembles that create a series of DT-CNS representations with quanti-

fiable, reproducible and realistic characteristicsare expected to prove the validity of DT-CNSs.

Extensions. We provide one of the possible pathways for extending the proposed

DT-CNSs with increasing complex dynamics towards the DT of a real-world social networked

system. This development path progresses referring to the DT-CNSs generations (See Fig 1,

Tables 6 and 7) and gradually enables the evolvability in dynamics, interconnections between

evolutionary dynamics and the interplay between the DT-CNSs and the reality.

Generation 1 DT-CNSs, as shown in Table 6 and Fig 1, focus on static social networks and

epidemic spreading processes with a static (fixed) transmissibility. In Table 7 and as proposed

in this study, the generation 1 DT-CNSs of social networked systems model the static social

networks based on heterogeneous node features (f(vi,t)) and non-evolutionary interaction

rules (nodes’ preferences for features p(vi,t) and the corresponding preference weights wp(vi,t),
as well as nodes’ preferences for feature differences h(vi,t) and the corresponding preference

weights wh(vi,t); See Table 5)). In addition, we model the epidemic spreading phenomena as a

non-evolutionary SI process based on an assumption/observation of seed selections (O), het-

erogeneous epidemic conditions (c(vi,t)) and a fixed transmissibility (βt).
Generation 2 DT-CNSs focus on the evolving social network changes and the evolving epi-

demic spreading process changes without considering their interrelations (See Table 6 and Fig

1). Generation 1 DT-CNSs, proposed in this study, can be extended to the generation 2

DT-CNSs by introducing evolutionary interaction rules and transmission rules to the model-

ling framework (See Table 7). This involves nodes’ preference mutation and spread’s transmis-

sibility mutation over time.

Generation 3 DT-CNSs focus on the evolving epidemic spreading processes on the evolving

social networks and consider the interrelations between those evolving dynamics (See Table 6

and Fig 1). Generation 2 DT-CNSs, based on evolutionary interaction rules and transmission

rules (preference mutation and transmissibility mutation), can progress to generation 3 when

allowing the interaction rules (preferences) and the transmission rules (transmissibility) to co-

evolve under the impact of the social networks and the epidemic spreading process (See

Table 7). For example, the nodes mutate their preferences to avoid the infection risks that

result from the epidemic spread. Meanwhile, the epidemic’s transmissibility can mutate faster

when it propagates through more nodes due to nodes’ social interactions.

Generation 4 DT-CNSs focus on the temporal epidemic spreading processes on temporal

social networks. They model the interrelated temporal changes in DT-CNSs based on the real-

time data acquisition from reality and the simultaneous model updates (See Table 6 and Fig 1).

Generation 3 DT-CNSs, based on the co-evolutionary interaction rules and transmission rules

(co-evolving preferences and transmissibility), can be extended to generation 4 when these co-
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evolutionary dynamics can be continuously updated according to the real-time information

flow from reality to DT-CNSs (See Table 7). Generation 4 DT-CNSs approach the generation

5 DT-CNSs (DTs) when the simulation results of DT-CNSs feedback to reality in a real-time

way and influence the real-world decision-making processes of those reactive decision makers

(See Tables 6 and 7). In generation 5 DT-CNSs (DTs), the DT-CNS dynamics (interaction

rules and transmission rules) and the real-world decision-making dynamics (e.g. policy-mak-

ing) co-evolve and update simultaneously Fig 1). For example, the policy-maker creates a gen-

eration 5 DT-CNS of the social networked systems in an epidemic outbreak to investigate the

possible impact of different epidemic mitigation policies, such as vaccination, isolation, etc.

The generation 5 DT-CNS simulations provide feedback to the policy-maker and serve as a

reference for policy-making.

Results

In this section, we conduct experiments on simulation-based DT-CNSs to investigate the

disaster resilience of different social networks considering the infection occurrences on these

networks in an epidemic outbreak. We conduct a comparative analysis of simulation-based

DT-CNSs driven by selected rules (preferential attachment and homophily) and distributions

of the ascribed feature—age. We take the degree distribution of a scale-free network (com-

posed of 90 nodes and 1400 edges, built with Barabasi-Albert network model [28]) as the target

for the simulation of the static networks. To simulate the social networks, we assume 90 nodes,

1400 edges and an encounter rate of 0.8 for the respective node pairs. A simulation-based

dynamic process takes place on the networks without changing its parameters over the

Table 7. Development path of DT-CNS dynamics from generation 1 to generation 5 (the ultimate goal of a DT) with increasing complexity levels, concerning the

interaction rules, transmission rules, and the real-world decision-making dynamics that are linked to the generation 5 DT-CNSs in a real-time feedback loop.

Generation DT-CNSs Reality

Interaction Rule Transmission Rule Decision-Making

1 Non-Evolutionary Non-Evolutionary ×
2 Non-Evolutionary Evolutionary ×

Evolutionary Non-Evolutionary ×
3 Co-Evolutionary ×
4 Co-Evolutionary and Real-time Updatable ×
5 Co-Evolutionary and Real-time Updatable

https://doi.org/10.1371/journal.pone.0296426.t007

Table 6. Complexity generations of DT-CNS from generation 1 to generation 5 (the ultimate goal of a DT) with increasing complexity levels, concerning the evova-

bility of networks and processes on networks, their interrelations as well as their interplay with reality through the real-time information flow, including the one-

way flow from reality to DT-CNS and the two-way flow between the reality and DT-CNSs.

Generation DT-CNSs Linkage Reality

Network Process Interrelation Real-time Information Flow Decision-Maker

One-way Two-way

1 Static Static × × × Non-reactive

2 Static Evolving × × × Non-reactive

Evolving Static × × × Non-reactive

3 Evolving Evolving ✓ × × Non-reactive

4 Temporal Temporal ✓ ✓ × Non-reactive

5 Temporal Temporal ✓ ✓ ✓ Reactive

https://doi.org/10.1371/journal.pone.0296426.t006
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temporal scale. We evaluate these models in terms of complexity and their faithfulness, consid-

ering the global level similarity (measured by the difference between degree distributions),

simulation efficiency, and reproducibility of the same statistics.

We respectively term the involved simulation-based DT-CNSs as DT − CNSU, DT − CNSB,

DT − CNSI, DT − CNSL, DT − CNSR and DT − CNSH+, DT − CNSH−DT − CNSP+, DT − CNSP−

and DT − CNSHP, to characterise the DT-CNS paradigms with uniform (U), bell (B), inverse

bell (I), left-skewed (L) and right-skewed (R) age distributions, respectively driven by preferen-

tial attachment to larger feature values (P+), preferential attachment to smaller feature values

(P−), heterophily (H+), homophily (H−), and rules that optimally incorporate the above prin-

ciples for a target degree distribution.

Simulation-based networks

In this section, we build the simulation-based networks with 90 nodes, 1400 edges and a single

feature—age, ascribed to each node. We presume that the age involved in disaster resilience

range between [0, 90] while categorising the age groups every ten years [88].

Feature. We simulate the uniform, the bell, the inverse bell, the left-skewed and the right-

skewed shape distributions for a fixed number of nodes allocated in each age group. We also

introduce uncertainty through a randomly generated age value within the range required by

each age group (See Fig 5).

In Fig 5, the numbers of nodes in each age group vary depending on distribution. There are

10 nodes evenly allocated for each age group in a uniform distribution. In contrast, more/

fewer nodes are in their 40s in a bell/inverse bell distribution than in other age groups. In a

left-skewed distribution, most nodes are over 60, and vice versa for a right-skewed distribu-

tion. We evaluate the age diversity with the Hill number, which measures the effective number

of equally abundant species (age groups) [51, 89]. The varying diversity levels differentiate the

respective age distributions, indicating the population’s age differences and resulting in differ-

ent connection patterns.

In Fig 6, we calculate the Hill numbers with an order value that determines the sensitivity to

the relative frequencies of the species (age groups), valuing between 0 and 5. A higher order

value indicates a higher sensitivity level to the relative number of nodes allocated in each age

group. With an order value of 0, the Hill numbers get insensitive to the abundance of the

respective species (age groups) and keep at 9 the number of age groups for all the age distribu-

tions [4]. With the same order value, the higher Hill number indicates higher diversity. As the

age distributions transform from the uniform, inverse bell, bell to skewed age distributions,

their Hill numbers decrease, indicating less age diversity.

Preference. Given the age feature and the different rules of network formation, including

the preferential attachment to larger feature values (P+), the preferential attachment to smaller

Fig 5. The age distributions used in the experiments.

https://doi.org/10.1371/journal.pone.0296426.g005
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feature values (P-), the heterophily (H+), the homophily (H-) as well as the optimised combi-

nation of both the preferential attachment and the homophily principles (PH), the scores of

node pairs vary a lot and indicate different strengths of relationships. The parameter set-ups of

preferences and weights of preferences is included in Table A in the S1 Appendix.

Network topology. Given the same threshold factor λe = 1400, that determines the num-

ber of edges, the simulated networks are correspondingly characterised with varying network

topology (See Figs 7 and 8).

Degree Distribution is a distribution of node degrees in a given network [43]. As shown in

Table 8, the node degree of the target network fluctuates around the average value of 31.11

with a standard deviation of 12.90, ranging from 6.00 to 70.00.

Fig 7 shows age and degree distributions with a heatmap and two histogram plots for age

(See Fig 5) and node degree (See Table 8). We find that the node degrees of each age group var-

ies with the interaction rules related to preferences for age. For example, theDT − CNSP+ mod-

els, built on positive preferential attachment to age, tend to have more older nodes connected

with each other and those older nodes have higher node degrees than in case of other models.

Similarly, the DT − CNSH− models built on homophily when it comes to age wire more nodes

within the same age groups, enabling the nodes in age groups with more members to have

higher node degrees.

Given the same interaction rules, the node degrees of respective age groups also vary with

the shapes of age distributions. The symmetric and asymmetric shape distributions can lead to

a different trend of node degree changes with age change. For example, for DT � CNSHþB based

on theH+ (heterophily) rule and the bell-shape age distribution, the node degree first

decreases from [70 − 79] to [10 − 19] when the node age transits from [0−9] to [40 − 49],

which then increases from [10 − 19] to [70 − 79] as the node age transits from [50 − 59] to [60

− 89]. This contrasts with the case of DT � CNSHþL , where the node degree first decreases from

[70 − 79] to [10 − 19] when the node age transits from [0 − 9] to [60 − 69], which then

increases from [10 − 19] to [40 − 49] as the node age transits from [70 − 79] to [80 − 89]. This

phenomenon can be caused by the number of nodes in each age group, as nodes in sparse age

groups are preferred and connected with those dissimilar others in dense age groups. This

Fig 6. The Hill number for each age distribution.

https://doi.org/10.1371/journal.pone.0296426.g006
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inevitably leads to higher node degrees for these sparse age groups. In contrast, the dense age

groups have lower node degrees as they prefer the sparse age groups and have limit connec-

tions with these preferred nodes. In addition, when we optimise the combined preferences

considering both preferential attachment and homophily (DT − CNSPH models), the shapes of

degree distributions approach the shape of a power-law distribution. This indicates that the

Fig 7. The age and degree distributions of social networks generated by DT-CNSs based different features and rules.

https://doi.org/10.1371/journal.pone.0296426.g007
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introduction of features and the optimisation of corresponding preferences enable better

achievement of the target states of networks.

Clustering Coefficient describes the probability of a node’s neighbours to be connected. Its

value is between 0 and 1 [43]. As shown in Table 8, in the target network, clustering coefficient

Fig 8. The age and clustering coefficient distributions of social networks generated by DT-CNSs based different features and

rules.

https://doi.org/10.1371/journal.pone.0296426.g008
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fluctuates around an average value of 0.47 with a standard deviation of 0.08, ranging from 0.79

to 0.33.

Fig 8 shows age and clustering coefficient distributions with a heatmap and two histogram

plots for age (See Fig 5) and clustering coefficient (See Table 8). We find that nodes in age

groups with bigger number of people with connection preferences for a similar group of nodes

tend to cluster with a higher clustering coefficient. For example, the young and middle-aged

nodes in the DT − CNSP+ models, built on positive preferential attachment to age, prefer to be

connected with old nodes, where these nodes cluster around the popular old nodes. Similarly,

the nodes in DT − CNSH− models, where interactions are based on homophily phenomenon,

like to be connected with similar others. This generally leads to a higher clustering coefficient

than in the case of other DT-CNSs. However, nodes in DT − CNSH+ models, driven by hetero-

phily phenomenon, prefer to be connected with dissimilar others. They generally have lower

clustering coefficients than in the case of other DT-CNSs because they select different nodes to

connect and do not cluster around the same node. When we optimise the combined prefer-

ences considering both preferential attachment and homophily, the shapes of clustering coeffi-

cient distributions vary with age distributions. As nodes tend to connect with similar and old

nodes (referring to the optimised preferences for both preferential attachment and homophily

in Table A in the S1 Appendix), the old and dense age groups tend to have higher clustering

Table 8. Topological information of the networks generated with the DT-CNSs.

Features Rules Nodes Node Degree Clustering coefficient Shortest path length

Connected Unconnected Avg. Std. Max. Min. Avg. Std. Max. Min. Fake Paths Avg. Std. Max. Min.

Target Network 90 0 31.11 12.90 70 6 0.47 0.08 0.79 0.33 0 1.65 0.48 3 1

Uniform P+ 80 10 31.11 21.20 70 0 0.66 0.27 1.00 0.00 845 20.22 36.09 90 1

P− 81 9 31.11 21.48 68 0 0.67 0.28 1.00 0.00 765 18.47 34.76 90 1

H+ 90 0 31.11 9.64 52 16 0.12 0.14 0.45 0.00 0 1.69 0.54 3 1

H− 90 0 31.11 6.16 43 19 0.69 0.09 0.89 0.57 0 2.05 0.98 5 1

PH 90 0 31.11* 11.56* 63* 13* 0.31 0.09 0.52 0.16 0* 1.65* 0.48* 3* 1*
Bell P+ 89 1 31.11 21.34 77 0 0.73 0.21 1.00 0.00 89 3.61 13.03 90 1

P− 87 3 31.11 21.50 75 0 0.70 0.22 0.89 0.00 264 7.46 21.93 90 1

H+ 90 0 31.11 15.70 73 13 0.36 0.11 0.57 0.16 0.00 1.65 0.48 2 1

H− 90 0 31.11 12.85 47 2 0.68 0.10 1.00 0.30 0 2.12 1.16 8 1

PH 90 0 31.11 10.32 68 17 0.40 0.06 0.52 0.28 0 1.65 0.48 2 1

Inverse bell P+ 79 11 31.11 21.24 66 0 0.66 0.28 1.00 0.00 924 21.96 37.26 90 1

P− 80 10 31.11 21.54 67 0 0.66 0.29 1.00 0.00 845 20.23 36.08 90 1

H+ 90 0 31.11 8.03 42 12 0.01 0.05 0.36 0.00 0 1.79 0.67 3 1

H− 90 0 31.11 4.71 40 22 0.72 0.10 0.88 0.48 0 2.18 1.07 5 1

PH 90 0 31.11 12.63 63 10 0.14 0.10 0.47 0.00 0 1.66 0.5 3 1

Left skewed P+ 75 15 31.11 21.34 64 0 0.61 0.32 1.00 0.00 1230 28.69 40.82 90 1

P− 90 0 31.11 22.47 81 7 0.74 0.19 0.90 0.30 0 1.65 0.48 2 1

H+ 90 0 31.11 16.80 73 14 0.37 0.11 0.54 0.15 0 1.65 0.48 2 1

H− 90 0 31.11 14.50 50 1 0.66 0.11 0.83 0.00 0 2.42 1.67 9 1

PH 90 0 31.11 11.25 67 15 0.39* 0.08* 0.53* 0.23* 0 1.65 0.48 2 1

Right skewed P+ 90 0 31.11 22.41 79 7 0.73 0.2 0.93 0.31 0 1.65 0.48 2 1

P− 73 17 31.11 21.69 62 0 0.59 0.34 1.00 0.00 1377 31.92 42.04 90 1

H+ 90 0 31.11 17.07 74 15 0.36 0.12 0.6 0.14 0 1.65 0.48 2 1

H− 90 0 31.11 15.48 51 1 0.67 0.17 1.00 0.00 504 13.06 29.21 90 1

PH 90 0 31.11 14.24 74 14 0.46 0.09 0.58 0.25 0 1.65 0.48 2 1

https://doi.org/10.1371/journal.pone.0296426.t008
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coefficient. Among them, the DT � CNSPHU and the DT � CNSPHI models characterised with

more even age group allocations generate a clustering coefficient with a power-law shape

because less nodes fulfil one of the requirements for larger age values and denser age groups,

which induces a lower clustering coefficient in the respective cases.

Shortest Path Length between two nodes describes the number of edges along the shortest

path between a pair of nodes [43]. As shown in Table 8, the shortest path length in the target

network fluctuates around an average value of 1, 65 with a standard deviation of 0.48, ranging

from 1.00 to 3.00.

Fig 9 shows age and shortest path length distributions with a scatter plot and two same Ker-

nel Density Estimation (KDE) plots for shortest path length referring to the age values (See Fig

5 for age distributions and Table 8 for information related to the shortest path length). Specifi-

cally, in Fig 9, we present the shortest path length at 1, 2, 3 and over 3 between the connected

nodes with blue, orange, green and red dots. The x-axis and y-axis represent age values and the

scattered dots represent the shortest path lengths between given pair of nodes of given ages.

We find that the shortest path lengths between the nodes are generated by all the DT − CNS
models range between 1 and 3 except for the DT − CNSH− models built on theH− (homophily)

rule. This is because in DT − CNSH− models, similar nodes cluster within the similar age

groups, leading to longer paths to connect the dissimilar nodes. For example, in the DT �
CNSH�L model, which is built with a left-skewed age distribution and the homophily principle,

a large number of paths between 0 − 9 and 80 − 89 age groups have value over 3 as a high pro-

portion of young nodes in the left-skewed age distribution cluster together without many

direct connections with the nodes for which the age range is 89 − 90. In addition, the distribu-

tion of the shortest path lengths is also highly related to the preference principles. The age

groups with preferred features have shorter paths to other nodes. For example, the nodes

which are old in DT − CNSP+ models have more direct connections with others and the short-

est paths of length of 1 due to the fact that they have preferred value of feacture age. When we

optimise the combined preferences considering both preferential attachment and homophily,

due to the complex interaction rules, the shapes of shortest path lengths distributions vary

greatly with age distributions and become very hard to interpret. This indicates that the

increasing dynamics level depreciates the network patterns’ interpretability but enables the

creation of more complex network and more faithful scenarios.

Summary Statistics, related to the target network and the simulated networks, are pre-

sented in Table 8. It incorporates information related to the degree distributions, clustering

coefficient distributions and shortest path length distributions. In addition, we use JS diver-

gence to evaluate the distances between these network patterns with that of the target network

(See Tab. A in the S2 Appendix). More specifically, the most similar network patterns are

identified with marker *. Compared with the target network, the network simulated by the

DT � CNSPHU model generates the most similar degree distribution and shortest path length dis-

tribution. DT � CNSPHL model generates the most similar clustering coefficient distribution.

This indicates that network models, driven by different features and the optimised interaction

rules, approach different characteristics of the target network. These differences challenge the

evaluation and development of DT-CNS models, remaining a research gap to be addressed in

future studies. However, in our experiments, we only focus on the degree distribution of target

network and investigate how heterogeneous features and rules influence the performance of

DTCNSs in recreating similar degree distributions.

Table 8 shows the number of connected and unconnected nodes and the information about

the degree distributions, clustering coefficient distributions and the shortest path length distri-

butions that vary depending on the values of the features and rules employed. Generally, all
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the nodes get connected with the DT − CNSH+, DT − CNSH− and DT − CNSPH paradigms.

DT − CNSP+ or DT − CNSP− paradigms, driven by preferential attachment to old/young ages,

result in some unconnected old/young nodes given any age distribution due to the strong pref-

erence for young/old ages. In contrast, DT − CNSH+, DT − CNSH− and DT − CNSPH paradigms

Fig 9. The age and shortest path length distributions between connected nodes of social networks based on different features

and rules.

https://doi.org/10.1371/journal.pone.0296426.g009
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consider the effect of similar or dissimilar ages, where all nodes can find similar/dissimilar oth-

ers within/across age groups and connect with them. The node degree distributions for each

DT-CNS paradigm share the same mean values but have different standard deviation, maxi-

mum and minimum values. Degree distributions, generated by DT − CNSH− and DT − CNSPH

paradigms, generally have smaller standard deviations and maximum values. In contrast, DT −
CNSP+ and DT − CNSP− paradigms have larger ones. The maximum degree of the respective

paradigms are similar with the number of connected nodes, which indicates that the most pop-

ular node tends to directly connect with most of the connected nodes (resulting in power law

node degree distribution). The node clustering coefficient distributions for DT − CNSP+ and

DT − CNSP− models based on preferential attachment principles and DT − CNSH− models

built on homophily generally have larger average values, standard deviations and maximum

values than other models, which results from the dense clusters created by preferred nodes

(See Fig 8). The shortest path length distributions are especially influenced by the number of

unconnected nodes and the corresponding non-existing (’fake’) paths, which are assumed as

the maximum path length plus one (i.e. 90). For the fully connected networks, the average

shortest path length fluctuates around 2, given different age distributions and preferences. It

increases significantly when there are fake paths for unconnected node pairs.

Simulation-based processes

In this section, we build simulation-based processes to analyse disaster resilience given differ-

ent network structures under the influence of various age distributions. The susceptible nodes

get infected given exposure with fixed transmissibility rate, while infected nodes get infectious

over time without recovery. The epidemic spread on the networks propagates one step (edge)

away for each time step.

Seed selection. We investigate the most severe case of epidemic explosion by assuming

a single seed selection in the initial stage based on the largest node degree (See Table A in

S3 Appendix) and allow the epidemic propagation for 5 time steps within 6 steps (edges)

away from the seed (first infection). Within this time and distance range, most of the con-

nected nodes finally get infected as they are directly/indirectly connected with the seed. As

shown in Table 8 and Table A in S3 Appendix, almost all the connected nodes are con-

nected with the seed node, resulting in a higher infection risk and the full infection. The

seeds selected for all the modelling paradigms generally fall in an age group which are pre-

ferred by much denser age groups. For example, the old (young) nodes are preferred by all

other nodes in DT − CNSP+ paradigms (DT − CNSP− paradigms) and thus have the largest

number of connections, which almost directly connect all the connected nodes in the

respective model (See Table 8)

Infection occurrence. The infection occurrence refers to the proportion of infected nodes

to the entire population within a specific distance from the seed. Given the infectious seed, we

simulate an epidemic spreading process based on different transmissibilities (ranging in [0.2,

0.4, 0.6, 0.8]) and investigate their impact on the infection occurrence.

We represent the number of infection occurrences within specific number of steps (edges

away) from the first infection in Fig. A in S4 Appendix. As we simulate the epidemic spread

for 6 time steps and allow the epidemic propagation by one step (edge) for each time step,

nodes within 6 steps away from the first infection are likely to be infected and thus have infec-

tion risks in the epidemic simulations. Nodes out of this range will not be exposed to the infec-

tion risks and thus some of the nodes stay uninfected despite the increase of transmissibility.

The infection occurrence generally stays the same given any transmissibility between 0.4 and

1.0. The detailed analysis of Fig. A can be seen in S4 Appendix.
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With decreasing transmissibility of the epidemic spread given the exposure, it takes more

time steps to achieve the infection status shown in Fig. A in S4 Appendix. In Fig 10, the num-

ber of infected nodes within the first time step (represented as Period 1) gets smaller when the

transmissibility decreases from 1.0 to 0.2, while the infections increase within Period 2 and

Fig 10. The infection occurrence over time with different transmissibilities given an exposure.

https://doi.org/10.1371/journal.pone.0296426.g010
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Period 3. Given a smaller transmissibility, the nodes are less likely to get infected in Period 1

and thus stay healthy. However, these healthy nodes in Period 2 and Period 3 get exposed to

more infected neighbours and finally get infected, leading to a delayed increase in infection

numbers. The decrease of transmissibility results in increase of time needed to infect all the

nodes and in the same time gives more time to react to the disaster. Compared with the other

models, DT − CNSH− models, driven by the homophily principle, have smaller infection occur-

rences despite different transmissibilities. In addition, the infection occurrences for DT −
CNSH− models also increase slowly compared to other models. This is because the seed node

clusters around a limited number of similar nodes (See Table A in S3 Appendix). This leads to

a social distancing between the infectious seed and dissimilar nodes. The increase in transmis-

sibility does not bridge the social distance between the seed node and the dissimilar nodes.

Therefore, for DT − CNSH− models, it still takes more time for the epidemic spread to reach

and infect these nodes. For infection occurrences in various age distributions over different

time steps, DT − CNSI generally has the fewest infections within the first time step. This also

results from limited connections between the seed node and others (See Table A in S3 Appen-

dix). The abovementioned phenomenon indicates that the increase in transmissibility can

have a greater impact on networks that densely clusters around the seed node.

People at risk. We introduce the People at Risk (PaR) measure to have an intuitive repre-

sentation of the proportion of people at risk of a disaster:

PaRðT;DÞ ¼

X

vi;t2Vt

rðvi;tÞdlðvi;t ;stÞ;Ddt;T

N ; D � T
ð10Þ

which is defined as PaR(T, D) to help identify the easiest-to-be-infected proportion of the pop-

ulation in the limited time [0, T] and the space within the distance [0, D] away from the seed.

δt,T and dlðvi;t ;stÞ;D each represents the Kronecker functions related to time t and the distance

lðvi;t; stÞ between node vi,t and seed st. N represents the number of nodes.

Fig 11 shows the PaR(1, 1) and the PaR(2, 2) values that vary with transmissibilities, rules of

network formation and the age feature distributions. First, the PaR(1, 1) decreases as transmis-

sibility decreases. DT − CNSP+, DT − CNSP−, DT − CNSH+ and DT − CNSPH generally have a

higher PaR(1, 1), and this is due to the higher number of nodes connected to the seed (See

Fig. A in S4 Appendix., where there are more occurrences of infections within the distance 1).

In addition, DT − CNSU and DT − CNSI, due to a higher age diversity, have smaller PaR(1, 1)

values. The PaR(2, 2) values increase significantly as the transmission propagates one step fur-

ther. Almost all the connected nodes get infected within two time steps, despite the differences

in transmissibilities (See Fig 10). This can be caused by the significant number of direct con-

nections between the popular seed node and others (See Table 8). Similar with the case of PaR
(1, 1) values, the PaR(2, 2) values for the DT − CNSH− models are also smaller than for the

other models, resulting from the limited number of connections with the seed node (See

Table 8). The above-mentioned differences between PaR(1, 1) and PaR(22) values indicate the

necessity of epidemic control in primary time and distance to the seed node.

To better understand the diversity of age features and their influence on the infection status,

we respectively calculate the PaR(1, 1) of each age group based on different transmissibilities,

age groups and rules (See Figs A–E in S5 Appendix). We also identify the age group where the

epidemic starts with a green arrow in the corresponding PaR(1, 1) figures. The figures and the

corresponding analysis are in S5 Appendix, which mainly presents three phenomena. First, the

PaR(1, 1) increases with the increasing transmissibility. This indicates an increasing level of

difficulty to resist an epidemic outbreak given increased transmissibility, because a higher PaR
(1, 1) value represents a higher proportion of infected nodes and more resources that are
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needed to keep the epidemic under control (See Fig. A in S5 Appendix). Second, the density in

age groups influences the corresponding PaR(1, 1) values. Denser age groups, despite the dif-

ferences and complexities in preferences, generally have higher infection risks and corre-

spondingly lower resistance levels to the epidemic outbreak (See Fig. E in S5 Appendix).

Third, the preference for old (young) age groups with positive (negative) preferential attach-

ment to age, as represented by P+ (P−) rule, may pose the old (young) at higher risk (See Figs

A and B in S5 Appendix). The P− (negative preferential attachment to age) andH+ (hetero-

phily) rules lead to similar PaR(1, 1) values because, in both these cases, the young and dense

age groups prefer to be connected with the seed node. Given theH− rule (preferences for simi-

lar ages) of network formation, fewer age groups get involved in the epidemic spreading pro-

cess than the other rules since the homophily effect limits the interactions with the seed node

to similar age groups (See Fig. D in S5 Appendix).

Faithfulness

In this section, we evaluate the simulation-based DT-CNSs based on their network representa-

tions’ faithfulness. This involves the similarity of simulated network with the target network

(see Table 9), the simulation runtime (see Fig 12) and the reproducible network statistics.

We evaluate the similarity of simulated networks with the target network from a global per-

spective using the degree distribution. In addition, we apply the Jensen–Shannon divergence

Fig 11. The PaR(1, 1) and PaR(2, 2) values with different transmissibilities, age distributions and rules of network formation.

https://doi.org/10.1371/journal.pone.0296426.g011

Table 9. The similarity of degree distributions with the target degree distribution, as measured by the Jensen–Shannon divergence.

Paradigms P+ P− H+ H− PH
DT − CNSU 0.51 0.53 0.36* 0.43 0.26*#
DT − CNSB 0.50* 0.50* 0.45 0.50 0.27

DT − CNSI 0.56 0.54 0.46 0.42* 0.33#

DT − CNSL 0.56 0.53 0.49 0.53 0.28#

DT − CNSR 0.51 0.59 0.47 0.55 0.28#

https://doi.org/10.1371/journal.pone.0296426.t009
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(JS divergence) [59] to measure the similarity of degree distributions. A smaller JS divergence

indicates a higher similarity level. In Table 9, DT − CNSU, DT − CNSB and DT − CNSI para-

digms, with more diverse age distributions where nodes are more evenly distributed in the age

groups with a similar density, tend to generate more similar degree distributions than the para-

digms built on other distributions (See the marker * in Table 9). DT − CNSPH paradigms, with

an optimised preference principles have smaller JS values (See the market # in Table 9). DT �
CNSPHU paradigm achieves the most similar degree distribution with the target. Therefore, the

scale-free network pattern, described by its degree distribution from a global perspective, can

be approached based on node features and the nodes’ preferences for connecting with others.

The consideration of node features is a good way to built up the complexity of a model and

approach the reality.

We employ the runtime of simulations to evaluate the efficiency of the DT − CNS para-

digms, where, as is shown in Fig 12, the time spent on simulation fluctuates with varying trans-

missibility. The DT − CNSH− paradigms generally have the lowest runtime due to the relatively

lower node degrees and the resulting inactivity of epidemic spread. Overall and as expected,

the diversity of age distributions and the different rules of network formation, as well as the

resulting patterns from the epidemic spreading process, do not make much difference, indicat-

ing a similar efficiency level for all the involved DT − CNS paradigms.

Regarding reproducibility, we ensure the repetition of the same resulting patterns with the

involved DT-CNSs by setting up a random seed to generate the same random distributions in

the process of feature simulation, network formation and process simulation. These random

distributions include (i) the uniform distribution that generates age values within an age group

(e.g. Uð20; 29Þ for the [20–29] age group), (ii) the Bernoulli distribution Bð0:08Þ that generates

binary values to represent encounters of node pairs based on the 0.08 encounter rate in net-

work simulation, (iii) the normal distribution N ð0; 0:0052Þ that generates the random inter-

ference in the mutual evaluation between node pairs in the network simulation and (iv) the

Bernoulli distribution that generates binary values to represent infections of nodes based on

the aggregated infection risks from the exposures in process simulation.

Summary of results

In this section, we summarise the experiment results on the simulation-based DT-CNSs in

disaster resilience scenarios connected with the emerging network patterns and the infection

status.

In the network dimension, the diversity of the population increases as the age distribution

gets more even. Nodes at an older/younger age are more popular than others given P+ or

Fig 12. The runtime of simulation-based DT-CNS given different features and rules.

https://doi.org/10.1371/journal.pone.0296426.g012
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P− rules. In contrast, nodes closer/further away from the average age are more popular with

H+ orH− rules. The DT � CNSPHU paradigm, based on the most diverse age distribution and

driven by an optimised PH rule that prefers a younger and dissimilar age, better approaches

the target scale-free network patterns. This indicates that introducing features and combining

corresponding preferences enable the DT-CNSs to approach the target states better with a

higher complexity level concerning the network attributes and dynamics. Our proposed

DT-CNS modelling framework enables the extension of DT-CNSs with a flexible complexity

levels and the evaluation of their respective distances to the target.

In the process dimension, we study the infection status in the disaster resilience scenario

under the influence of network structures driven by various age features and interaction rules.

DT-CNS driven by P+, P− and theH+ rules can generally achieve the most infections within

two steps (edges) away from the seed. The decrease of transmissibility means that more time is

needed to reach an infection peak, preserving time to react to the epidemic outbreak. DT-CNS

paradigms driven by P+, P− orH+ rules tend to take less time for the final infection status.

This is because the seed node has more direct connections with other nodes, in contrast with

the nodes who connect with limited number of similar others under the influence of homo-

phily effect. The heterogeneous features and respective preferences lead to complex network

topologies, inducing different infection patterns that occur sooner or later due to various

transmissibilities. Therefore, social networks have different infection risks/occurrences and,

correspondingly, different resistance levels to an epidemic outbreak within a specific time,

dependent on transmissibilities and network topologies driven by features and preferences. As

a result, nodes with different features and preferences also suffer different infection risks, pres-

ent different resistance levels to the epidemic and thus can be treated with different mitigation

policies.

To promote disaster resilience, the diversity of the population and the interaction rules are

important drivers of case-dependent policy-making. We employ the people at risk PaR(1, 1) to

represent the proportion of the infected people to be treated by the policymakers with the

highest priority. The experiment results suggest that larger transmissibility, a less diverse popu-

lation, and the P+ (positive preferential attachment in age), P− (negative preferential attach-

ment in age) andH+ (heterophily effect) rules contribute to a higher PaR(1, 1). Among each

age group, the P+ and P− rules each lead to higher PaR(1, 1) for the older and the younger,

whileH+ andH− lead to clustering infection among several age groups due to their connec-

tions to similar and dissimilar others respectively. Therefore, the control of epidemic outbreak

requires mitigation policies targeted at heterogeneous population. The age groups with higher

PaR values given an upcoming epidemic outbreak should be vaccinated in priority to contain

the spread of disease. The social networks characterised with higher PaR values within specific

time and space require more stringent and urgent isolation policies when the epidemic

spreads.

Conclusion

This study proposes a modelling framework for DT-Oriented CNSs based on heterogeneous

node features and interaction rules. We also create an evaluation protocol for a faithful repre-

sentation of reality. Under the modelling framework and evaluation protocol, we conduct a

case study on disaster resilience, where we build and compare the simulation-based DT-CNSs

given various features and rules.

We build the DT-CNS modelling framework from a top-down perspective concerned with

the network and the process dynamics (see An extendable DT-CNS framework). We first

employ an inner-rule-based network model to represent the network faithfully and mimic its
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growth. This network model is built on heterogeneous features (ascribed and topological fea-

tures—see Table 4) and various feature preference principles (homophily and preferential

attachment principles—see Optimisation towards a Digital Twin). We also devise the (epi-

demic) process model based on a seed selection strategy and node adoptability, which all vary

with specific conditions concerned with node features and the infection status. Based on these

features and rules, the network growth and dynamic process are parameterised with sDNA

and pDNA vectors, each incorporating the feature preferences and the consideration of condi-

tions related to transmissibility.

We also propose an evaluation protocol on faithfulness concerned with similarity, efficiency

and reproducibility (see An Evaluation Protocol on Faithfulness). Under this protocol, the def-

inition of faithfulness varies with the simulation-based DT-CNSs, hybrid DT-CNSs and data-

driven DT-CNSs due to the ground-truth availability. There are pinpoint-, local- and global-

level similarity employed, each focusing on the network components, networks local struc-

tures, and the global network statistics. We also use the runtime of the simulation and/or

modelling to measure the efficiency and evaluate the reproducibility of the same data, statistics

or phenomena.

We finally conduct a case study on disaster resilience and conclude with three findings.

First, the diversity of the population, people preferences with who they interact and a change

of transmissibility can significantly influence infection patterns and serve as important indica-

tors for policymakers in a disaster resilience scenario. Second, the complexity of network

dynamics increases when more feature preference representation principles (e.g. preferential

attachment and homophily) are introduced. Such an increase in complexity can improve the

faithfulness of network representation by preserving necessary heterogeneous patterns

observed in reality. Third, age diversity influences the network structures and induces the epi-

demic outbreak among specific people. This implies the necessity of targeting the easily

infected populations with heterogeneous mitigation policies.

Our proposed modelling framework and evaluation protocol enable the extension of

DT-CNSs with a flexible complexity level and the evaluation of their respective distances to the

target. This modelling framework can also be employed in our future study to generate more

realistic social networks by incorporating more complex and real-world information. Our sim-

ulation-based experiments on age features and related interaction rules indicate the complexity

of real-world interactions and reveal the challenge of approaching reality where people’s fea-

tures and preferences can be uncertain and, thus, even more complex. This poses a research

question to be addressed in our future study: how to improve the expressive power of

DT-CNSs for achieving more real-world like network representation?
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72. Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A: statistical mechanics and its

applications. 2011; 390(6):1150–1170. https://doi.org/10.1016/j.physa.2010.11.027

73. Junuthula RR, Xu KS, Devabhaktuni VK. Evaluating link prediction accuracy in dynamic networks with

added and removed edges. In: 2016 IEEE international conferences on big data and cloud computing

(BDCloud), social computing and networking (SocialCom), sustainable computing and communications

(SustainCom)(BDCloud-SocialCom-SustainCom). IEEE; 2016. p. 377–384.

74. Chen J, Wang X, Xu X. GC-LSTM: graph convolution embedded LSTM for dynamic network link predic-

tion. Applied Intelligence. 2021; p. 1–16.

75. Li X, Du N, Li H, Li K, Gao J, Zhang A. A deep learning approach to link prediction in dynamic networks.

In: Proceedings of the 2014 SIAM International Conference on Data Mining. SIAM; 2014. p. 289–297.

76. Bu Z, Wang Y, Li HJ, Jiang J, Wu Z, Cao J. Link prediction in temporal networks: Integrating survival

analysis and game theory. Information Sciences. 2019; 498:41–61. https://doi.org/10.1016/j.ins.2019.

05.050

77. Patel R, Guo Y. Graph Based Link Prediction between Human Phenotypes and Genes. arXiv preprint

arXiv:210511989. 2021;.

78. Chen H, Yin H, Sun X, Chen T, Gabrys B, Musial K. Multi-level graph convolutional networks for cross-

platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining; 2020. p. 1503–1511.

79. Faisal M, Zamzami E, et al. Comparative analysis of inter-centroid K-Means performance using euclid-

ean distance, canberra distance and manhattan distance. In: Journal of Physics: Conference Series.

vol. 1566. IOP Publishing; 2020. p. 012112.

80. Nikolentzos G, Meladianos P, Vazirgiannis M. Matching node embeddings for graph similarity. In:

Thirty-first AAAI conference on artificial intelligence; 2017.

81. Wang T, Lu G, Liu J, Yan P. Graph-based change detection for condition monitoring of rotating

machines: Techniques for graph similarity. IEEE Transactions on Reliability. 2018; 68(3):1034–1049.

https://doi.org/10.1109/TR.2018.2866152

82. Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ. The ubiquity of small-world networks.

Brain connectivity. 2011; 1(5):367–375. https://doi.org/10.1089/brain.2011.0038 PMID: 22432451

83. Courtat T, Gloaguen C, Douady S. Mathematics and morphogenesis of cities: A geometrical approach.

Physical Review E. 2011; 83(3):036106. https://doi.org/10.1103/PhysRevE.83.036106 PMID:

21517557

84. Hong R, He Y, Wu L, Ge Y, Wu X. Deep attributed network embedding by preserving structure and attri-

bute information. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2019;.

85. Abu-El-Haija S, Kapoor A, Perozzi B, Lee J. N-gcn: Multi-scale graph convolution for semi-supervised

node classification. In: uncertainty in artificial intelligence. PMLR; 2020. p. 841–851.

86. Fortunato S, Flammini A, Menczer F. Scale-free network growth by ranking. Physical review letters.

2006; 96(21):218701. https://doi.org/10.1103/PhysRevLett.96.218701 PMID: 16803279

87. Sohn I. Small-world and scale-free network models for IoT systems. Mobile Information Systems. 2017;

2017. https://doi.org/10.1155/2017/6752048

88. Russell TW, Hellewell J, Jarvis CI, Van Zandvoort K, Abbott S, Ratnayake R, et al. Estimating the infec-

tion and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the out-

break on the Diamond Princess cruise ship, February 2020. Eurosurveillance. 2020; 25(12):2000256.

https://doi.org/10.2807/1560-7917.ES.2020.25.12.2000256 PMID: 32234121

89. Alberdi A, Gilbert MTP. A guide to the application of Hill numbers to DNA-based diversity analyses.

Molecular Ecology Resources. 2019; 19(4):804–817. https://doi.org/10.1111/1755-0998.13014 PMID:

30947383

PLOS ONE Towards digital twin-oriented complex networked systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0296426 January 2, 2024 36 / 36

https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/j.ins.2019.05.050
https://doi.org/10.1016/j.ins.2019.05.050
https://doi.org/10.1109/TR.2018.2866152
https://doi.org/10.1089/brain.2011.0038
http://www.ncbi.nlm.nih.gov/pubmed/22432451
https://doi.org/10.1103/PhysRevE.83.036106
http://www.ncbi.nlm.nih.gov/pubmed/21517557
https://doi.org/10.1103/PhysRevLett.96.218701
http://www.ncbi.nlm.nih.gov/pubmed/16803279
https://doi.org/10.1155/2017/6752048
https://doi.org/10.2807/1560-7917.ES.2020.25.12.2000256
http://www.ncbi.nlm.nih.gov/pubmed/32234121
https://doi.org/10.1111/1755-0998.13014
http://www.ncbi.nlm.nih.gov/pubmed/30947383
https://doi.org/10.1371/journal.pone.0296426

