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Abstract

Eimeria (E.) maxima parasite infects chickens’ midgut disrupting the jejunal and ileal

mucosa causing high morbidity and mortality. Heat stress (HS) is a seasonal stressor that

impacts biological functions leading to poor performance. This study elucidates how HS, E.

maxima infection, and their combination affect the ileum transcriptome. Two-hundred and

forty 2-week-old males Ross708 chickens were randomly allocated into four treatment

groups: thermoneutral-control (TNc), thermoneutral-infected (TNi), heat-stress control

(HSc), and heat stress-infected (HSi), with 6 replicates each of 10 birds. Infected groups

received 200x103 sporulated E. maxima oocysts/bird, and heat-treated groups were raised

at 35˚C. At 6-day post-treatment, ileums of five randomly selected chickens per group were

sampled, RNA was extracted and sequenced. A total of 413, 3377, 1908, and 2304 DEGs

were identified when applying the comparisons: TNc vs HSc, TNc vs TNi, HSi vs HSc, and

TNi vs HSi, respectively, at cutoff�1.2-fold change (FDR: q<0.05). HSc vs TNc showed

upregulation of lipid metabolic pathways and degradation/metabolism of multiple amino

acids; and downregulation of most immune-related and protein synthesis pathways. TNc vs

TNi displayed upregulation of most of immune-associated pathways and eukaryotic mRNA

maturation pathways; and downregulation of fatty acid metabolism and multiple amino acid

metabolism pathways including tryptophan. Comparing HSi versus HSc and TNi revealed

that combining the two stressors restored the expression of some cellular functions, e.g.,

oxidative phosphorylation and protein synthesis; and downregulate immune response path-

ways associated with E. maxima infection. During E. maxima infection under HS the calcium

signaling pathway was downregulated, including genes responsible for increasing the cyto-

plasmic calcium concentration; and tryptophan metabolism was upregulated, including

genes that contribute to catabolizing tryptophan through serotonin and indole pathways;

which might result in reducing the cytoplasmic pool of nutrients and calcium available for the

parasite to scavenge and consequently might affect the parasite’s reproductive ability.
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Introduction

Heat stress (HS) is one of the most challenging environmental stressors despite the modern cli-

mate control equipment in broiler chickens’ houses. Broiler flocks may be seasonally exposed

to HS that varies in intensity according to the relative humidity of the region [1]. Multiple

studies have identified the various adverse effects of acute or chronic HS on chickens, such as a

severe reduction in feed intake and growth [2–4], systemic alkalosis [5], immune suppression

[6, 7], and increased intestinal permeability [8]. During HS the cellular production of reactive

oxygen species (ROS) is dramatically increased causing oxidative stress that impacts cellular

functions and even viability [5, 9, 10].

Eimeria (E.) maxima is one of the most common apicomplexan species infecting chickens

causing coccidiosis. Eimeria maxima preferably invades the upper part of the jejunum and

whole ileum and produces a huge number of merogonic and gametogenic stages, damaging

the intestinal mucosal lining and resulting in severe inflammation, hemorrhage, and diarrhea.

Consequently, areas of erosion and ulceration would be developed exposing the intestine to

secondary pathogenic invasion, such as Clostridium perfringens causing necrotic enteritis. E.

maxima spp infection is associated with significant production losses resulting from weight

loss, poor feed conversion, high morbidity, and mortality [11–13]. Exposing E. maxima-

infected chickens to HS-suppressed E. maxima gametogony. Broiler chickens exposed to a

combination of HS and E. maxima infection exhibited higher values for the apparent ileal

digestibility and less enterocytic damage than the E. maxima-infected chickens raised under

thermoneutral condition [14–16].

Identifying the differentially expressed genes (DEGs) and integrating them into known

molecular pathways and biological functions could lead to the mechanisms by which cells

respond to different conditions [17]. This study provides an unprecedented analysis of the ileal

transcriptome under HS, E. maxima infection, and their combination to elucidate the molecu-

lar mechanisms controlling the ileal tissue response to each stressor and key molecular func-

tions by which HS limits the E. maxima life cycle.

Materials and methods

This study was implemented under the Animal Use Proposal (AUP) A2015 04–005 approved

by the University of Georgia Animal Care and Use Committee (IACUC).

Experimental design

Two hundred and forty 14-day-old Ross 708 male broilers were randomly allocated into four

treatment groups: Thermoneutral control (TNc), thermoneutral infected (TNi), heat stress

control (HSc), and heat stress infected (HSi). The thermoneutral and HS groups were raised at

20˚C and 35˚C, respectively. The infected groups received via oral gavage 2x105 E. maxima
sporulated oocysts/bird, while the control groups were mock-infected with water. E. maxima
infective doses were acquired from a single oocyst cloning performed as described by Schnei-

der et al. [14]. The infected groups showed obvious coccidiosis clinical signs started at 4 day-

post-infection (dpi), and the beak of growth depression was at 6 dpi [16]. Only HSi group had

two recorded mortalities, one was found dead at 3dpi and the other was humanly euthanized

at 6 dpi. To confirm the infection, oocyst shedding was detected in the infected groups (TNi

and HSi) groups, but not in control groups (TNc and HSc). All the chickens were housed in

wired-floor cages and ad libitum supplied with water and a non-medicated standard grower

diet. The human end point was considered to euthanize the bird upon showing inability to

reach feed and water, sever respiratory distress, or severely emaciation. Any of these factors led

to humane euthanization by cervical dislocation.
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Five chickens were randomly selected from each treatment group at 6 (dpi) and euthanized

by cervical dislocation to sample ~1 cm of ileum tissue from Meckel’s diverticulum. Ileum

samples were snap-frozen in liquid nitrogen and then, stored at -80˚C for later RNA extraction

and sequencing using the NGS Illumina sequencing platform.

Nucleic acid extraction

The trizol-chloroform method was used to extract the mRNA. Briefly, 100 mg of frozen ileum

tissue was homogenized in 1 mL of trizol using Benchmark BeadBlaster Microtube Homoge-

nizer1 (OVERSTOCK Lab Equipment, NH, USA), and then phase separated by mixing 0.2

mL of chloroform, 3 minutes incubation at room temperature (RT), and centrifugation (13500

xg, 4˚C, for 15 min). About 550 μL of the aqueous phase was collected into a new tube contain-

ing 0.5 mL isopropanol to precipitate the RNA, mixing by vortex and 10 min incubation at

RT. The mixture was centrifugated at 13500 xg, 4˚C for 10 min, followed by supernatant dis-

posal. The pelleted RNA was washed by vortex mixing with 1 mL of 75% ethanol, then repreci-

pitated by centrifugation at 13500 xg, 4˚C for 5 min, followed by discarding the supernatants.

The tubes containing the pelleted mRNA were left for 10 min at RT for drying, followed by

resuspending the mRNA pellet in 100μL of nuclease-free distilled water and then incubating at

55–60˚C for 10 min before being stored at -80˚C.

cDNA library construction and sequencing

The extracted RNA was purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany) fol-

lowing the manufacturer’s protocol. The concentration of the purified RNA was determined

using a NanoDrop 2000 Spectrophotometer (Thermo Fischer Scientific, DE, USA), showing

OD260/280 ratios for all samples >1.9. The RNA integrity number (RIN) of all samples was� 9.

cDNA libraries were prepared with 4 μg total RNA using the TruSeq RNA Sample Preparation

Kit to acquire cDNA fragments with an average size of 229 bp, or 355 bp inclusive of the

adapter sequences. The prepared cDNA libraries were sequenced by 150 bp paired-end read

chemistry using the Illumina HiSeq 2000 system.

Sequence quality control, mapping, and annotation

The quality of raw reads was assessed by FastQC, and the trimming of the low-quality reads

was conducted using Trimmomatic v.0.36 [18]. The reads were aligned to the reference

genome of chicken (Gallus gallus 5.0.90, Ensembl) using STAR aligner v.2.5.2b [19]. Hit

counts were accounted for using the feature Counts v.1.5.2 package [20], considering only

the unique reads for downstream analysis. Before the mapping step, the quality of reads was

inspected -and trimmed when required- for the adapter sequence using Flexbar version 2.4

[21].

Sequence reads mapped to the transcriptome were reported according to their genome-

equivalent coordinates. The genome coverage data were acquired using the Bamtools version

2.5.1 ’stats’ command [22]. Cufflinks version 2.2.1 [23] was utilized to detect the expressed

genes and transcripts by contrasting the Tophat2 read-mapping to the Ensembl gene models

for the Gallus gallus 5.0.90 assembly of the chicken genome, including the known- and pre-

dicted genes. Afterward, the fragments per kilobase of exon per million mapped fragments

(FPKM) expression values for each sample were collected using Cuffdiff version 2.1.1 [23]

both at the Gene (G) and gene Isoform (I) levels.
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Gene differential expression, gene ontology, and Kyoto encyclopedia of

genes and genomes pathway analysis

DESeq2 [24] was used to ascertain DEGs. The Wald test within the DESeq2 package was used

to acquire the p-value and log2 fold-change of the DEGs. The p-value then was adjusted for

multiple testing with the Benjamini-Hochberg method [25]. The DEGs with false discovery

rate adjusted (adj. p-value)�0.05 and absolute log2 fold change >1.2 were considered as sig-

nificantly differentially expressed. The gene ontogeny (GO) analysis was conducted and func-

tionally visualized using the Cytoscape v3.7.2 software platform provided with the ClueGO

Plugin v2.5.4 application [26, 27]. The pathways analysis was performed using the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) terms [28, 29]. The GO pathways/networks were

used to classify DEGs into cellular, molecular, and biological functions.

Hi-Seq data confirmation

The Hi-Seq expression data was confirmed using RT-qPCR. Genes were randomly selected

from the common DEGs shared between different group comparisons (n = 10 genes for each

comparison). The relative mRNA expression values were calculated according to 2-ΔΔCt

method [30], and then compared with the fold change values yielded from the Hi-Seq data

(S1A–S4B Figs).

Results

The sequencing generated an average of 38,692,865 reads per sample, with an average of

32,541,154 reads uniquely mapped. The average total mapped read and unique mapped reads

were 88 and 84%, respectively. The number of DEGs resulting from each pairwise comparison

is presented in Fig 1. The top 100 DEGs (50 downregulated and 50 upregulated) of each pair-

wise comparison are provided in the supplementary Excel sheets (S1–S4 Tables).

Fig 1. Number of DEGs of each pairwise comparison at 6 dpi of chickens infected with Eimeria maxima and their uninfected controls that

are raised in a thermoneutral or heat stress environment: TNc = thermoneutral control, TNi = thermoneutral infected, HSc = heat stress

control, HSi = heat stress infected.

https://doi.org/10.1371/journal.pone.0296350.g001
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The effect of heat stress on the ileal transcriptome

A total of 413 DEGs were identified when the HSc group was compared with the TNc group

(Fig 1). The genes C-X-C motif chemokine ligand 13 and ligand 13-like 2 (CXCL13,

CXCL13L2); interleukins 22, 8-like 1, and 1 receptor type 2 (IL-22, IL-8L1, and IL-1R2); TNF

receptor superfamily member 13B (TNFRSF13B); heat shock proteins family A (HSP70) mem-

ber 8 and member 4 like (HSPA8 and HSPA4L), family H (Hsp110) member 1 (HSPH1), and

90 alpha family class A member 1 (HSP90AA1) were among the most downregulated (Fig 2A)

in HSc compared to the TNc group. The highest upregulated genes in the HSc group com-

pared with the TNc group included amidohydrolase domain containing 1 (AMDHD1), histi-

dine ammonia-lyase (HAL), cholecystokinin A receptor (CCKAR), cholinergic receptor

nicotinic alpha 7 subunit (CHRNA7), polypeptide N-acetylgalactosaminyltransferase 13

(GALNT13), glutathione S-transferase alpha 2 (GSTA2), and lipase G, endothelial type (LIPG)

(Fig 2A).

The KEGG pathway network analysis depicted in Fig 2B and 2C shows downregulation of

the “cytokine-cytokine receptor interaction”, “intestinal immune network for IgA produc-

tion”, “Toll- and nod-like receptor signaling”, and “protein processing in the endoplasmic

reticulum (ER)” pathways, whereas the pathways involved in metabolism and degradation of

many amino acids such as histidine, glycine, tyrosine, valine, and leucine were upregulated.

The GO terms are exhibited in Fig 2D. The Cellular compartments showed downregulation of

the terms related to “endoplasmic reticulum compartments”, “basolateral plasma membrane”,

and “immunological synapse”, and upregulation of the “apical plasma membrane” (Fig 2D).

Consistently, the molecular function and biological process terms related to immune response

and inflammation, and protein synthesis in the endoplasmic reticulum were downregulated in

the HSc group compared to the TNc group, while the terms involved in the amino acids and

organic acids metabolic processing were upregulated (Fig 2D).

The effect of E. maxima infection on the ileal transcriptome

A total of 3,377 DEGs were identified when the TNi group was compared with the TNc group

(Fig 1). The most downregulated genes in the TNi group compared to the TNc group included

alcohol dehydrogenase 1C (class I); gamma polypeptide (ADH1C); aldehyde dehydrogenase 1

family member A1 (ALDH1A1), cytochrome P450 family 1 subfamily A members 1 and 2,

family 2 subfamily AC polypeptide 1, family 2 subfamily C polypeptide 23, family 2 subfamily

D member 6 (CYP1A1, CYP1A2, CYP2AC1, CYP2C23b, and CYP2D6); fatty acids binding

proteins 1 and 6 (FABP1 and FABP6); and phosphoenolpyruvate carboxykinase 1 (PCK1) (Fig

3A). Among the top upregulated genes were identified interleukins (IL-1β and IL12B); inter-

leukin 1 receptor type 2 (IL1R2); C-C motif chemokine ligand 4 and 26 (CCL4 and CCAH221);

nitric oxide synthase 2 (NOS2); colony-stimulating factor 3 (CSF3), integrin subunit alpha 2

(ITGA2); and secreted phosphoprotein 1 (SPP1) (Fig 3A).

The KEGG pathway analysis shown in Fig 3B and 3C shows the downregulation of the met-

abolic pathways involved in cellular respiration, carbohydrate, lipids, and amino acids catabo-

lism, while the “cytokine-cytokine receptor interaction”, “toll-like receptor signaling, cell

cycle”, and “necroptosis pathways” pathways were enriched. The GO terms are depicted in Fig

3D. The cellular compartments and molecular function showed downregulation of the terms

related to absorption and transportation, especially for fatty acids, and enrichment of the

terms involved in producing, binding, and transporting the inflammatory signal molecules.

The biological process terms related to fatty acid metabolism and lipid homeostasis were

downregulated, while the terms of immunity and inflammation, including immune regulatory

and signaling processes, were upregulated.
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Fig 2. A. Heatmap of the top ~60 DEGs of TNc vs. HSc, calculated as Log 2 relative hit counts of the comparison

between the chickens exposed to HS (HSc) and their thermoneutral control (TNc) at 6 day-post-treatment. B. The top

KEGG pathways of TNc vs. HSc, based on the pathway term significance (α�0.1) of the comparison between the

chickens exposed to HS (HSc) and their thermoneutral control (TNc) at 6 day-post-treatment. The green squares and

arrowheads depict the downregulated pathways and genes, respectively. The red circles and arrowheads depict the
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The effect of E. maxima infection on the ileal transcriptome of heat-

stressed chickens

A total of 1,908 DEGs were identified when the HSi group was compared with the HSc group.

The top ~60 DEGs of the HSi group compared with the HSc group are exhibited in Fig 4A.

The most downregulated genes in the HSi group compared with the HSc group included alco-

hol dehydrogenases 6 (class V) and 1C (class I), gamma polypeptide (ADH6 and ADH1C), glu-

cose-6-phosphatase catalytic subunit 1 (G6PC), monoamine oxidase B (MAOB), D-aspartate

oxidase (DDO), glycogen synthase 2 (GYS2) (Fig 4A). While the genes for IL-8, IL-22, IL-4I1,

CCL4, CXCL13L2, TNFRSF6B, CTLA4, secreted phosphoprotein 1 (SPP1), Programmed cell

death 1 ligand 1 (CD274), and claudin 1 (CLDN1) were of the top upregulated (Fig 4A).

The KEGG analysis depicted in Fig 4B and 4C shows downregulation of the pathways “fatty

acids degradation”, “tryptophan metabolism”, “ABC transporters”, and “calcium signaling”.

At the same time, the immune-related pathways “toll-like receptor” and “cytokine-cytokine

receptor interaction”, “cell cycle” and its related pathways, “proteasome”, and “oxidative phos-

phorylation pathway” were among the significantly enriched pathways in the HSi group com-

pared with the HSc group. The GO terms are presented in Fig 4D. The molecular function and

biological process of the HSi showed downregulation of “lipid absorption and homeostasis”,

“calcium transmembrane transporter activity”, and “anion transport, and ion channels”. The

top enriched terms were the “defense”, ‘innate immune”, and “inflammatory responses” and

related terms such as “positive regulation of cytokine production” and “activity and leukocyte

activation”. Also, the “DNA polymerase”, “cell cycle”, “fructose 1,6-biphosphate”, and “fatty-

acyl-CoA metabolic processes” were of the top enriched terms (Fig 4D). Consistently, the GO-

cellular component showed downregulation of cell junction terms, such as “cell-cell adher-

ence” and “anchoring junctions”, and “intercalated disc”. While, the “mitochondrial compart-

ments”, “endoplasmic reticulum”, and “nucleus” terms were enriched.

The effect of HS on the ileal transcriptome of E. maxima-infected chickens

A total of 2,304 DEGs were identified when the HSi group was compared with the TNi groups.

The genes interleukins 8, 1B, and 12 B (IL8, IL1B, and IL12B); the interleukin receptors 1R2

and 20RA (IL1R2 and IL20RA), secreted phosphoprotein 1 (SPP1), hepatocyte growth factor,

and nitric oxide synthase 2 (NOS2) were among the most downregulated in the HSi group

compared with the TNi group (Fig 5A). The top upregulated genes included apolipoproteins

A1, A5, and C3 (APOA1, APOA5, and APOC3); fatty acid-binding proteins 1, 2, and 6

(FABP1, FABP2, and FABP6); cytochrome P450 family 1 A polypeptides 1 and 2 (CYP1A1 and

CYP1A2); and glutamate-ammonia ligase (GLUL).

The KEGG pathway analysis of the HSi group compared with the TNi group is depicted in

Fig 5B and 5C. The top downregulated terms were “toll-like receptor signaling”, “cytokine-

cytokine receptor interaction”, “focal adhesion”, and “calcium signaling” pathways. In con-

trast, the highest enriched pathways were the “citrate cycle”, “glycolysis/gluconeogenesis”,

“oxidative phosphorylation”, “fatty acid degradation”, “glutathione metabolism”, “tryptophan

metabolism”, and “steroid biosynthesis”. The GO terms are exhibited in Fig 5D. The top

upregulated pathways and genes, respectively. The bigger size squares and circles denote the lower p-value. An increase

in the color transparency (lighter color) of the squares and circles indicates an increase in the percentage of the

included genes with expression that counter the regulation direction of the pathway. C. The top significant KEGG

pathways of TNc vs. HSc, the comparison between the chickens exposed to HS (HSc) and their thermoneutral control

(TNc) at 6 day-post-treatment. D. The top significant Gene Ontology terms of TNc vs. HSc, the comparison between

the chickens exposed to HS (HSc) and their thermoneutral control (TNc) at 6 day-post-treatment.

https://doi.org/10.1371/journal.pone.0296350.g002

PLOS ONE Global expression of broiler chickens to heat stress and Eimeria maxima

PLOS ONE | https://doi.org/10.1371/journal.pone.0296350 February 23, 2024 7 / 21

https://doi.org/10.1371/journal.pone.0296350.g002
https://doi.org/10.1371/journal.pone.0296350


Fig 3. A. Heatmap of the top ~60 DEGs of TNc vs. TNi, as Log 2 relative hit counts of the comparison between the

chickens infected with Eimeria maxima (TNi) and their uninfected thermoneutral control (TNc) at 6 day-post-

treatment. B. The top KEGG pathways of TNc vs. TNi, based on the pathway term significance (α�0.1) of the

comparison between the chickens infected with Eimeria maxima (TNi) and their uninfected thermoneutral control

(TNc) at 6 day-post-treatment. The green squares and arrowheads depict the downregulated pathways and genes,
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downregulated molecular function and biological process terms were the “calcium ion trans-

membrane regulation”, “inflammatory response”, “cytokine secretion and receptors”, “colla-

gen and actin-binding”, and “leukocytes activation and differentiation”. Whereas,

“antioxidant activity”, “glutathione metabolic process”, “cellular respiration, electron transport

chain”, “lipid absorption, and fatty acid metabolism” were among the top enriched terms (Fig

5D). Concordantly, the GO-cellular component analysis showed downregulation of the terms

“actin cytoskeleton”, “focal adhesion”, and “membrane raft”. While the terms “mitochondrial

respiratory chain complex 1”, “endoplasmic reticulum”, “lysosome, and peroxisome” were the

top enriched compartments (Fig 5D).

The RT-qPCR results of the target genes selected to confirm the Hi-Seq data showed a very

high similarity in the expression levels to the fold change derived from the Hi-Seq analysis

(S1–S4 Figs). The correlation coefficients (r) of the RT-qPCR values versus Hi-Seq yielded fold

change were 0.758, 0.857, 0.891, and 0.999 for the pair comparisons TNc vs. HSc, TNc vs. TNi,

HSc vs. HSi, and TNi vs. HSi; respectively. The values reflect a very strong correlation confirm-

ing the Hi-Seq results.

Discussion

Ileum tissue transcriptome change in response to HS

The ileal transcriptome was reshaped to maintain resources for cellular molecular functions to

cope with HS-induced oxidative stress. Ileum cells upregulated the metabolism and degrada-

tion of multiple amino acids, such as lysine, histidine, valine, leucine, and isoleucine. This may

plausibly be a compensatory mechanism to maintain cellular functions and energy production

under low nutrient availability created by HS [15, 16, 31–33]. The results show the upregula-

tion of multiple aldehyde dehydrogenase (ALDH) genes. KEGG pathway analysis shows that

ALDH is connecting multiple amino acid degradations and metabolism pathways (Fig 2B).

The ALDH7A1 gene encodes antiquitin enzyme (α-aminoadipic semialdehyde (α-AASA)

dehydrogenase) that plays a fundamental role in lysine catabolism, the process by which lysine

is broken down for energy production [34]. The enzyme α-AASA oxidizes multiple aldehyde

containing molecules produced from metabolizing various amino acids by converting NAD+

to NADH [34]. The energy yield from each NADH is identified as 2.5 ATP produced in the

electron transport chain [35]. The upregulated genes HAL and AMDHD1 encode enzymes

involved in histidine metabolism producing L-glutamate [36]. The BCKDHB gene encodes the

2-oxoisovalerate dehydrogenase E1 component beta subunit involved in valine, leucine, and

isoleucine degradation by producing acetoacetate and acetyl-CoA utilized in the tricarboxylic

acid cycle for energy production [37]. The upregulated gene LIPG possesses both phospholi-

pase and triglyceride lipase roles that mainly hydrolyzes the phospholipids part of lipoproteins

and are generally involved in glycolipid metabolism [38]. Chickens under HS conditions

endure visceral ischemia along with feed intake reduction resulting in severe nutrient scarcity

at the cellular level [39]. The degradation and catabolism of lipoproteins and amino acids may

be a potential source for producing energy and nutrient molecules in the ileum cells of chick-

ens reared under chronic HS.

respectively. The red circles and arrowheads depict the upregulated pathways and genes, respectively. The bigger size

squares and circles denote the lower p-value. An increase in the color transparency (lighter color) of the squares and

circles indicates an increase in the percentage of the included genes with expression that counter the regulation

direction of the pathway. C. The top significant KEGG pathways of TNc vs. TNi, the comparison between the chickens

infected with Eimeria maxima (TNi) and their uninfected thermoneutral control (TNc) at 6 day-post-treatment. D.

The top significant Gene Ontology terms of TNc vs. TNi, the comparison between the chickens infected with Eimeria
maxima (TNi) and their uninfected thermoneutral control (TNc) at 6 day-post-treatment.

https://doi.org/10.1371/journal.pone.0296350.g003
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Fig 4. A. Heatmap of the top ~60 DEGs of HSc vs. HSi, as Log 2 relative hit counts of the comparison between the

chickens infected with Eimeria maxima raised under HS (HSi) their uninfected HS control (HSc) at 6 day-post-

treatment. B. The top KEGG pathways of HSc vs. HSi, based on the pathway term significance (α�0.1) of the

comparison between the chickens infected with Eimeria maxima raised under HS (HSi) and their uninfected HS

control (HSc) at 6 day-post-treatment. The green squares and arrowheads depict the downregulated pathways and
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Stress hormones (mainly glucocorticoids and catecholamine) are released under the control of

the neuroendocrine system in response to HS and were found to negatively impact both innate

and adaptive immune functions [7]. Furthermore, nutritional limitations induced by chronic HS

results putatively in a trade-off between maintaining the cellular basic functions and the immune

response [40, 41]. Heat-stressed chickens expressed downregulation in the “cytokine-cytokine

receptor interaction” KEGG pathway (Fig 2B) including many chemokines, cytokines, and cyto-

kine receptor genes such as (CXCL13, CXCL13L2, IL22, IL8L1, IL1R2, and TNFRSF13B) that play

a fundamental role in the innate immune response by attracting the immune cells to the affected

site and initiating the inflammatory response (Fig 2B) [42]. The “cytokine-cytokine receptor inter-

action” pathway includes other downregulated genes that affect the cell-mediated and adaptive

immune response such as FAS, IL18, and IFNAR1 [43, 44]. Also, the HSc group showed downre-

gulation in gene CCR6, which is the key connection between the immature dendritic cells and the

B cell lineage maturation for developing an adaptive immune response [45]. Consequently, the

HS group show downregulation of KEGG pathways “influenza A” and “intestinal immune net-

work for IgA production” indicating the negative regulation of both adaptive immune response

compartments, cell-mediated and humeral immunity (Fig 2C & 2D).

Additionally, ER responds to cellular stress by multiple mechanisms including sensing the

unfolded and misfolded proteins and then either correcting the protein folding or degrading it

[46]. Chronic HS results in an increase the ROS production causing severe cellular oxidative

stress that increases the rate of unfolded and misfolded protein production [47]. Eventually,

ER reduces the protein synthesis to decrease the unfolded and misfolded protein production

rate and also in response to reduced resources [48]. The HS group showed downregulation of

the “protein processing in the ER” KEGG pathway including many downregulated genes that

are responsible for recognizing the misfolded and unfolded proteins such as DNAJC3,

HYOU1, and HSP90B1 [29, 49]. The downregulated pathway also includes many genes related

to ER-associated protein degradation such as HSPH1, HSP90AA1, HSPA8, and HSPA4L (Fig

2A and 2B) [29, 49]. The downregulation of the ER lumen and chaperone machinery was

observed in the GO analysis terms (cellular compartments, biological function, and molecular

process) (Fig 2D). Exposing chickens to chronic HS resulted in amino acid degradation for

energy, and a reduction in protein synthesis and overall ER functions.

Ileum tissue transcriptome change in response to E. maxima infection

The E. maxima-infected chickens expectedly expressed upregulation of the immune-related

pathways and biological functions (Fig 3B–3D). Immune-related KEGG pathways such as

“cytokine-cytokine receptor interaction”, “proteasome”, and “homologs recombination” were

upregulated to establish the required innate and adaptive immune responses against E. max-
ima parasite (Fig 3B) [50]. The immune response is associated with increasing the transcrip-

tion rate, especially for the genes encoded for inflammatory mediators, cytokines, and

chemokines [51]. Therefore, there was upregulation of KEGG pathways “mRNA surveillance”,

“spliceosome”, and “RNA transport” reflecting the cellular attempts for eukaryotic mRNA

maturation as an initial step for protein synthesis [52]. The adaptive immune response against

genes, respectively. The red circles and arrowheads depict the upregulated pathways and genes, respectively. The bigger

size squares and circles denote the lower p-value. An increase in the color transparency (lighter color) of the squares

and circles indicates an increase in the percentage of the included genes with expression that counter the regulation

direction of the pathway. C. The top significant KEGG pathways of HSc vs. HSi, the comparison between the chickens

infected with Eimeria maxima raised under HS (HSi) and their uninfected HS control (HSc) at 6 day-post-treatment.

D. The top significant Gene Ontology terms of HSc vs. HSi, the comparison between the chickens infected with

Eimeria maxima raised under HS (HSi) and their uninfected HS control (HSc) at 6 day-post-treatment.

https://doi.org/10.1371/journal.pone.0296350.g004
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Fig 5. A. Heatmap of the top ~60 DEGs of TNi vs. HSi, as Log 2 relative hit counts of the comparison between the

chickens infected with Eimeria maxima raised either under HS (HSi) or thermoneutral condition (TNi) at 6-day-post-

treatmen. B. The top KEGG pathways TNi vs. HSi, based on the pathway term significance (α�0.05) of the

comparison between the chickens infected with Eimeria maxima raised either under HS (HSi) or thermoneutral

condition (TNi) at 6 day-post-treatment. The green squares and arrowheads depict the downregulated pathways and
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coccidiosis involves lymphocyte activation and homologous recombination that showed upre-

gulation in the KEGG pathway and GO terms analysis [53].

Additionally, the “glutathione metabolism” KEGG pathway was downregulated, and some

pathway-related genes were upregulated including GPX1 and 2 which encode major enzymes

that catalyze the reduction of hydrogen peroxide into water. The GPX1 and 2 enzymes con-

tribute to protecting the cell from oxidative damage induced by E. maxima infection by cata-

lyzing the scavenger of the oxygen radical by glutathione [54–56]. The downregulation of

multiple alcohol dehydrogenase genes such as ADH1C, ADH6, ADH4, ACADSB, and ACAA2,

acyl-CoA synthetase genes (ACSL1 and 3), acyl-CoA dehydrogenase (ACADS and ACOX3)

that encode enzymes contributing to long and short chain fatty acid metabolism suggests the

downregulation of fatty acid metabolic pathways and disturbances of cellular lipid homeostasis

[57, 58]. Alteration of lipid metabolism was also reported in broiler chickens infected with E.

acervulina [59] and sub-clinical necrotic enteritis [60].

The effect of combining HS and E. maxima infection on the cellular

immune functions

Comparing the HSi group with the HSc group showed a shift in the immune response related

pathways triggered by E. maxima infection, since both groups were heat stressed. There was a

significant upregulation in KEGG pathways “Toll-like receptor signaling”, “cytokine-cytokine

receptor interaction”, and “Salmonella infection” suggesting that the infection might alter the

previously explained immune suppression induced by HS (Fig 4B) [7]. However, the immune

response seemed to be of lower expression capacity in the HSi chickens compared with the

TNi chickens due to the downregulation of the “homologous combination” pathway required

for lymphocyte differentiation to develop an adaptive immune response. Meanwhile, the

chickens showed upregulation of the GO molecular function term for regulation of wound

healing when compared with HSc (Fig 4D) but not in the TNi when compared with TNc (Fig

3D). Taken together, HSi showed an altered immune response and tissue repair functions than

TNi when each was compared to its uninfected control at the same temperature level.

Comparing the HSi group against the TNi group reveals how HS altered the cellular

response to the E. maxima infection and showed downregulation of all the immune response

and signaling-related pathways and GO terms (Fig 5B–5D). The downregulation of the “Toll-

like receptor signaling” pathway may have resulted in the reduction in the ability of the

immune system to identify the E. maxima antigen and trigger an inflammatory and immune

response. Consequently, all the cellular and molecular functions such as cytokine secretion

and leukocytic activation contributing to the downstream cascade of immune response were

downregulated. Similarly, HS diminished the immune response to Salmonella Typhimurium

infection in broiler chickens [61]. The role of macrophages and cytotoxic (CD 8+) and periph-

eral lymphocytes in Eimeria spp sporozoite transportation through intestinal tissue laminae

has been documented [62–64]. Schneider et al. [65] reported that HS curtailed the E. maxima
life cycle and reduced gametogony in broiler chickens. Thus, it can be hypothesized that sup-

pressing the lymphocytes and monocyte migration induced by HS might contribute to

genes, respectively. The red circles and arrowheads depict the upregulated pathways and genes, respectively. The bigger

size squares and circles denote the lower p-value. An increase in the color transparency (lighter color) of the squares

and circles indicates an increase in the percentage of the included genes with expression that counter the regulation

direction of the pathway. C. The top significant KEGG pathways of TNi vs. HSi, the comparison between the chickens

infected with Eimeria maxima raised either under HS (HSi) or thermoneutral condition (TNi) at 6 day-post-treatment.

D. The top significant Gene Ontology terms of TNi vs. HSi, the comparison between the chickens infected with

Eimeria maxima raised either under HS (HSi) or thermoneutral condition (TNi) at 6 day-post-treatment.

https://doi.org/10.1371/journal.pone.0296350.g005
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reducing the sporozoite transportation which disrupted the parasite’s life cycle leading to

reducing its gametogony capacity.

The effect of combining HS and E. maxima infection on the cellular

signaling and metabolic functions

The upregulation of the “glutamate metabolism”, “pyridine metabolism”, “steroid biosynthe-

sis”, and cell respiration-related KEGG pathways in the HSi group compared with either HSc

or TNi groups may suggest improving the enterocytes functions and proliferation when the

two stressors (HS and E. maxima infection) are combined rather than individually applied [66,

67]. The metabolism of both the sulfur-containing amino acids (cysteine and methionine) and

glutathione was upregulated in the HSi compared to TNi (Fig 5B). The genes GSS and GPX1
encoding enzymes glutathione synthetase and glutathione peroxidase1, respectively, were

upregulated. Glutathione synthetase catalyzes the glutathione production form γ-glutamyl cys-

teine and glycine in an ATP-dependent reaction [68]. Glutathione peroxidase 1 catalyzes the

glutathione antioxidant activity by scavenger ROS from hydrogen peroxide [69]. This indicates

that the cellular antioxidation machinery was possibly enhanced in the HSi group compared

with the TNi group. Interestingly, the molecular function GO terms showed responses to oxi-

dative stress and low oxygen level (Fig 5D) regularly associated with HS were downregulated

in the HSi group compared with the HSc group suggesting that the local hyperemia induced

by E. maxima infection reversed the HS-induced intestinal ischemia.

Calcium signaling is required for the development of the protozoan Plasmodium spp which

is closely classified with Eimeria spp in the phylum Apicomplexa [70]. Depleting the cell cul-

ture calcium suppressed the Plasmodium asexual stage which is restored by excess calcium

supplementation [71, 72]. The results showed downregulation of molecular function GO

terms “positive regulation of calcium ion transport” and “regulation of calcium-mediated sig-

naling”, and KEGG term “calcium signaling pathway” in HSi compared to both HSc and TNi

(Figs 4B, 5B and 5D). That includes the downregulation of genes RYR2, CACNA1C, and

ORAI3 encoded for ryanodine receptor 2, voltage-dependent L-type calcium channel subunit

alpha-1C, and calcium release-activated calcium modulator 3, respectively. RYR is responsible

for a calcium-induced-calcium release from the endoplasmic reticulum stimulated by increas-

ing cytoplasmic calcium concentration [73]. CACNA1C is responsible for gating calcium ions

current into the cell, which may activate RYR receptors [37, 74]. ORAI3 mediates calcium ions

influx into the cell in response to the depletion of stored cellular calcium [75]. The catabolism

of the essential amino acid tryptophan via the kynurenine pathway is necessary for the opti-

mum development of E. falciformis in mice [65]. Tryptophan metabolism was also revealed as

a metabolomic signature in E. acervulina infection [59]. The current study showed that the

metabolism of the essential amino acid tryptophan was upregulated in the HSi group com-

pared with the TNi. However, the upregulated genes mainly contribute to tryptophan metabo-

lism through pathways other than kynurenine. For instance, the genes DDC, CYP1A1, and

CYP1A2 participate in the serotonin pathway, and the genes MAOA, ALDH3A2, AOX2, and

IL4I1 contribute to the indole pathway [76]. Taken together, reducing the cellular pool of

nutrients and ions (tryptophan and calcium) that are scavenged by E. maxima for development

and replication may explain the suppression of the parasite gametogony under HS [14, 77, 78].

The effect of combining HS and E. maxima infection on cellular

proliferation and protein synthesis

When HSi is compared with HSc, cell cycle arrest was more prominent due to the upregulation

of the “P53 signaling” KEGG pathway which is one of the major cell arrest inducers (Fig 4B).
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P53 protein is phosphorylated under stress conditions resulting in activating the transcription

of the cyclins suppressors such as CDKN1A and GADD45A that arrest the cell cycle at the S,

G2 and M phases [79, 80]. That negative feedback regulation seems to be accompanied with

upregulation in the genes involved in cycle regulation (Fig 4B) to enhance the immune

response and tissue repair in the HSi chickens compared with HSc group [16]. The upregula-

tion of genes upstream of the cellular apoptosis such as FAS and SHISA5 enhanced the pro-

grammed death of the infected cell resulting in reducing inflammation, infection elimination,

and prompt tissue repair [81]. The cell cycle pathway was downregulated in the HSi group

compared with the TNi group. The upregulation of GO molecular function “DNA repair”

accompanied with the upregulation of “histone kinase” which grants a negative charge to his-

tone resulting in a higher level of chromatin opening conformation [82] suggesting that the

DNA repair is enhanced in the HSi over the other groups with a single stressor.

However, KEGG pathways “ribosome biogenesis in eukaryotes” and “RNA degradation”

were downregulated, the GO analysis showed upregulation of the cellular components related

to the ER and the molecular function term “positive regulation of protein exit from the ER” in

HSi when compared with TNi. Comparing HSi with HSc showed upregulation of KEGG path-

ways “ribosome” and “protein export”, and GO cellular components terms “endoplasmic retic-

ulum chaperon complex, “endoplasmic reticulum lumen”, “endoplasmic reticulum inner

membrane”, and GO molecular functions “positive regulation of protein exit from ER” sug-

gesting that the TNi group might express a higher level of cellular and molecular functions

related to protein synthesis when compared either to the TNi or HSc group.

Conclusion

The ileal transcriptome profile was modified in response to either HS or E. maxima infection.

Heat stress significantly affects the ileal transcriptome by shifting the cellular metabolic path-

ways from oxidative phosphorylation toward pathways exploiting the amino acids while

reducing other pathways of crucial functions such as immune response and protein synthesis.

Under E. maxima infection, cellular and molecular pathways involved in immune functions

were enhanced to counter the parasitic invasion. However, the analysis was conducted at 6

dpi, the upregulation of pathways related to the primary immune response, such as PRR, were

still prominent. Surprisingly, chickens exposed to a combination of HS and E. maxima infec-

tion showed a unique response. Both HS and E. maxima interact to modulate the cellular and

molecular responses to each stressor. The HSi group showed lower expression levels of the oxi-

dative stress-related pathways compared to the HSc group. Furthermore, the HSi group

showed modifications in pathways involved in nutrient metabolism and calcium signaling

compared with other treatment groups. We hypothesized that limiting the nutrients available

to be scavenged by the parasite and/or hindering the sporozoite transportation by macro-

phages and lymphocytes may be two possible mechanisms by which HS interferes with the E.

maxima life cycle.
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S1 Fig. Genes’ expression level measured by RT-qPCR compared with the fold change pro-

duced using Hi-Seq data for the chickens exposed to HS (HSc) compared to their thermoneu-

tral control (TNc) at 6 day-post-treatment (TNc vs. HSc) (A), and the correlation test shows

the correlation coefficient (r) of the expression values produced by either method (B). Taking

the expression values of the TNc as the control for the relative expression of the HSc group the

expression values of the TNc group to 1 (Livak’s method). Error bars depict the SEM.
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expression of the HSi group brought the expression values of the HSc group to 1 (Livak’s

method). Error bars depict the SEM.
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duced using Hi-Seq data for the chickens infected with Eimeria maxima raised either under
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correlation test shows the correlation coefficient (r) of the expression values produced by
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method). Error bars depict the SEM.
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