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Abstract

Polygenic risk scores (PRS) are instrumental in genetics, offering insights into an individual

level genetic risk to a range of diseases based on accumulated genetic variations. These

scores rely on Genome-Wide Association Studies (GWAS). However, precision in PRS is

often challenged by the requirement of extensive sample sizes and the potential for overlap-

ping datasets that can inflate PRS calculations. In this study, we present a novel methodol-

ogy, Meta-Reductive Approach (MRA), that was derived algebraically to adjust GWAS

results, aiming to neutralize the influence of select cohorts. Our approach recalibrates sum-

mary statistics using algebraic derivations. Validating our technique with datasets from Alz-

heimer disease studies, we showed that the summary statistics of the MRA and those

derived from individual-level data yielded the exact same values. This innovative method

offers a promising avenue for enhancing the accuracy of PRS, especially when derived from

meta-analyzed GWAS data.

Introduction

Polygenic risk scores (PRS) have emerged as an essential tool in the field of genetics [1, 2].

These scores offer a unique insight into an individual’s genetic predisposition to a wide array

of diseases and traits, capturing the cumulative effects of multiple genetic variants [3]. The

Genome-Wide Association Studies (GWAS) serve as the base for creating PRS [4]. GWAS

investigates the entire genetic makeup of individuals to identify genetic variations associated

with specific diseases or traits. The predictive accuracy and precision of PRS are enhanced

when the base GWAS summary statistics come from a sizeable sample, and the population in

the GWAS matches the population where the PRS is being applied [4, 5]. Due to this need for

a substantial sample size, studies often aim to meta-analyze all available genetic datasets to

achieve the statistical power necessary for identifying genetic markers linked to the trait or dis-

ease. However, this approach presents a challenge in securing independent datasets for train-

ing, testing, and validating PRS performance [6]. The use of overlapping samples can inflate

the PRS calculations, resulting in imprecise risk predictions.
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A logical approach might be to exclude a specific cohort of interest and then rerun meta-

analyses with the remaining datasets. However, given the significant computational

resources needed and the difficulties in accessing detailed summary statistics for all cohorts,

this isn’t always viable. Nonetheless, we do have access to the cohort-level data for the

specific dataset we aim to employ as a training and testing set. Recognizing this advantage,

we formulated an alternative technique that incorporates the cohort-level result of our cho-

sen dataset along with the meta-analysis GWAS findings. The goal is to neutralize the

impact of the overlapping cohort of interest on the meta-analysis GWAS summary statistics,

thus producing a PRS that avoids the inflationary tendencies arising from overlapping

samples.

In this study, we derived equations to adjust GWAS results, effectively eliminating the

impact of selected cohorts in inverse variance-based fixed effect meta-analysis (FEMA) studies.

Through comprehensive simulations and real data analysis, we demonstrated that our meth-

odology effectively updates the base data’s summary statistics, thereby addressing the

challenge.

Materials and methods

Derivation of adjusted summary statistics: Meta-Reductive Approach

(MRA)

We analyzed two distinct sets of summary statistics:

1. A compilation from n datasets meta-analyzed using an inverse variance-based approach

[7].

2. A specific dataset of interest that was also part of the meta-analysis.

For these datasets:

• B and SE symbolize the effect size and standard error, respectively, from the aggregate meta-

analysis across n datasets.

• βi and sei specify the effect size and standard error for the individual cohort i.

Our primary aim was to compute a summary statistic that eliminates the influence of the

dataset of interest, providing a clearer perspective on the overarching genetic structure.

i. Inverse-variance-weighted effect-size estimation. The inverse variance method gives more

weight to studies with smaller variance because they offer more precise estimates. The

weight, wi, is the inverse of the variance, or squared standard error, of the effect size, βi.
Given,

B ¼
Pn

i
biwiPn

i
wi

where the wi ¼
1

sei2

Expanding this:

Bw1 þ Bw2 þ Bw3 þ � � � þ Bwn� 1 þ Bwn ¼ b1w1 þ b2w2 þ b3w3 þ � � � þ bn� 1wn� 1 þ bnwn

This is the weighted sum of the effect sizes across all datasets, including the one of interest.

Now, to remove the effect of the specific dataset, βn, we rearrange:

Bw1 þ Bw2 þ Bw3 þ � � � þ Bwn� 1 þ Bwn � bnwn ¼ b1w1 þ b2w2 þ b3w3 þ � � � þ bn� 1wn� 1
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Which yields:

Bþ
Bwn � bnwn

w1 þ w2 þ w3 þ � � � þ wn� 1

¼
b1w1 þ b2w2 þ b3w3 þ � � � þ bn� 1wn� 1

w1 þ w2 þ w3 þ � � � þ wn� 1

This equation essentially adjusts the overall effect size, B, by subtracting the influence of the

dataset of interest.

ii. Standard error derivation. The standard error (SE) offers a measure of the statistical accu-

racy of an estimate. Here, we adjust the SE based on the weights of all datasets excluding

the one of interest.

Using:

SE2 ¼
1

w1 þ w2 þ w3 þ � � � þ wn� 1 þ wn

We derive:

w1 þ w2 þ w3 þ � � � þ wn� 1 ¼
1 � SE2wn

SE2

This equation gives the combined weight of all datasets, excluding the dataset of interest.

iii. Adjusted effect size and standard error. Post removing the influence of the dataset of

interest, the modified effect size is given by:

Badj ¼
b1w1 þ b2w2 þ b3w3 þ � � � þ bn� 1wn� 1

w1 þ w2 þ w3 þ � � � þ wn� 1

¼ Bþ
SE2ðBwn � bnwnÞ

1 � SE2wn

This adjusted beta, Badj, having nullified the contribution of the specific dataset n.

Additionally, the adjusted standard error is:

SE2

adj ¼
SE2

1 � SE2wn

This adjustment ensures that the standard error reflects the precision of our new effect size

estimate, free from the influence of the specific dataset.

Ethical approval was not required for this study as it utilized publicly available summary

statistics.

Results

Validation using real data

To validate our methodological approach, we utilized summary statistics from four publicly

accessible Alzheimer disease studies: Kunkle et al. [8], Kunkle et al. [9] AA, Bellinguez et al.

[10], and Moreno-Grau S. et al. [11] From these studies, 100,000 markers were selected to con-

duct a meta-analysis using the METASOFT software [12].

Following the initial meta-analysis, we applied a systematic "leave-one-out" strategy. For

each iteration, we excluded the summary statistics from one dataset and conducted a meta-
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analysis of the remaining three. The results from this procedure served as our individual-level

data for the three datasets in question.

For the final step of validation, we calculated the adjusted Badj and SE2
adj values based on

MRA and compared them against the individual-level data summary statistics derived from

the "leave-one-out" FEMA. Our results showed that the summary statistics of the FEMA and

MRA approaches yielded the exact same values. To demonstrate this, we plotted the betas and

standard errors (Fig 1). The graphical representation illustrates that both beta and standard

error values from the “leave-one-out”“FEMA and MRA give the same results.

Additionally, we conducted a validation analysis for the APOE4 allele, utilizing data from a

multi-ancestry study by Rajabli et al. [13], which included four population-based studies: Afri-

can American, East Asian, Hispanic, and non-Hispanic Whites (S1 Table). We applied a

"leave-one-out" strategy by removing one population at a time and performing the validation

on the remaining studies. We followed the same steps as described previously, and the results

were exact same across all tests, as detailed in Table 1.

Simulation

We simulated Beta coefficients and their corresponding SEs across ten studies, each containing

10,000 markers (using R programming language.) We generated random Beta coefficients

Fig 1. Comparison between the adjusted results from the Meta-Reductive Analysis (MRA) (Beta_adj and

SE2_adj) approach and the "leave-one-out" inverse variance-based fixed effect meta-analysis (FEMA) (Beta_LOO

and SE2_LOO). The MRA-adjusted values show identical results with the FEMA calculation for both Beta values (A)

and Standard Error (B).

https://doi.org/10.1371/journal.pone.0296207.g001

Table 1. Validation analysis for APOE4 allele using summary statistics from Rajabli et al. study. "MRA-Beta" and "MRA-SE" denote beta and standard error values

derived using the MRA approach, respectively. "Traditional-Beta" and "Traditional-SE" refer to beta and standard error values obtained from the meta-analysis of three

studies.

Study removed MRA-beta MRA-SE Traditional-Beta Traditional-SE

African American 1.189192599 0.01671915 1.189192599 0.01671915

East Asian 1.09385844 0.017205134 1.09385844 0.017205134

Hispanic 1.215580078 0.016903311 1.215580078 0.016903311

non-Hispanic White 1.177899334 0.026321213 1.177899334 0.026321213

https://doi.org/10.1371/journal.pone.0296207.t001
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utilizing the “rnorm” function, under the assumption of a normal distribution, characterized

by a mean of zero and a standard deviation of one. We used “runif” function to produce ran-

dom SEs values from a uniform distribution, with specified minimum and maximum limits of

0.1 and 0.5, respectively. The simulated Betas and SEs for each marker within a study were

then organized into dedicated columns within a data frame.

We applied the “rma” function from the metaphor [14] package to facilitate a fixed-effects

meta-analysis on the generated Betas and SEs. Then we implemented "leave-one-out" strategy,

mirroring the methodology applied to real data. We calculated the adjusted Badj and SE2
adj val-

ues employing our proposed method and compared it with individual-level data derived from

the "leave-one-out" meta-analyses. The outcomes revealed that the summary statistics were

identical, similar to the findings from real data analysis. The simulation script is provided with

the MRA function here: https://github.com/hihg-um/MRA.

Discussion

This study employs algebraic adjustments to GWAS summary statistics to eliminate the influ-

ence of specific datasets in meta-analyses. The algebraic solutions applied to real and simulated

data consistently matched our expectations of achieving identical results. The validation con-

firms the robustness and reliability of derived equations, emphasizing the effectiveness of our

methods in addressing the challenges associated with sample overlap in meta-analyses.

Furthermore, our approach utilizes the widely recognized inverse-variance method for

fixed-effect meta-analysis. This choice ensures that our adjustments are based on a widely

accepted framework, enhancing the general applicability and relevance of our findings. While

our study focuses on inverse-variance method fixed-effects models, the foundational principles

of our approach could potentially be adapted for random-effects meta-analyses, which would

be useful in situations where variability between studies is significant.

In summary, our research highlights the practicality of excluding specific datasets to refine

effect estimates in inverse-variance method meta-analysis. We provide a method that enables

researchers to neutralize the impact of overlapping cohorts on meta-analysis GWAS summary

statistics, thereby producing a PRS that avoids the possible inflations associated with overlap-

ping samples. This approach is important for enhancing the accuracy and reliability of PRS in

genetic studies.

Supporting information

S1 Table. Summary statistics for APOE e4 allele association with Alzheimer disease across

populations.

(XLSX)
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