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Abstract

Climate change and variability are projected to alter the geographic suitability of lands for

crops cultivation. Accurately predicting changes in the potential current and future land suit-

ability distribution dynamics of wheat (Triticum aestivum), soybean (Glycine max) and rice

(Oryza sativa) crops due to climate change scenarios is critical to adapting and mitigating

the impacts of bioclimatic changes, and plays a significant role in securing food security in

East Asia region. This study compiled large datasets of wheat, soybean and rice occurrence

locations from GBIF and 19 bioclimatic variables obtained from the WorldClim database

that affect crops growth. We recognized potential future suitable distribution regions for

crops under the one socioeconomic pathway, (SSP585) for 2021–2040 and 2041–2060,

using the MaxEnt model. The accuracy of the MaxEnt was highly significant with mean AUC

values ranging from 0.833 to 0.882 for all models evaluated. The jackknife test revealed that

for wheat, Bio4 and Bio12 contributed 17.6% and 12.6%, for soybean Bio10 and Bio12 con-

tributed 15.6% and 49.5%, while for rice Bio12 and Bio14 contributed 12.9% and 36.0% to

the MaxEnt model. In addition, cultivation aptitude for wheat, soybean, and rice increased in

southeast China, North Korea, South Korea, and Japan, while decreasing in Mongolia and

northwest China. Climate change is expected to increase the high land suitability for wheat,

soybean, and rice in East Asia. Simulation results indicate an average decrease of unsuit-

able areas of -98.5%, -41.2% and -36.3% for wheat, soybean and rice from 2060 than that

of current land suitability. In contrast, the high land suitable for wheat, soybean and rice culti-

vation is projected to increase by 75.1%, 68.5% and 81.9% from 2060 as compared with

current. The findings of this study are of utmost importance in the East Asia region as they

present an opportunity for policy makers to develop appropriate adaptation and mitigation

strategies required to sustain crops distribution under future climates. Although the risks of

wheat, soybean and rice cultivation may be significantly higher in the future because of high

temperatures, heat waves, and droughts caused by climate change.
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1. Introduction

As a result of global warming, crop yield reduction is becoming significantly common in these

days [1]. According to the Intergovernmental Panel on Climate Change (IPCC) report global

mean temperatures are projected to rise by 0.3 to 0.5˚C by 2100, than that of mean tempera-

ture between 1986 and 2005 [2, 3]. Crops production affected by climate change, which has

not only implications for farmer incomes, but also for global food security [4, 5]. Climate

change has caused ecological changes, including changes in phonological events, shifts in the

ranges of many species, the invasion of non-native species, and fluctuations in grain yield pro-

duction [6–8], especially with regard to agricultural production, which is highly dependent on

specific climatic and environmental conditions. Climate change alters the current land suit-

ability for certain crops and affects crop growth and production [8, 9]. To accurately assess the

impacts of climate change on crop production, predicting the potential global distribution of

crops is a critical issue [10]. However, there is relatively little research on the effect of climate

change on the global distribution of crops. Land suitability is one of the factors that affect the

potential distribution of a particular crop. Under the climate change scenarios the most impor-

tant steps in ensuring food securities are the quantitative analysis of ecological factors and a

comprehensive assessment of the potential distribution of specific crops [11].

Suitability is often considered among crop requirements and land characteristics [12]. For

land suitability assessment the climatic conditions, soil quality, and geographic characteristics

of a given region are the most significant parameters [13]. Species distribution models (SDMs)

have been usually used to predict potential distributions of various crops [14]. SDM involves

collecting species occurrence data, correlating these events with bioclimatic variables and pro-

ducing maps that forecast past, present and future crops distributions [15]. Based on occur-

rence data and taking into account the environmental variables that affect the target species

and a relationship between them can be assessed through statistical algorithms built into SDM

[16]. MaxEnt is currently the most commonly used model [15, 17]. MaxEnt predictions have

the highest entropy and are closest to geographic uniformity, ensuring the accurate predictions

[1, 18]. MaxEnt has revealed excellent prediction performance in relative studies of several

modeling approaches [19, 20].

The potential area for rice cultivation is determined by land suitability [9, 21]. Earlier

research works have to studied the land suitability of rice based on climatic parameters; how-

ever, the selection of those bioclimatic variables is mostly based upon the expertise [22, 23].

Furthermore, there are four types of climatic variables that affect the land suitability of rice

such as cumulative temperature, insolation, temperature, and rainfall [24, 25]. Since it is diffi-

cult to increase the potential yield and closes the yield gap due to the rapid decrease in arable

land, further increasing the cropland harvesting frequency (CHF) is considered an actual

approach to improve future rice cultivation land [8, 26]. However, potential planting areas in

East Asia suitable for rice production are still unknown.

Wheat, the 3rd main crop on the world which played a significant part in sustaining food

security [27, 28]. The MaxEnt model has been effectively used by Balkovič et al. [28] to recog-

nize areas suitable for wheat cultivation. Also, this study applied the MaxEnt to evaluate the

influence of bioclimatic change on the geographic distribution of selected wheat producing

regions. This study evaluated wheat current and future crop suitability using only existing

data. For wheat with a huge environmental range and uneven spatial distribution, selecting a

representative sample from big data remains an urgent problem. According to statistics

released by the FAO, soybean is the 4thlargest crop in the world, with about 120 million hect-

ares cultivated in 2016. It is also a major source of protein, feed, and cooking oil. Soybeans

have become one of the world’s most significant agricultural products and play a key role in
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securing the world’s food supply [29]. Cold regions provide the greatest advantage for expand-

ing the planting area of soybean, accounting for about half of the total soybean production

area of China [30]. Thus, a balance of current and future soybean aptitude and appropriate dis-

tribution coverage is required. In this study, we attempt to address this issue with the rarely

used MaxEnt model to study soybean potential distribution and determine their potential

future distribution. The goal is to optimize the soybean planting layout in areas of limited land

resources and efficiently demonstrate the social, economic and ecological benefits of soybean

cultivation.

Global bioclimatic changes are probable to have a major impact on future wheat, soybean

and rice cultivation. In order to meet the growing global demand, finding potential current

and future suitable wheat, soybean, and rice planting areas has become an urgent problem to

meet the global food security [5]. Therefore, the purposes of this study are to: (1) identify main

environmental factors affecting the geographic range and the land suitability of wheat, soybean

and rice; (2) which regions are more suitable for potential crops cultivation of wheat, soybean

and rice under present and future bioclimatic scenarios; (3) to predict the land suitability and

potential distribution of wheat, soybean and rice in the future (2021–2060) dynamics of biocli-

matic changes. This information will be useful for policy makers to decide the magnitude of

area expansion and reduction for these crops in order to maintain regional food security in the

future.

2. Materials and methods

2.1. Study region

East Asia region contains Mongolia, China, North Korea, South Korea, and Japan, from 5˚N

to 55˚N, and 70˚E to 140˚E. The study region is located in the northeastern part of the Asian

continent, covering an area of about 5,125,000 km2. The region includes a variety of climatic

zones, including tropical, subtropical, temperate, boreal, humid, semi-arid and arid regions.

The average annual precipitation is 256 mm; more than 56% fall in summer and less than 4%

in winter. The average temperature in summer reaches above 17˚C, and the average tempera-

ture in winter drops below -7˚C respectively [31].

2.2. Species occurrence record

In this study, we estimated distribution models using public databases collecting current distri-

bution data for wheat, soybean, and rice. Global distribution data for wheat, soybean and rice

were collected from the Global Biodiversity Information Facility database [32]. In addition, we

subsequently reviewed this data set critically from records on the GBIF database and manually

removed unreliable and ambiguous records through the “Description of Occurrence” column

for unconfirmed species identification. After that we excluded duplicate records and those

whose geographical location was not precisely defined (uncertainty in meters> 10,000 m) for

more reliable assessment. After this selection, we obtained a total of 696 presence records of

soybean, 193 presence records of wheat, and 155 presence records of rice. In Fig 1 show the

general distribution of crops occurrence record. The occurrence records were used to produce

present distribution models for wheat, soybean, and rice species. Fig 2 show a flowchart and

processing methodology of study.

2.3. Current bioclimatic variables

For the SDM of wheat, soybean, and rice, we initially considered 19 bioclimatic variables

(Bio1-Bio19), were obtained as a raster layers from Worldclim 2.1 database (https://www.
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worldclim.org/data/worldclim21.html) available at bio 30 arc-seconds with 1 km2 spatial reso-

lution at the equator (Table 1). Bioclimatic variables derived from monthly rainfall and tem-

perature that define seasonal and yearly trends, which are important than the existence as a

species in a place. These bioclimatic variables have been used in environmental studies to

assess the influence on possible species distribution [33]. All analyzes, calculations, and trans-

formations were performed in ArcGIS 10.7.1 Esri. To identify highly correlated variables (|r| >

0.74) and minimize the effects of multi-collinearity and model overfitting, the person correla-

tion coefficient method was used [34].

2.4. Future climate change scenarios

We modeled the future distributions of wheat, soybean, and rice to examine differences in

their potential habitats under different climate scenarios. The shared socioeconomic pathway

(SSP) consists of five main ACCESS-CM2-SPPs (SSP119, SSP126, SSP245, SSP370, and

SSP585). Among them, we use the intermediate shared SSP (SSP585) for two steps: 2021–2040

and 2041–2060. The SSPs scenarios belong to the "SSPs socioeconomic family", which stands

for "sustainability" [35]. Bioclimatic data for these climatic model scenarios were downloaded

from the Worldclim 2.1 database (https://www.worldclim.org/data/cmip6/cmip6_clim30s.

html).

2.5. MaxEnt model description

The MaxEnt model is a general-purpose machine learning model based on a precise and

straight forward mathematical formulation [36, 37]. It has also been defined as a presence only

model that uses predictive data sets to discriminate crops occurrence record [14, 36]. The

model utilises categorical and continuous datasets [37, 38]. Although the underlying predic-

tion of those areas has been systematically sampled from most existing lands, MaxEnt model is

often constructed from spatially base occurrence records [35]. The model offers both a

Fig 1. Occurrence points of wheat, rice and soybean in East Asia region. Occurrence points Data were accessed from GBIF.org (https://

www.gbif.org/occurrence/search) database. GBIF = Global Biodiversity Information Facility.

https://doi.org/10.1371/journal.pone.0296182.g001
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userfriendly graphical user interface and command-line functions. MaxEnt is one of the most

popular niche-based methods for modeling geographical crops distribution [37]. The model

also provides valuable tools such as jackknife tests, species environment curve, and area under

the receiver operating characteristic curve AUC and ROC [36]. In this research MaxEnt model

version 3.4.4 (https://www.cs.princeton.edu/~schapire/ MaxEnt) was used to simulate the dis-

tribution of three crops (wheat, soybean and rice) in East Asia region.

2.6. Validation and application of MaxEnt model

The Receiver operating characteristic (ROC) curves were used to validate the performance with

the MaxEnt model. The ROC curves are a standard way to evaluate the MaxEnt model predic-

tive accuracy [39]. The area of the ROC curve is a threshold independent measure of model per-

formance, called (AUC) area under the ROC curve [40]. The AUC values greater than 0.9 show

very high accuracy, values 0.7–0.9 show high accuracy, and values less than 0.7 show low accu-

racy [41]. The MaxEnt model to predict short-term (2021–2040) and long-term (2041–2060)

land suitability for soybean, wheat, and rice distribution under different future bioclimatic con-

dition. Habitat suitability for wheat, soybean, and rice was divided into 4 grades according to

possible explanations from the IPCC [42] 8, and previous study [43], 0.0–0.05 is not suitable;

Fig 2. Flowchart summarizing the processing methodology used in this study.

https://doi.org/10.1371/journal.pone.0296182.g002
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0.05–0.33 low suitable; 0.33–0.66 moderate suitable; 0.66–1.00 high suitable. The robustness of

the model result was checked, the regularization multiplier was adjusted to 3 and the maximum

number of background points was also adjusted to 10000. We replicated our model 10 times

and used the average of the 10 probability outputs to determine the optimum habitat suitability

and performance of the models. This also helps to evaluate uncertainty in the model. The output

is in ASCII format, and ArcGIS 10.7.1 Esri was used for final map processing and visualization.

To evaluate bioclimatic variables and determine a crops potential distribution, we use jackknife

tests [44]. We also make crops response curves to assess the correlation between the land suit-

ability and bioclimatic variables.

2.7. Pearson correlation analysis

Tables 2–4 present the Pearson correlation analyzes for wheat, soybean, and rice. In our study,

we used bioclimatic variables based on rainfall and temperature [33]. For this reason, biocli-

matic variables are highly correlated with each other. Distribution modeling using highly cor-

related bioclimatic data can affect the forecasting process and overestimate distributions [45].

To identify and exclude highly correlated variables (|r|> 0.74) and minimize the effects of

model overfitting, the Pearson correlation coefficient method was used. For the 19 variables

with correlation coefficient values>0.74 or< − 0.74, the Pearson correlation analysis of

wheat, soybean, and rice showed strong correlations between paired variables (Tables 2–4).

Furthermore, a jackknife test constructed throughout the MaxEnt model showed that these

variables had a small effect on species distribution.

Table 1. Bioclimatic environmental variables used in MaxEnt model.

Variable code description Unit Source

Bio1 Annual mean temperature ˚C

Bio2 Mean diurnal range ˚C

Bio3 Isothermality ˚C

Bio4 Temperature seasonality ˚C

Bio5 Maximum temperature of the warmest month ˚C

Bio6 Minimum temperature of the coldest month ˚C

Bio7 Temperature annual range ˚C

Bio8 Mean temperature of the wettest quarter ˚C

Bio9 Mean temperature of the driest quarter ˚C WorldClima,b

Bio10 Mean temperature of the warmest quarter ˚C

Bio11 Mean temperature of the coldest quarter ˚C

Bio12 Annual precipitation mm

Bio13 Precipitation of the wettest month mm

Bio14 Precipitation of the driest month mm

Bio15 Precipitation seasonality mm

Bio16 Precipitation of the wettest quarter mm

Bio17 Precipitation of the driest quarter mm

Bio18 Precipitation of the warmest quarter mm

Bio19 Precipitation of the coldest quarter mm

aData for current climate conditions were accessed from WorldClim

(https://www.worldclim.org/data/worldclim21.html)
bData for future climate projections were accessed from WorldClim

(https://www.worldclim.org/data/cmip6/cmip6_clim30s.html)

https://doi.org/10.1371/journal.pone.0296182.t001
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3. Results and discussion

3.1. MaxEnt model evaluation and Jackknife tests of bioclimatic variables

This study we use a MaxEnt bioclimatic model to examine which bioclimatic variables bet-

ter explain the distribution of wheat, soybean, and rice species. In this study, the perfor-

mance of the MaxEnt model was examined in terms of ROC curves and AUC values (Fig 3).

The AUC of the ROC curve in MaxEnt is generally regarded as an overall measure of model

performance across all thresholds, prediction strengths and gave AUC values of 0.740,

respectively [46, 47]. Earlier work has indicated that it is appropriate to link the perfor-

mance between various training occurrence datasets [48]. The mean AUC values for wheat,

soybean and rice of ten replicate were 0.83, 0.87 and 0.88, respectively, higher than 0.5 for

the stochastic model, validating the good results for the simulations [49]. These values rep-

resent the average of repeated runs and are above 0.8, thus indicating that the MaxEnt

model can satisfactorily estimate land suitability. ROC curve and AUC results showed that

the MaxEnt model was very reliable and could accurately reflect the distribution of wheat,

soybean and rice in East Asia. While, earlier research has shown that droughts will become

more frequent and severe due to climate change [50, 51], which could significantly disturb

wheat cultivation area [42].

Fig 3. Receiver operating characteristic (ROC) curve and AUC value under the current (1970–2000) period (10 replicated runs).

https://doi.org/10.1371/journal.pone.0296182.g003
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Climatic factors affecting regional suitability and rice productions of wheat and soybean

were derived from 19 bioclimatic variables (Figs 4 and 5). The contribution of each of these

predictors in affecting geographic suitability for crop cultivation was analyzed in a histogram

of jackknife tests, one of the outputs from the MaxEnt model. Climate is one of the most

important factors influencing the geographic distribution of plant species, vegetation patterns,

and community structure [52]. Figs 4 and 5 show the jackknife regularization training to the

grain test and the jackknife AUC test on the environment variable. When used alone, Bio1,

Bio2, Bio3, Bio9, Bio12, Bio13 and Bio16 provided the highest wheat gain and AUC tested.

Precipitation in the warmest season (Bio18) and precipitation in the coldest season (Bio19)

also contributed more to the wheat model. When the sample size is greater than 30 the MaxEnt

provides reliable prediction results [53]. The finding that precipitation-based factors are most

important for wheat suitability is consistent with other studies that have identified rainfall as a

key determinant in marginal production systems [54]. Based on the results from the jackknife

Fig 4. Results of Jackknife regularized training grain test of the MaxEnt model for evaluating the relative importance of

bioclimatic environmental variables for wheat, soybean and rice occurrence.

https://doi.org/10.1371/journal.pone.0296182.g004
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gain and AUC tests (Fig 4), it is important to note that the contributions of Bio2, Bio6, Bio9,

Bio11, Bio12, Bio16, Bio17, and Bio18 provided the highest gain and AUC tests and provided

the determination of soybean planting. Results showed that temperature and precipitation are

the most important environmental influences on soybean distribution and expansion potential

[1, 55]. A detailed understanding of species distribution is often a prerequisite for species res-

toration and utilization in ecosystems [56, 57]. Wheat and rice are receiving a lot of attention

[58]. These bioclimatic environmental factors have the greatest influence of the land suitability

of wheat, soybean, and rice under the current climatic environments and suggest that these

aspects themselves contain more valuable information than other variables.

Fig 5. Results of Jackknife AUC test of the MaxEnt model for evaluating the relative importance of bioclimatic environmental variables for

wheat, soybean and rice occurrence.

https://doi.org/10.1371/journal.pone.0296182.g005
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3.2. Contribution and importance of the bioclimatic variables under

different scenarios

The influence of climatic variables on land suitability for soybean, wheat, and rice were much

higher, suggesting that climate change could significantly affect the potential distribution and

land suitability of crops. The percent contribution and permutation importance of each biocli-

matic variable were obtained using the jackknife tests (Tables 5–7). Ortiz et al. [26] report that

future climate will expand wheat area in East Asia. The jackknife test shows that under the cur-

rent (1970–2000), wheat, Bio1, Bio4 and Bio12 contribute 10.4%, 17.6% and 12.6%, and for

future SSP585 (2021–2040), Bio4, Bio13 and Bio19 contribute 17.6%, 11.2% % and 10.5%,

while for SSP585 (2041–2060), Bio4, Bio12 and Bio19 contributed 17.3%, 16.3% and 9.6.0% to

the MaxEnt model. Climate change may also affect the security of global wheat production in

other ways. For example, surface temperatures are projected to increase throughout the 21st

century [3], so warming could negatively impact global wheat production [59]. The cumulative

percentage contribution of these three variables to wheat under current conditions is 40.6%

respectively (Table 5). Bio1, Bio6, and Bio12 had the highest permutation importance percent-

age analysis under the current and future bioclimatic variables of wheat. Therefore, this sug-

gests that temperature may have a more significant effect on species distribution than

precipitation [55].

Table 5. Primary contribution percent and permutation importance of the bioclimatic environmental variables

impacting on wheat distribution (%) to the simulation results of the MaxEnt model.

Bioclimatic

variables

Wheat (Triticum_Aestivum)

Current (1970–2000) SSP585 (2021–2040) SSP585 (2041–2060)

Percent

Contribution

Permutation

Importance

(%)

Percent

Contribution

Permutation

Importance

(%)

Percent

Contribution

Permutation

Importance

(%)

Bio1 10.4 32.4 8.8 30.5 9.0 30.6

Bio2 3.4 3.3 3.9 1.3 2.6 0.8

Bio3 7.7 2.5 5.1 1.5 2.3 1.7

Bio4 17.6 5.9 17.6 4.9 17.3 4.1

Bio5 1.7 1.0 5.6 4.2 5.9 3.5

Bio6 2.7 13.5 1.9 13.6 2.3 12.7

Bio7 3.2 0.6 2.1 0.7 4.2 1.9

Bio8 1.7 1.0 2.6 0.3 1.3 0.2

Bio9 9.3 7.3 4.6 11.4 4.6 10.2

Bio10 2.4 0.8 5.1 0.7 6.5 1.2

Bio11 4.1 0.7 4.7 3.8 4.4 2.7

Bio12 12.6 14.2 7.5 12.8 16.3 11.7

Bio13 6.8 3.2 11.2 0.3 1.4 1.0

Bio14 0.3 0.2 0.1 0.0 1.8 0.8

Bio15 1.4 1.2 1.4 0.9 1.8 0.8

Bio16 0.7 0.1 0.1 0.1 0.3 0.1

Bio17 3.3 0.7 5.1 1.5 4.4 1.2

Bio18 0.9 3.8 2.1 8.2 4.2 11.6

Bio19 10.1 3.7 10.5 3.3 9.6 3.3

Here, SSPs = socio-economic pathways.

Bold: The most influential variable of wheat distribution

https://doi.org/10.1371/journal.pone.0296182.t005
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For soybean, the current bioclimatic variables Bio3, Bio10 and Bio12 contributed 9.9%,

15.6% and 49.5%; for the future SSP585 (2021–2040) Bio3, Bio10 and Bio12 contributed

11.0%, 14.1% and 50.0%, while for SSP585 (2041–2060) Bio3, Bio10 and Bio12 contributed

13.1%, 11.6% and 51.6% to the MaxEnt, respectively (Table 6). Species distribution depends

on environmental gradients and climate variables [60]. We also need the impact of climate

change to understand predict potential distribution and future invasion regions for better pre-

vention strategies. The cumulative percentage contribution of these three variables to soybeans

is currently 75.0% each. In order to predict land suitability, it is crucial to identify the main

environmental variables that have a greater impact on crop land suitability [61]. Bio1, Bio10,

and Bio12 had the highest percentile importance analysis for Soybean under current and

future bioclimatic variables. Compared with temperature, precipitation is the main determi-

nant and contribution to the rice model. Yearly rainfall is one of the most significant ecological

factors that affecting plant growth and development [23]. For rice, current bioclimatic vari-

ables such as Bio2, Bio12 and Bio14 contributed 9.4%, 12.9% and 36.0%, and for future SSP585

(2021–2040), Bio12, Bio14 and Bio17 contributed 16.3%, 29.9% and 13.8%, while for SSP585

(2041–2060) the contributions of Bio12, Bio14 and Bio17 to the MaxEnt model were 13.2%,

18.9% and 24.5%, respectively (Table 7). Under current and future bioclimatic variables, Bio9,

Bio12, Bio13, Bio17, and Bio18 had the highest percentile importance analysis for rice. Taken

together, for rice, the collective contribution of these three bioclimatic variables under current

conditions was 58.3%, respectively.

Table 6. Primary contribution percent and permutation importance of the bioclimatic environmental variables

impacting on soybean distribution (%) to the simulation results of the MaxEnt model.

Bioclimatic

variables

Soybean (Glycine_Max)

Current (1970–2000) SSP585 (2021–2040) SSP585 (2041–2060)

Percent

Contribution

Permutation

Importance

(%)

Percent

Contribution

Permutation

Importance

(%)

Percent

Contribution

Permutation

Importance

(%)

Bio1 3.6 11.0 3.6 15.8 4.3 16.9

Bio2 0.1 5.4 3.8 2.4 3.2 3.2

Bio3 9.9 1.5 11.0 3.0 13.1 2.6

Bio4 5.8 5.9 5.5 2.4 3.8 2.5

Bio5 0.5 1.5 0.4 1.7 0.4 0.5

Bio6 1.0 1.1 0.8 0.2 0.4 0.4

Bio7 0.8 1.6 0.4 1.2 0.5 0.4

Bio8 1.5 3.2 2.7 4.5 4.0 5.3

Bio9 6.0 1.1 0.5 4.6 0.6 3.1

Bio10 15.6 12.7 14.1 10.1 11.6 6.1

Bio11 0.6 0.3 0.9 0.1 0.7 0.1

Bio12 49.5 32.8 50.0 35.9 51.6 45.7

Bio13 0.8 1.9 1.3 5.6 1.6 1.2

Bio14 0.2 1.5 0.3 1.1 0.2 0.8

Bio15 2.2 9.0 2.3 4.2 2.0 6.0

Bio16 0.6 6.2 0.4 1.2 0.0 0.3

Bio17 0.3 0.8 0.4 0.5 0.5 1.1

Bio18 0.8 0.3 1.5 3.0 1.2 3.7

Bio19 0.2 2.3 0.2 1.5 0.1 0.3

Here, SSPs = socio-economic pathways.

Bold: The most influential variable for soybean distribution

https://doi.org/10.1371/journal.pone.0296182.t006
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3.3. Potential distribution and change in land suitability under current and

future climate

The current and future wheat, soybean and rice planting suitability maps predicted by the

MaxEnt are presented in Fig 6. The areas marked in red in Fig 6 represent areas where wheat,

soybean, and rice are policy impact to be highly suitable for planting, and where crops are

actually currently being planted. Although research suggests that wheat area will increase sig-

nificantly globally by 2035 [30], our finding also suggested that most of these areas are in mod-

erate to high suitability regions. While the yellow areas are expected to be moderately

favorable, soybeans are currently unharvested and require more attention for food structure.

In addition, the suitability of wheat, soybean, and rice planting in southeastern China, North

Korea, South Korea, and Japan showed an increasing trend, while the land suitability in Mon-

golia and northwestern China showed a downward trend. The rapid development within the

soybean industry in North and South America has made them the largest soybean export base

for the world [57]. East Asia has become a big soybean exporter as soybean production has

increased in size and level in recent decades [62]. Overall, climate change is projected to

increase the suitability of East Asian lands for wheat, soybean, and rice. Other areas showing

less potential in gray areas and unsuitable for growing wheat, soybeans and rice include Mon-

golia in northwestern China. These results are similar to previous studies on the spatial distri-

bution characteristics of soybean climate suitability in northeast China [63, 64]. Mongolia

Table 7. Primary contribution percent and permutation importance of the bioclimatic environmental variables

impacting on rice distribution (%) to the simulation results of the MaxEnt model.

Bioclimatic

variables

Rice (Oryza_Sativa)

Current (1970–2000) SSP585 (2021–2040) SSP585 (2041–2060)

Percent

Contribution

Permutation

Importance

(%)

Percent

Contribution

Permutation

Importance

(%)

Percent

Contribution

Permutation

Importance

(%)

Bio1 3.6 4.7 4.8 5.3 6.1 2.4

Bio2 9.4 3.8 7.9 2.6 6.2 1.3

Bio3 1.2 1.1 0.3 0.3 0.8 0.3

Bio4 4.5 1.3 3.0 0.7 3.1 2.6

Bio5 0.9 0.1 1.1 0.5 1.7 0.8

Bio6 1.0 0.5 0.9 2.3 0.5 0.4

Bio7 1.6 3.9 2.0 4.1 1.2 3.5

Bio8 2.6 0.5 3.8 3.4 3.7 2.8

Bio9 4.2 5.6 1.6 30.6 1.2 10.9

Bio10 3.2 1.5 2.5 0.8 1.7 0.3

Bio11 1.2 1.5 0.6 1.1 0.6 0.9

Bio12 12.9 7.3 16.3 5.4 13.2 3.8

Bio13 5.3 6.1 3.3 0.9 4.7 3.6

Bio14 36.0 1.5 29.9 1.3 18.9 6.1

Bio15 1.1 0.8 1.3 2.6 1.9 0.7

Bio16 1.5 0.7 2.2 0.7 4.0 0.3

Bio17 8.2 4.7 13.8 9.4 24.5 30.8

Bio18 3.4 51.5 3.4 24.1 3.7 26.3

Bio19 1.3 2.9 1.2 4.1 2.5 2.1

Here, SSPs = socio-economic pathways.

Bold: The most influential variable for rice distribution

https://doi.org/10.1371/journal.pone.0296182.t007
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[65], identified as the most suitable soybean growing area, is consistent with our suitable habi-

tat area. Under the SSP585 2021–2060 scenario, it is expected that the high-suitable planting

area of wheat, soybean and rice will continue to increase significantly in the future, however,

both moderate and low suitability areas are projected to decrease. In the future SSP585 2041–

2060 scenario, the unsuitable planting area of wheat, soybean and rice will be slightly reduced.

In recent years, China’s annual soybean consumption is about 110 million tones, and annual

soybean imports are about 90 million tones, accounting for more than 60% of global trade of

soybean [64]. Compared to the SSP585 2021–2040 scenario, the same trend but larger changes

are expected for the SSP585 2041–2060 scenarios.

The area ratios for the various conformance classes are shown in Table 8. Compared to the

current period, the total area projected for the SSP585 2021–2040 and SSP585 2041–2060 sce-

narios have changed significantly. However, the suitability of the land for wheat cultivation

Fig 6. Potential geographic suitable habitat distribution for wheat, soybean and rice production under current (1970–2000) and future

(SSP585, 2021–2040; SSP585, 2041–2060) climatic scenarios conditions in East Asia.

https://doi.org/10.1371/journal.pone.0296182.g006
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has changed significantly. The MaxEnt also accurately predicted potential rice, wheat, and soy-

bean acres both nationally and globally [19]. Accurate predictions were achieved in part due to

the highest analytic power of the MaxEnt [36, 55]. Also, the prediction accuracy of land suit-

ability is greatly affected by the number of occurrence points [66]. The total high suitability

area of wheat under the SSP585 2021–2040 and SSP585 2041–2060 scenarios are projected to

increase significantly by 66.1% and 75.1%, respectively, compared with the current one. How-

ever, in the SSP585 2021–2040 and SSP585 2041–2060 scenarios, the total moderately suitable

area is projected to increase slightly by 0.1% and 6.4% from the current level, respectively. Our

findings are consistent with those of Qian et al. [67], reported that the land unsuitable for

wheat area will decrease by 2050. In addition, total unsuitable area is projected to decrease by

-54.5% and -98.5%, and marginal suitable area will decrease by -3.4%, and by -11.4% in the

SSP585 2021–2040 and SSP585 2041–2060 scenarios compared to the current scenario. Earlier

work has suggested that climate change may raise wheat yield in high-latitude while causing

greater losses in warmer regions [61]. Elsgaard et al. [68] reported that future climate would

expand wheat areas in East Asia. Total unsuitable and moderately suitable soybean areas are

projected to decrease significantly in future scenarios, respectively, compared to the current

situation. In the SSP585 2021–2040 and SSP585 2041–2060 scenarios, the total soybean high

suitability area is expected to increase significantly by 58.9% and 68.5%, respectively, compared

with the current level. The impact of land-use transition will increase the spatial extent of

unsuitable habitats beyond what was predicted [69]. The total area of unsuitable, low-suitable

and moderately suitable rice in the future scenarios is expected to be significantly reduced

compared with the current situation. Ortiz et al. [26] also reported that future climate will

Table 8. Changes in land suitability for wheat, soybean and rice under the current and future (SSP585; 2021–

2040; 2021–2060) climatic conditions.

Suitability

Index

Climate

scenarios

Time

period

Wheat

×105 km2
Change of

area (%)

Soybean

×105 km2
Change of

area (%)

Rice

×105

km2

Change of

area (%)

Unsuitable Current 1970–

2000

9.73 16.94 16.97

SSP585 2021–

2040

6.30 -54.5 13.48 -25.7 14.73 -15.3

SSP585 2041–

2060

4.90 -98.5 12.00 -41.2 12.45 -36.3

Low suitable Current 1970–

2000

11.09 4.12 6.14

SSP585 2021–

2040

10.73 -3.4 5.09 19.1 5.28 -16.3

SSP585 2041–

2060

9.95 -11.4 4.89 15.8 6.07 -1.2

Moderate

suitable

Current 1970–

2000

6.00 5.13 4.44

SSP585 2021–

2040

6.01 0.1 3.91 -31.3 4.24 -4.9

SSP585 2041–

2060

6.42 6.4 3.66 -40.2 3.53 -25.7

High

suitable

Current 1970–

2000

1.94 2.59 1.22

SSP585 2021–

2040

5.73 66.1 6.30 58.9 4.53 73.1

SSP585 2041–

2060

7.80 75.1 8.22 68.5 6.72 81.9

https://doi.org/10.1371/journal.pone.0296182.t008
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improve high land suitability for rice production. However, in the SSP585 2021–2040 and

SSP585 2041–2060 scenarios, the total high-suitability rice area is projected to increase signifi-

cantly by 73.1% and 81.9%, respectively, from the current level. Climate variables related to

precipitation are important to ensure flowering and maturation of rice crops [70]. These find-

ing show that the high suitable regions improved significantly in the long run, while the total

number of suitable regions decreased. This is because the areas of poor, low, and medium fit

are much larger than the areas of high fit (Fig 6).

3.4. Determination of the dominant environmental factors

To predict land suitability, it is important to identify key environmental variables that have a

greater influence on cropland suitability [61]. The cumulative contribution of these six envi-

ronmental variables was high at 62.7%, proving that these six factors play an important role in

the potential distribution of wheat. From the response curves (Fig 7), we obtained Bio1 for the

main bioclimatic variables as -5 to 30˚C; Bio4, 200 to 1400˚C; Bio6, -35 to -20˚C; Bio9, -30 to

-10˚C˚C; Bio12, 400 to 3500 mm; and Bio19, 50 to 700 mm. There is little work using regional

climate models to study crop suitability in East Asia; however, it is also a valid source for study

regional crop suitability model [71]. Soybean curves show the association between bioclimatic

variables and soybean presence probabilities. According to the soybean response curve

obtained, soybeans prefer Bio1 at 5 to 25˚C; Bio3, at 20 to 35˚C; Bio9, at -10 to 20˚C; Bio10, at

15 to 35˚C; Bio12, at 500 to 4500 mm; and Bio15, 140 to 160 mm (Fig 8). The cumulative con-

tribution rate of these six bioclimatic variables was high at 86.8%, proving that these six factors

Fig 7. Wheat (Triticum_Aestivum) response curves derived from MaxEnt model showing the influence of bioclimatic environmental

variables; Bio_01, Bio_04, Bio_06, Bio_09, Bio_12, and Bio_19 in East Asia.

https://doi.org/10.1371/journal.pone.0296182.g007
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play an important role in the potential distribution of soybeans. One study suggested that soy-

bean yields could decline by 16% depending on future summer warming [72]. According to

obtained rice response curves, rice prefers Bio2 at 4 to 14˚C; Bio9, -5 to 25˚C; Bio12, 600 to

4200 mm; Bio14, 20 to 220 mm; Bio17, 80 to 700 mm; and Bio18, 500 to 2100 mm (Fig 9). This

result is consistent with previous studies showing that changes in temperature and daytime

can lead to changes in rice distribution [72, 73]. The cumulative contribution rate of these six

bioclimatic variables was high at 74.1%, proving that these six factors play an important role in

the potential distribution of rice. Thus, this suggests that temperature may have a greater effect

on rice distribution than precipitation [59].

4. Conclusion

We successfully developed a MaxEnt model that predicted the potential distribution of current

and future land suitable for wheat, soybean, and rice cultivation. The accuracy of the MaxEnt

model is excellent, with mean AUC values ranging from 0.833 to 0.882 for all models evalu-

ated. The jackknife test showed that for wheat, Bio4 and Bio12 contributed 17.6% and 12.6%,

for soybean, Bio10 and Bio12 contributed 15.6% and 49.5%, and for rice, Bio12 and Bio14 con-

tributed 12.9% and 36.0%. In addition, the suitability of wheat, soybean, and rice planting in

southeastern China, North Korea, South Korea, and Japan showed an increasing trend, while

Fig 8. Soybean (Glycine_Max) response curves derived from MaxEnt model showing the influence of bioclimatic environmental variables;

Bio_01, Bio_03, Bio_09, Bio_10, Bio_12, and Bio_15 in East Asia.

https://doi.org/10.1371/journal.pone.0296182.g008
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the land suitability in Mongolia and northwestern China showed a downward trend. The cli-

mate change is projected to improved land suitability for soybean, wheat, and rice in East Asia.

The simulation results showed that the unsuitable area of wheat, soybean and rice would

decrease by -98.5%, -41.2% and -36.3% on average in 2060 compared with the current land

suitability. In contrast, by 2060, the highly suitable planting area of wheat, soybean and rice is

projected to increase by 75.1%, 68.5% and 81.9%, respectively, compared with the current land

suitability. In light of our findings, it is our recommendation that further analysis is needed to

identify land use changes and determine the effective area of suitable lands that can be targeted

for wheat, soybean and rice cultivation in order to ensure sustainable production and mitigate

food insecurity. This study should be used as a proof of concept to demonstrate an approach

to describe suitable crops areas under current and future bioclimatic variables and establish

policies on East Asia geography and climate situation.
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