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Abstract

Several observational studies from locations around the globe have documented a positive

correlation between air pollution and the severity of COVID-19 disease. Observational stud-

ies cannot identify the causal link between air quality and the severity of COVID-19 out-

comes, and these studies face three key identification challenges: 1) air pollution is not

randomly distributed across geographies; 2) air-quality monitoring networks are sparse spa-

tially; and 3) defensive behaviors to mediate exposure to air pollution and COVID-19 are not

equally available to all, leading to large measurement error bias when using rate-based

COVID-19 outcome measures (e.g., incidence rate or mortality rate). Using a quasi-experi-

mental design, we explore whether traffic-related air pollutants cause people with COVID-

19 to suffer more extreme health outcomes in New York City (NYC). When we address the

previously overlooked challenges to identification, we do not detect causal impacts of

increased chronic concentrations of traffic-related air pollutants on COVID-19 death or hos-

pitalization counts in NYC census tracts.

Introduction

Policymakers and researchers seek to understand the drivers of differential impacts of environ-

mental and public health hazards to provide targeted aid to the most vulnerable populations.

Misunderstandings about the factors that cause these hazards to impose severe impacts can

lead to ineffective policy and distrust or skepticism about information coming from official

sources.

Traffic-related air pollutants (TRAPs) are a major cause of poor local air quality in many

parts of the world. The relationship between air particulates and respiratory and cardiac func-

tion has long been accepted. As such, air pollution is recognized as imposing major costs on

society via mortality, morbidity, and other effects [1–3].
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PM2.5, and NOx are TRAPs with known health hazards that have been the focus of numer-

ous studies, generally observational in nature, exploring the relationship between air quality

conditions and COVID-19 disease severity [4–20]. Table 1 summarizes a surveyed set of these

studies, which have generally found positive correlations between worse chronic air quality

and the severity of COVID-19 disease globally [13] and at the county level in the United States

[14]. The exception is [16], which found a negative correlation.

Determining whether increased air-pollutant concentrations cause adverse health effects is

challenging for three reasons. First, air pollution is not randomly distributed across geogra-

phies. In fact, air quality and the health effect of interest (COVID-19 outcomes in this case)

might both be highly correlated with unobservable community and demographic characteris-

tics, preventing observational studies from identifying causal effects. Of the studies listed in

Table 1, only [7] addresses the correlation between raw measures of air quality and demo-

graphic characteristics by employing a quasi-experimental design similar to the one that we

apply here.

Second, air-quality monitoring networks are sparse spatially. Researchers studying the

effects of air pollution on human capital usually measure pollution exposure by creating a

proxy variable using nearby monitors recording ambient concentrations, which unavoidably

induces measurement error that could bias coefficient estimates in unknown directions. This

measurement error is a larger problem with data from spatially-sparse monitoring networks,

which, under certain interpolation schemes, can smooth concentration data across communi-

ties, an issue referred to as the ecological fallacy.

Third, defensive behaviors to mediate exposure to air pollution and COVID-19 are not

equally available to all. Thus, rate-based COVID-19 outcome measures (e.g., incidence rate or

mortality rate), which depend on administrative data for population estimates, lead to system-

atic bias in assessing the health effects of air pollution. Existing research has shown that adop-

tion of defensive behavior to limit exposure to air pollutants is associated with demographic

characteristics that might also affect both the physiological and social response to COVID-19,

including education [21], age, and insurance status [22]. In addition, the initial outbreak of

COVID-19 caused many people to leave cities, which tend to have higher pollution levels. Fail-

ure to account for differential availability of defensive measures, including the ability to tem-

porarily move away from infection hotspots, can bias regression results from both

observational and causal studies.

To address these causal identification challenges, we employ a quasi-experimental design

that uses an instrumental-variables (IV) approach and detailed air-quality data from New

York City (NYC), the one-time global epicenter of the pandemic [23], to identify the causal

relationship between chronic air-quality conditions and the intensity of COVID-19 disease.

Our work highlights the challenges facing researchers from the fields of economics, public

health, and other disciplines interested in providing policy guidance about the causal effects of

air pollution offers through: 1) the use of hyperlocal air-quality data; 2) census-tract level data

on COVID-19 outcomes; 3) econometric techniques to causally identify the variation in air

quality that is independent of unobservable community characteristics; and 4) cellphone

mobility data to highlight concerns about rate-based models dependent on administrative data

for population estimates that ignore potential defensive behaviors.

We find that exogenous variation in the chronic ambient concentrations of our focal pollut-

ants does not cause significant changes in COVID-19 outcomes. Our null effects are more pre-

cisely estimated for those pollutants most closely associated with traffic (NO and NO2), though

we are unable to reject moderate effects even for these pollutants. These results contrast with

the large correlations reported in a number of observational studies that are confounded by

correlations between ambient pollutant concentrations and demographic characteristics that
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Table 1. Summary of surveyed studies.

Study Study Region and

Time Period

Spatial Unit of

Pollution

Estimation

Spatial Unit of

COVID-19

Outcome

Aggregation

Modeled

Effect Based

on Reported

Results

Challenge I:

Endogenous

Concentration

Measures

Challenge II:

Measurement Error

in Pollutant

Concentrations

Challenge III:

Measurement

Error in

Dependent

Variables

Hospitalizations

Frontera et al.,

(2020)

Italy, Feb-Mar 31,

2020 (n = 10,572)

Region Region 4.735 Not addressed Highly Susceptible Count

Bowe et al.,

(2021)

USA, Mar 2, 2020-Jan

1, 2021, (n = 169,102)

1 km2 area

encircling

patient address

Individual patient 0.402 Not addressed Susceptible Rate/ratio

Mendy et al.,

(2021)

University of

Cincinnati Hospital

System, Mar 13-Jul 5,

2020, (n = 1128)

Zip Code Individual patient 4.735 Not addressed Susceptible Rate/ratio

Austin et al.,

(2023)

USA, Jan 22-Aug 15,

2020, (n = 97885)

County County 0.061 Addressed Highly Susceptible Rate/ratio

ICU Admissions

Frontera et al.,

(2020)

Italy, Feb-Mar 31,

2020, (n = 10,572)

Region Region 4.966 Not addressed Highly Susceptible Count

Bozack et al.,

(2022)

NYC, Mar 8-Aug 30,

2020, (n = 6542)

100 m2 area

encircling

patient address

Individual patient 0.993 Not addressed Susceptible Rate/ratio

Austin et al.,

(2023)

USA, Jan 22-Aug 15,

2020, (n = 97885)

County County 0.038 Addressed Highly Susceptible Rate/ratio

Mortality

Bianconi, et al.,

(2020)

Italy, March 1-March

31, 2020, (n = 110)

Province Province 5.193 Not addressed Highly Susceptible Rate/ratio

Frontera et al.,

(2020)

Italy, Feb-Mar 31,

2020, (n = 10,572)

Region Region 4.048 Not addressed Highly Susceptible Count

Konstantinoudis

et al., (2020)

England, Jan 1-June

30, 2020, (n = 38, 573)

1 km2 area

encircling

patient address

Lower Tier Local

Authority

0.107 Not addressed Susceptible Rate/ratio

Liang, et al.,

(2020)

USA, Jan 22-Jul 17,

2020, (n = 3122)

County County 0.438 Not addressed Highly Susceptible Rate/ratio

Petroni et al.,

(2020)

USA, Jan - May 13,

2020 (n = 3223)

County County 0.535 Not addressed Highly Susceptible Rate/ratio

Pozzer et al.,

(2020)

Global, Available data

as of 3rd week of June,

2020 (n = variable*)

Country Country 0.611 Not addressed Highly Susceptible Rate/ratio

Wu, et al.,

(2020)

USA, Jan 1-Jun 18,

2020, (n = 3089)

County County 0.840 Not addressed Highly Susceptible Rate/ratio

Jiang and Xu,

(2021)

Wuhan, China, Jan

25-April 7, 2020,

(n = 73)

City City 0.604 Not addressed Highly Susceptible Count

Kim and Bell,

(2021)

NYC, Feb 29,

2020-Jan 5, 2021,

(n = 177)

Neighborhood Neighborhood -0.382 Not addressed Susceptible Rate/ratio

Meo, et al.,

(2021)

California, Mar

19-Sept 22, 2020,

(n = 1878)

County County 0.671 Not addressed Highly Susceptible Count

Meo, et al.,

(2021)

Los Angeles, New

Mexico, New York,

Ohio, and Florida,

Mar 13-Dec 31, 2020,

(n = 1465)

Region Region 0.000 Not addressed Highly Susceptible Count

(Continued)
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also affect health outcomes. We only replicate the findings from these observational studies of

a substantial, positive correlation when we use a sample in which our instrument fails the

exclusion restriction (S7 and S8 Tables in S1 File). In this case, our measure of air quality is

similar to the raw pollutant concentrations used in the observational studies reported in

Table 1, in that it is correlated with other determinants of COVID-19 outcomes. The implica-

tion being that reported associations between air quality and COVID-19 outcomes in this sam-

ple, and in the observational studies we survey, cannot be interpreted as causal effects, making

it challenging to know if, and how, such results should impact public-health policy and indi-

vidual behavior.

Challenges to causal identification

Work exploring links between ambient pollutant concentrations and health outcomes, includ-

ing COVID-19 outcomes, such as existing observational studies, is usually confronted by three

challenges. Table 1 summarizes 17 representative studies, of which only [7] is quasi-experi-

mental in nature, that have been referenced in major media outlets or academic reviews, and

indicates which, if any, of these challenges are addressed in each study. In this section, we pro-

vide an in-depth discussion of the identification challenges facing this strand of the literature

and replicate the results from existing studies that ignore these key identification issues. It is

worth noting that none of the papers included in Table 1 address more than one of the chal-

lenges described below.

Table 1. (Continued)

Study Study Region and

Time Period

Spatial Unit of

Pollution

Estimation

Spatial Unit of

COVID-19

Outcome

Aggregation

Modeled

Effect Based

on Reported

Results

Challenge I:

Endogenous

Concentration

Measures

Challenge II:

Measurement Error

in Pollutant

Concentrations

Challenge III:

Measurement

Error in

Dependent

Variables

Pansini and

Fornacca, (2021)

China, Dec 19, 2019–

May 23, 2020, (n = 31)

Province Province 1.375 Not addressed Highly Susceptible Rate/ratio

Austin et al.,

(2023)

USA, Jan 22-Aug 15,

2020, (n = 97885)

County County 0.306 Addressed Highly Susceptible Rate/ratio

Case fatality

Yao, et al.,

(2020)

China, Jan 15- Mar 22,

2020, (n = 49)

City City 0.003 Not addressed Highly Susceptible Rate/ratio

Bozack et al.,

(2022)

NYC, Mar 8-Aug 30,

2020, (n = 6542)

100 m2 area

encircling

patient addresses

Individual patient 0.840 Not addressed Susceptible Rate/ratio

Notes: This table presents summaries of recent observational studies exploring the relationships between PM2.5 and COVID-19 outcomes. Several of these studies

examine associations between multiple pollutants and COVID-19 outcomes, however, in this table we document results for outcomes associated with PM2.5. The

observational studies identified for potential inclusion in Table 1 were chosen because they had received coverage from major media outlets (e.g., [42]); they had a

substantial number of citations, according to Google Scholar; or because they had been included in a highly-cited review of papers researching the links between air

pollution and COVID-19 outcomes [43]. Table 1 includes a subset of these studies that report results on the relationship between PM2.5 and a COVID-19 outcome,

such as the number of deaths, hospitalizations, mortality rates, etc. Studies examining the relationship between PM2.5 and the spread of COVID-19 (e.g. number of

cases or infection rate) are excluded from the table, as are those primarily focused on pollutants other than PM2.5. The studies are categorized by the type of COVID-19

outcome and presented in chronological order. The modeled effects shown in column 5 are presented as elasticities, representing the percent change in the measured

COVID-19 outcomes per percent change in PM2.5 concentrations. For uniformity, we use the average annual PM2.5 concentration in the US for 2019 (~7.64 ug/m3) as

a baseline and use the deviation described in each paper (e.g. 1 ug/m3 increase) to calculate the percentage change in PM2.5 concentrations corresponding with each

paper’s outcome of interest. All findings reported in this table are statistically significant (95% CI) except for the regional Meo et al. (2021) paper which finds no

statistically significant relationship between PM2.5 and mortality.

* Pozzer et al. (2020) use country-level populations in mortality rate ratio calculations.

https://doi.org/10.1371/journal.pone.0296154.t001
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Challenge 1: “Cleaning” endogenous air pollutant measures

Air pollution is correlated with many socioeconomic variables that may influence COVID-19

outcomes. It has been well documented that low-income and majority non-White neighbor-

hoods are often subjected to higher concentrations of air pollutants [24–29], suggesting that

poverty or other correlated characteristics could confound the results from recent observa-

tional studies about the relationship between air quality and COVID-19 outcomes [30]. These

endogenous measures of air pollution will bias all coefficient estimates in such regressions

[31], due to the causal link between air pollution and several individual characteristics (e.g.,

income, pre-existing health conditions). Importantly, it is difficult to know a priori the direc-

tion of the bias—correlational studies could either over or underestimate the effect of pollution

on health. Some of the listed studies try to address this endogeneity concern by including

demographic controls in the models, yet we show that adding such control variables would not

solve the issue [32].

To overcome this challenge, we use an IV approach that relies on variation in pollution

resulting from wind direction relative to nearby highways to identify the causal effects of

chronic ambient air pollution on COVID-19 disease intensity. Our method compares tracts

within the same neighborhood and same distance from a highway that only differ in the frac-

tion of time spent downwind of the highway. Such tracts should be comparable on both

observable and unobservable characteristics, while differing in their chronic air quality, so that

we can isolate the effect of pollution on COVID-19 from the effects of other demographic

characteristics. The key assumption underlying this method is that wind direction is exoge-

nous to, or uncorrelated with, individual or community characteristics that are correlated with

COVID-19 outcomes. In other words, wind direction only effects COVID-19 outcomes

through its effect on air quality. Details of the IV approach are in the Methods section.

Challenge 2: Constructing pollution exposure proxies with spatially-sparse

monitoring networks

Aggregated ambient pollutant concentrations are typically used as a proxy for exposure, a par-

ticularly strong assumption given the coarse spatial resolution of most pollutant concentration

measures, whether derived from sparse governmental monitoring networks or satellite esti-

mates. Note that existing studies have tended to use county-level pollutant data aggregated or

calibrated using EPA monitors, which usually bear the issues of being sparsely and strategically

sited, resulting in known limitations of the EPA monitoring network and concentration esti-

mates derived from satellite measurements [32–35]. A few studies listed in Table 1 [5, 8, 10]

attempt to address such measurement issues by interpolating ambient pollution exposure to

the agents’ location, which would only alleviate the measurement error concern when moni-

toring networks are densely sited [8]. However, in the more common case of having only one

monitor within a county, every agent would be assigned the same pollution concentration

regardless.

A more robust solution is to use air pollution data from a spatially-dense network of moni-

tors, such as the New York City Community Air Survey (NYCCAS) monitoring network used

in this paper (also used in [8] and [16]). The NYCCAS monitoring network provides fine-scale

and high-quality pollution measurements at about 100 city locations in NYC between 2009–

2018, as compared to the 12 EPA monitors in the city. We re-run our estimated models using

pollutant concentrations constructed from the EPA monitors and find a much larger, though

statistically insignificant, treatment effect than when we use pollutant concentrations con-

structed from the NYCCAS monitors.
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NYC is one of the few places in the United States with such a concentrated network of mon-

itors, and our results suggest that there is great value in the establishment of a national network

at similar scales. Additionally, our data on census tract level COVID-19 outcomes allow for

much more precise attribution of exposure than county-level data. Our results, which vary

from those reported in several observational studies, highlight the importance of improved

indoor and outdoor pollutant monitoring to acknowledge differential access to defensive

behaviors across segments of our society.

Challenge 3: Acknowledging that defensive behaviors threaten validity of

rate-based models of COVID-19 outcomes

Studies relying on administrative population data to construct estimates of mortality and hos-

pitalization rates during pandemics are subject to systematic measurement error in their esti-

mated rates. This error in rate-based measures is a substantial problem for previous studies on

this topic, as COVID-19 caused many people to leave cities, which tend to have higher pollu-

tion levels than rural and suburban areas. Many NYC residents fled the city in the spring of

2020 to avoid exposure to SARS-CoV-2, behavior that was reported to be concentrated in the

city’s wealthiest neighborhoods [36]. This fact likely contributes to the results reported in [16]

of a negative correlation between ambient pollutant concentrations and COVID-19 outcomes,

because Manhattan saw large decreases in population that were not captured in administrative

data and this borough tends to have high ambient pollutant concentrations.

Failure to account for differential availability of defensive measures, including the ability to

temporarily move away from infection hotspots, can bias regression results from both observa-

tional and causal studies. Most of the studies listed in Table 1 use rate-based measures, without

adjusting for migrations during the pandemic. Further, the standard practice of using popula-

tion weights to account for heteroskedasticity in these rate-based models exacerbates the exist-

ing measurement error problem.

We incorporate cell phone mobility data from Safegraph to examine variation in defensive

behavior. Safegraph collects location data from 45 million mobile devices and provides aggre-

gated statistics at the census block group level on the amount of time that mobile devices are in

the home, outside of the home, and engaged in work behavior, as well as distance travelled.

We use this data to identify changes in the count of devices calling each census tract home dur-

ing the spring of 2020.

Fig 1 shows that while pollutant concentrations are highest in the wealthier parts of Man-

hattan with a larger fraction of White residents (panels A-C), the estimated case rate, defined

as the number of positive tests divided by the census tract population (based on administrative

data), is substantially lower for this part of the city (panel F). This may be due to increased

adoption of defensive behaviors in these areas, as the Safegraph data shows a significant

decrease in the number of cell phone devices residing in these census tracts during the first

wave of the pandemic, consistent with individuals in these neighborhoods leaving the city to

avoid exposure to the disease (panel E).

We incorporate the Safegraph mobility data to adjust the rate-based outcome variables that

have been used in previous studies. Fig 2 displays COVID-19 death and hospitalization rates,

where these rates are calculated using different population estimates. Panels A and D of Fig 2

show these rates using population figures from the 2018 American Community Survey (ACS)

in the denominator, and panels B and E use this population adjusted for the number of devices

that left the city between March 8 and May 11, 2020 (weeks 10 and 20 of the year), which aligns

with the peak of the initial wave of COVID-19 in NYC. Blue points in the scatter plots (panels

C and F) show that adjusting these rate-based measures using cellphone mobility data results
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in much higher death and hospitalization rates in Manhattan relative to the rest of the city. A

rough attempt to account for these departures would effectively double death rates in this part

of Manhattan, making them more comparable to those in the rest of the city.

While the spatial patterns of air quality and demographic characteristics in NYC differ

from other parts of the United States, our findings reinforce the point that disparities exist

across incomes and racial groups regarding the ability to mitigate exposure to environmental

and public health hazards, a point emphasized by a recent study of ambient air quality condi-

tions in California [37]. The Safegraph data suggest that the wealthier parts of Manhattan

below 110th Street with a larger fraction of White residents was not less susceptible to COVID-

19 or air pollution, but appeared to experience lower death and hospitalization rates than

other groups largely due to defensive behaviors and temporary relocation that were not

reflected in administrative data.

Methods

Our preferred specifications use log-transformed counts of hospitalizations and deaths and an

Instrumental Variable (IV) estimation method that includes two stages of regressions. In the

first stage, we explain the variation in chronic TRAP concentrations that results from being

Fig 1. This figure depicts tract-level characteristics relating to chronic concentrations of PM2.5 (μg/m3) (A), NO2 (ppb) (B), NO (ppb) (C); 2018 per-capita

income (D); the change in mobile devices based in each tract between week 10 and 20 of 2020 (E); and the case rate (positive test results divided by population)

as of 08/31/2020 (F).

https://doi.org/10.1371/journal.pone.0296154.g001
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downwind of a highway. We use the 10-year average pollutant concentration preceding the

pandemic to measure chronic TRAP concentrations and calculate all hours during that time

period for which the census tract lies downwind of the nearest highway. This 10-year period is

slightly shorter than the average tenure time of residents in NYC census tracts according to the

2018 ACS, and there is no difference in median tenure time across our upwind and downwind

census tracts (S3 Table in S1 File), so household movement across tracts over time should not

bias our coefficient estimates. Specifically, we construct the instrumental variable ÂQ, the

exogenous component of air quality (AQ), by modelling AQ as a linear combination of wind-

related variables and other exogenous observables.

There are three AQ measures in our study: PM2.5, NO, and NO2. The health effects of these

pollutants have been well studied and reviewed by the United States’ Environmental Protec-

tion Agency [38, 39]. Furthermore, both PM and NOx are established surrogate pollutants

used to evaluate overall exposure to TRAP and its impact on health [40]. No one pollutant is a

sufficient surrogate, so we chose both measures of NOx and PM2.5 as surrogates for overall

TRAP exposure in this analysis.

Fig 2. Measures of COVID-19 death and hospitalization rates based on different measures of census tract population. Safegraph adjusted death (B) and

hospitalization rates (D) in Manhattan below 110th Street are more comparable to those in the rest of the city, emphasizing how the inequitable access to

defensive behaviors (namely relocating during the initial phase of the COVID-19 pandemic) can explain much of the observed gap in COVID-19 outcomes

across different demographic groups in NYC.

https://doi.org/10.1371/journal.pone.0296154.g002
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In the second stage, we estimate the effect of this exogenous portion of pollution ÂQ on

COVID-19 outcomes, as measured by mortality and hospitalizations recorded at the census-

tract level between February 29 and August 30, 2020. This period is prior to vaccine availabil-

ity, which could confound the relationship, as individuals at high-risk were often prioritized

for vaccines and uptake has been shown to vary by observable individual characteristics [41].

Our dense monitoring network and tract-level COVID-19 data disaggregated by age and race-

ethnicity represent improvements relative to existing studies that have relied on county-level

data.

First-stage regression

We first predict PM2.5, NO2 and NO concentrations in each census tract as linear functions of

the percent of time that the tract spends downwind of a highway at each distance:

AQi ¼ Zþ bDownwindi þ mHighwayDistancei þ PUMAi þ Stationi þ �i ðEq 1Þ

Downwindi is the percent of time that census tract i is downwind of any highway segment

that is located within 0.5 kilometers (km) across a 10-year period (2009–2018). The model also

controls for distance to the closest highway, HighwayDistancei, dummy variables for Public

Use Microdata Areas (PUMAs), PUMAi, and dummy variables for the nearest weather station,

Stationi.
The key assumptions necessary for instrument validity are (1) the instruments are corre-

lated with the pollutant concentrations (relevancy), and (2) the instruments must not be

related to COVID-19 disease intensity except through their relationships with pollutant con-

centrations (exclusion restriction). The relevancy assumption is met–the downwind variable is

significantly associated with increased pollution concentration at distances less than 0.5 km

(see S2 Table in S1 File). Focusing on the Citywide models, we find that a tract within 0.5 km

of a highway and downwind 100% of the time would have increased average ambient concen-

trations by 0.32 μg/m3 of PM2.5, 0.70 ppb of NO2 and 1.41 ppb of NO, relative to a tract that is

downwind 0% of the time. We report the weak instrument Wald F-stats from the first stage

and reject the null hypothesis that the instrument is irrelevant.

As for the exclusion restriction assumption, while exposure to poor air quality as a result of

living near a highway is likely endogenous with factors related to COVID-19 disease intensity

(e.g., income, healthcare access, etc.), we assume that, conditional on living near a highway

and in the same neighborhood, our instrument only affects COVID-19 outcomes through its

effect on pollution concentration. This assumption is reasonable because the pollutants of

interest are generally not detectable via sight or smell at concentrations in NYC, and differ-

ences of the magnitudes our coefficients report would clearly not be detectable by human

senses.

To further ensure that our instrument for ambient air quality is unrelated to a set of observ-

able characteristics, Xi, that might determine health outcomes, we run placebo regressions of

the following form, where xi denotes each element in the observable characteristics set Xi:

xi ¼ Zþ bDownwindi þ mHighwayDistancei þ PUMAi þ Stationi þ �i ðEq 2Þ

The results of these regressions are reported in S3 Table in S1 File, which presents the coef-

ficients and standard errors from regressing each of our included demographic characteristics

on our air quality instrument. For our sample of interest, the set of census tracts that lie

between 0.05 and 0.5 km from the nearest highway, the coefficient on the percentage of Black

residents is marginally significant at the 10% level, which we would expect to occur by chance

given our set of 12 control variables. In the Outer Boroughs sample, we observe a marginally
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significant (at the 10% level) increase in the number of people living in downwind census

tracts relative to upwind census tracts. This correlation would bias our estimate upward, mak-

ing our estimated null effects even more robust. These results give us great confidence that our

instrument allows us to identify the causal effect of ambient air quality on COVID-19 out-

comes in our analysis.

We next test the assumption that populations in our main sample that spend relatively more

time downwind of highways are similar to those that spend less time downwind. To do so, we

conduct balance checks comparing variables constructed from ACS data representing tract level

socioeconomic and demographic characteristics. A tract is considered “Downwind” if the

amount of time the tract spends downwind of a highway is greater than the average amount of

time tracts the same distance from a highway spends downwind and is considered “Upwind”

otherwise. We show that no normalized differences between Upwind and Downwind tracts are

greater than 0.25, supporting our assumption that, conditional on living in a tract near a high-

way, there are not significant socioeconomic or demographic differences between tracts based

on the amount of time they spend downwind of highways (S4 Table in S1 File).

While there are many reasons for residential sorting to occur in NYC, the above results sug-

gest that it is unlikely that individuals are sorting into tracts based on the amount of time the

tract spends downwind of a highway. For this reason, we assume that our instruments are

exogenous, and that the exclusion restriction is met.

Second-stage regression

Using our quasi-experimental design to capture the variation in ambient pollutant concentra-

tion that is uncorrelated with demographic characteristics, our second-stage regressions esti-

mate the causal impact of a change in ambient pollutant concentration on two different

measures of the intensity of COVID-19 disease: deaths and hospitalizations. Our identification

strategy compares tracts within the same PUMA that lie within the same distance of the high-

way that spent different amounts of time downwind from 2009–2018. Our key specification is:

logðYiÞ ¼ a0 þ a1
^AQi þ a2HighwayDistancei þ PUMAi þ Stationi þ ni ðEq 3Þ

Yi are counts of deaths and hospitalizations. We use log-transformed counts and add one to

the count variables to adjust for tracts with zero deaths or hospitalizations. ^AQi is the instru-

mented measure of ambient concentration for PM2.5, NO2, and NO predicted from Eq (1). We

include weather station and PUMA dummy variables in the second stage as well. The key

parameter of interest is α1. Please see the S1 File for more details on our data construction,

methods, results, and discussion of our robustness checks.

Results

Fig 3 presents the causal effects of chronic exposure to three TRAPs on COVID-19 deaths

(row 1) and hospitalizations (row 2). The figure panels illustrate results for two sets of observa-

tions: Citywide, which uses all tracts in NYC that lie between 0.05km and 0.5km of the nearest

highway, and Outer Boroughs, which includes all such tracts in the Bronx, Brooklyn, Queens,

Staten Island, and above 110th street in Manhattan. The point estimate of the causal impact of

increased chronic pollutant concentration is near zero and statistically insignificant for each of

our considered pollutants, whether we are considering COVID-19 deaths or hospitalizations.

We see a much tighter confidence interval for NO2 and NO, the pollutants that are more

directly related to traffic. Our findings are also robust to employment of an IV Poisson model

and the addition of demographic control variables. (See S5, S6, S12, S13 Tables in S1 File).
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We also perform quantile IV models to explore how the effects of air quality operate across

the distribution of tracts by COVID-19 deaths. Fig 4 shows the quantile regression estimates

for our Citywide sample, with point estimates that are also consistently near zero across tracts

based on their position in the distribution of COVID-19 deaths.

Fig 3. This figure presents the estimated coefficients and associated 95% confidence intervals on our instrumented measure of ambient pollutant

concentration from the second stage of our instrumental variable log-linear models across our two geographic samples for all tracts that lie between

0.05km and 0.5km of the nearest highway.

https://doi.org/10.1371/journal.pone.0296154.g003

Fig 4. Quantile regression results for our focal COVID-19 outcomes in the sample of NYC census tracts that lies

between 0.05km and 0.5km of the nearest highway.

https://doi.org/10.1371/journal.pone.0296154.g004
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While the point estimates are still statistically insignificant, we see evidence that the effect

on COVID-19 hospitalizations is more pronounced in the tracts with a higher number of hos-

pitalizations, which are located in the Washington Heights neighborhood of northern Manhat-

tan. These tracts have three times the recorded population of an average tract, with Hispanic

individuals representing roughly 80% of the total population. This finding is consistent with

those from our heterogeneity analyses: when we interact our instrumented measure of pollu-

tion with age and race-ethnicity groups (see S9 and S10 Tables in S1 File), we find some evi-

dence that TRAPs increase hospitalizations and deaths for Hispanic individuals. These results

are not significant at the 95% threshold when we adjust our threshold p-values to account for

multiple hypothesis testing, though they may warrant further investigation. For all other age

and race-ethnicity groups, we do not detect meaningful heterogeneity in the effect of TRAPs

on COVID-19 deaths or hospitalizations.

Fig 5 presents a series of replications of existing studies using our data and shows coefficient

estimates for various models exploring the impact of increased ambient NO concentration on

COVID-19 deaths and hospitalizations. The left panels are estimated with ordinary least

squares (OLS) models of rate-based outcomes and the right panels are estimated with count-

based IV regressions, our preferred models. With an OLS model that controls for a representa-

tive set of demographic variables, we find that increasing NO concentration by 1 ppb leads to

an imprecisely estimated additional 8 deaths per 100,000 in our sample tracts (model 2). How-

ever, this positive significant effect diminishes when we account for population weights in

Fig 5. This figure presents coefficient estimates for various models exploring the impact of increased ambient NO concentration on COVID-19 deaths

and hospitalizations. OLS models (left panel) do not capture the causal effect of air pollution due to their endogeneity. These rate-based models are also

impacted by measurement error in the dependent variable that is correlated with unobservables that determine COVID-19 outcomes. These rate-based models

are still impacted by measurement error in the dependent variable when covariates are included, while the inclusion of these covariates can bias estimation by

conditioning on post-treatment variables. The IV models (right panel) capture the causal effect of air pollution on COVID-19 deaths, through both direct and

indirect channels in models without covariates.

https://doi.org/10.1371/journal.pone.0296154.g005
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running the OLS model (model 3). Finally, when we incorporate the Safegraph mobility data

to adjust for the mortality rate (model 4), we find a null effect, which is qualitatively consistent

with our main finding, as shown in the right panels (model 5).

Discussion

Empirical researchers studying the effects of air quality must confront the shortcomings of

working with observational data. We use the recent SARS-CoV-2 global pandemic to highlight

three issues in particular: 1) Non-random exposure to pollution, 2) coarse measurement of

pollutant exposure, and 3) endogenous defensive behaviors. We show that a number of obser-

vational studies that generally report large correlations between ambient pollutant concentra-

tions and COVID-19 outcomes fail to address most, if not all, of these challenges, meaning

that the conclusions of these papers might offer misleading advice to policymakers.

To illustrate how these theoretical challenges to causal inference might bias estimated corre-

lations, we take advantage of unusually spatially-dense air quality monitoring in NYC, and a

quasi-experimental approach to identify the causal relationship between chronic ambient con-

centrations of several TRAPs and the intensity of COVID-19 disease. We also highlight how

defensive behaviors bias rate-based measures of COVID-19 severity. The results of our instru-

mental variables analysis show that increases in the average chronic concentration of three

TRAPs do not cause the substantial impacts on COVID-19 outcomes in NYC that have been

reported in observational studies. The differences between our methodological approaches

and results relative to the existing literature on air quality and COVID-19 might be interpreted

as evidence that observational studies can generate biased estimates of pollution impacts that

could be misinterpreted by policymakers. In fact, the only study that does not use an observa-

tional approach [7], reports smaller effects than most of the observational studies, though its

findings are still susceptible to the other two identification issues that we address in this paper.

The goal of this paper is to highlight the challenges of identifying causal effects of air quality

on human health, emphasizing the challenge of systematic measurement error, which has been

seriously understudied relative to the issue of endogenous ambient air quality. To do so, we

have relied on a uniquely spatially-dense network of monitors in a relatively small geographic

area. Our results are not consistent with the large, statistically-significant correlations reported

in the observational studies included in Table 1. That said, our small study area limits variation

in air quality conditions, and our focus on the causal effect of chronic ambient conditions

makes it challenging to detect small effects. With our dataset, we can say that a 1 ppb increase

in the concentration of NO could cause no more than 2.32 additional COVID-19 deaths at the

census tract level (an increase of 32% relative to the average of 7.25 tract-level deaths in our

main sample). We also note that our ability to identify causal effects in this context is limited

by the metrics available at the census tract level regarding COVID-19 outcomes. While we

focus on measures related to the extensive margin (e.g., counts of deaths and hospitalizations),

future study that is able to acquire patient-level data might find additional impacts by consid-

ering metrics that reflect impacts on the intensive margin (e.g., ventilator use for hospitalized

patients in the context of COVID-19).

That we do not detect a causal link between chronic ambient air pollutant concentrations

and COVID-19 outcomes in NYC does not mean that such a causal impact might not exist in

other contexts. Our estimated effects are observed at chronic ambient pollutant concentrations

that fall below the NAAQS thresholds for PM2.5 (three-year annual average of 12 μg/m3 for the

primary standard) and NO2 (annual average of 53 ppb). Furthermore, while we have been

careful in our analysis to identify the exogenous portion of variation in ambient TRAP concen-

trations, the unique aspects of NYC might limit the generalizability of our findings.
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We emphasize that our estimate of air quality might not fully capture the 10-year cumula-

tive exposure to air pollution. Rather, it only captures the average ambient air pollutant con-

centration. This limitation relates to the challenge of proxying for a stimulus variable with

ambient concentration measures, as the ability to moderate exposure to air pollution via defen-

sive behaviors may differ across individuals. We have shown these defensive behaviors to be

very important in the context of COVID-19, which is just one of the respiratory ailments

through which air-pollutant exposure might lead to premature death and reduced quality of

life. This measurement is a challenge for all existing work that has explored the health effects

of air quality and their implications for behavior, whether through observational or quasi-

experimental study. While researchers can take steps on their own to address the challenge of

endogenous air quality (or measurement error in the dependent variable in the case of future

pandemics), addressing the issue of mismeasured pollutant exposure most likely involves

expanded investment in air-quality monitoring networks around the world.

Despite these caveats, our results suggest that air quality may not be as significant a determi-

nant of susceptibility to SARS-COV-2 as correlated socio-economic characteristics. Previous

research that has emphasized such a link may be confounding the impacts of air quality with

other determinants of poor health or disease exposure.

By highlighting the challenges facing studies exploring the impacts of air quality on health

and demonstrating methods to address these challenges, we hope to improve the policy-rele-

vance of information generated by economic and public-health research in this area. While

strands of the literature have acknowledged that air quality does not vary randomly across

space, much less attention has been paid to the impacts of systematic measurement error

related to measures of exposure to air pollutants. Our study shows that this issue is of critical

importance in accurately estimating causal effects. Adopting measures to address the three key

challenges to causal identification should lead to research results that can improve the efficacy

of public-health interventions related to air quality.

We hope that our presentation of these key challenges makes it easier for public-health offi-

cials and policymakers in general to distinguish between mere correlations and causal relation-

ships, which should be used for policy development.
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