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Abstract 
Carbon price prediction is of great importance to regulators and participants in the carbon 

trading market. It is the basis for developing policies related to the carbon trading market 

and stabilizing that market. Considering the numerous factors that influence carbon prices 

in China, dimensionality reduction is needed to improve the prediction accuracy and effi-

ciency. However, the traditional dimensionality reduction methods fail to fully consider the 

role of influencing factors, which has certain limitations. In this paper, a new dimensional-

ity reduction method, namely scaled principal component analysis (s-PCA), is employed to 

improve the prediction accuracy of carbon prices. Firstly, a factor library that influence car-

bon prices is constructed from three perspectives: technical indicators, financial indicators 

and commodities indicators. Then, the s-PCA method is used to reduce the dimensionality 

of factors influencing carbon price. Next, two different methods are used to predict carbon 

prices, including traditional regression method and Long Short-Term Memory (LSTM) 

method. Finally, the economic value of the s-PCA method is examined by constructing 

investment portfolios. The empirical results of the Hubei Emissions Exchange show that 

the s-PCA model outperforms other competing models both in- and out-of-sample. In 

addition, the LSTM model could improve the performance of the s-PCA model in carbon 

price prediction. From a market timing perspective, investors can achieve a greater return 

and a larger Sharpe ratio using the s-PCA method than using other comparative methods 

and buy-and-hold strategy. Therefore, the s-PCA method is effective and robust in predict-

ing carbon price.

Introduction
Global warming and glacial melting caused by carbon emissions are becoming prominent 
problems, which seriously threaten human food supply and living environment. China, 
as the largest carbon emitter, plays an essential role in global climate change and is under 
increasing pressure to control carbon emissions due to its rapid economic growth. There-
fore, China comprehensively promotes energy transformation and accelerates the construc-
tion of a clean and low-carbon modern energy system. Since 2011, China has established 
seven major carbon emission exchanges, including the Guangzhou Carbon Emissions 
Exchange, Shenzhen Emissions Exchange, Beijing Environmental Exchange, Shanghai 
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Environmental Energy Exchange, Hubei Carbon Emissions Exchange, Tianjin Emissions 
Exchange and Chongqing Carbon Emissions Exchange, which are considered to be import-
ant measures to regulate the allocation of carbon emissions and ease the pressure on carbon 
emissions. With the development of carbon emission trading markets, carbon emission 
trading in China has gradually become active. Carbon price prediction is increasingly 
important to understand the development of China’s carbon market and to make decisions 
about carbon reduction. Therefore, it is essential to choose the appropriate method to 
improve the accuracy of predicting carbon price.

As the carbon trading market has matured, the research on carbon price prediction 
has increased sharply at home and abroad. The models for predicting carbon price mainly 
include generalized autoregressive conditional heteroscedasticity (GARCH) model [1], least 
square support vector machine (LSSVM) model [2], long short-term memory (LSTM) model 
[3], empirical mode decomposition (EMD) model [4], extreme learning machine (ELM) 
model [5] and ensemble learning methods [6,7]. However, studies on carbon price prediction 
still have some shortcomings: (a) Most of the existing studies predict carbon prices based 
on technical indicators and ignore the influence of other factors, which has certain limita-
tions. Therefore, this paper predicts carbon prices by constructing a factor library contain-
ing technical indicators, financial indicators and commodities indicators. (b) Due to the 
large number of factors affecting carbon price, dimensionality reduction methods are very 
useful which could reduce these factors to a few combinations. However, one recognized 
weakness of traditional dimensionality reduction methods, such as principal component 
analysis (PCA), is that it ignores the target information target completely. In this paper, we 
employ the scaled principal component analysis (s-PCA) approach proposed by Huang et 
al. [8] to predict carbon prices. The s-PCA approach is a variant of the PCA approach by 
further incorporating supervised learning. Specifically, before extracting diffusion indexes, 
the s-PCA approach uses the regression coefficient of the prediction target on each predictor 
to scale the corresponding predictor. Therefore, the s-PCA approach has the potential to 
improve the predictability by considering the target information in the process of dimen-
sionality reduction. (c) Most of the existing studies have explored the effectiveness of the 
dimensionality reduction methods through linear regression models. However, the results of 
these studies are not robust due to the non-linear and non-stationary nature of the carbon 
price series. In this paper, we will use both linear regression model and LSTM model to 
further explore the effectiveness of the s-PCA approach in carbon price prediction. (d) Most 
of the existing studies focus on the European carbon allowance (EUA), while rarely analyz-
ing China’s carbon trading market. Given this, this paper will conduct an empirical study on 
carbon price prediction in China.

In this paper, we investigate the carbon price predictability of the s-PCA model based on a 
factor library containing technical indicators, financial indicators and commodities indicators. 
The carbon price data of Hubei Carbon Emissions Exchange is used as the research object for 
empirical study. To demonstrate the superiority of the s-PCA model, it is compared with the 
PCA model and PLS model. The main contributions and innovations of this paper are listed 
below:

a.	 The s-PCA model is applied to predict carbon price. The diffusion indexes obtained from 
s-PCA is adopted to predict carbon price, which improves the computational efficiency 
and prediction accuracy.

b.	 We construct a factor library of carbon prices, including technical indicators, financial 
indicators and commodities indicators, to further improve the interpretability of carbon 
price prediction.
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c.	 Combining the s-PCA model with linear regression method and LSTM model, two hybrid 
models of carbon price prediction are proposed in this paper, which might provide a new 
idea to test the effectiveness of the dimensionality reduction method, and effectively make 
up for the shortcomings of carbon price prediction based on linear regression models.

d.	 Hubei Carbon Emissions Exchange is used as the research sample for empirical analysis, 
while two other related models are used for performance comparison to prove the effec-
tiveness of the s-PCA model. In addition, the evaluation metrics used in this paper include 
R2, RMSE, MAE, and DM.

The remainder of this paper is structured as follows: Section 2 describes the methods used 
in this paper. Section 3 provides the empirical results and discussion based on the carbon 
price data of the Hubei Emission Exchange. Section 4 presents a series of robustness tests to 
verify the prediction performance of the s-PCA model. Section 5 describes the results of mar-
ket timing, which confirm the economic value of the s-PCA model employed in this paper. 
Finally, Section 6 provides the conclusions and future work.

Data and methodology

Data
Carbon prices.  To accelerate the progress of emission peak and carbon neutrality, China 

has established eight carbon emissions trading pilots, including Shenzhen, Guangdong, 
Hubei, Tianjin, Shanghai, Chongqing, Beijing and Fujian. Among them, Hubei Carbon 
Emissions Exchange has the largest trading scale and the highest market participation. 
The cumulative volume of carbon emission allowances (CEA) traded in the Hubei Carbon 
Emissions Exchange has reached 360 million tons, with a cumulative turnover of 8.7 billion 
yuan. In addition, there are a total of 332 emission control enterprises in the Hubei Carbon 
Emissions Exchange, accounting for more than 70% of the secondary industry’s total value. 
Due to the value of in-depth research, Hubei Carbon Emissions Exchange is chosen as the 
research object for empirical analysis in this paper. Table 1 shows the statistical descriptions 
of the carbon price. Fig 1 depicts the general trend of carbon price in the Hubei Carbon 
Emissions Exchange. It can be seen that the carbon price of Hubei is highly non-linear and 
volatile.

We collect the daily carbon price data of Hubei Carbon Emissions Exchange from the 
http://k.tanjiaoyi.com/. The data covers the sample period from April 28, 2014 to March 23, 
2022. The data with zero transaction volume is removed from the sample. The cleaned sample 
is divided into three parts. The first part is the training set (60% of the sample), which is used 
to train the prediction model. The second part is the validation set (20% of the sample), which 
is used to tune hyper parameters. The third part is the testing set, which is used to evaluate the 
performance of the prediction model.

Indicators selection.  By extensive literature, this paper finds that the factors affecting 
carbon prices mainly include three categories: technical factors, financial factors, and 
commodity factors. Therefore, this paper employs 71 technical indicators, 13 financial 
indicators and 25 commodity indicators to predict carbon price. The data of these indicators 
are collected from the Wind platform and other official website.

Table 1.   Statistical descriptions of the carbon price in Hubei.

Variable Mean Minimum Maximum Standard deviation Skewness Kurtosis
Carbon price 25.38 10.38 61.48 8.18 0.71 0.72

https://doi.org/10.1371/journal.pone.0296105.t001

http://k.tanjiaoyi.com/
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 Specifically, the 71 technical indicators are based on five popular technical strategies. The 
first strategy is the momentum (MOM) rule, which constructs a buy or sell signal by compar-
ing the current carbon price and the price k days ago,

	 S
if P P
if P Pt MOM

t t k

t t k
,
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where Pt denotes the carbon price for day t. Following Wang et al. [9], we analyze MOM tech-
nical indicators with k=1, 3, 6, 9, 12.

The second strategy is the filtering (FR) rule, in which a buy or sell signal is given by
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where we use ten FR indicators with μ = 5, 10 and k=1, 3, 6, 9, 12.
The third strategy is the moving average (MA) rule, which compares two moving average 

value and generate a trading signal at the end of day t,

	 S
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Fig 1.  The carbon price of Hubei.

https://doi.org/10.1371/journal.pone.0296105.g001

https://doi.org/10.1371/journal.pone.0296105.g001
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where
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In this paper, we use six MA indicators with s = 1, 3, 6 and l = 9, 12.
The forth strategy is the oscillator (OSLT) rule, in which a buy or sell signal is produced by
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where

	 RSI k Up
Up Down

( )=
+

×100, 	 (2.8)

Up denotes the magnitude of the upward stock price movement over k days, Down denotes 
the magnitude of the downward stock price movement over k days, and Up+Down denotes 
the total magnitude of the stock price movement over the period. We use ten OSLT indicators 
with μ = 5, 10 and k = 1, 3, 6, 9, 12.

The fifth strategy is the support resistance (SR) rule, where a trading signal is given by
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In this study, we analyze ten SR indicators with μ = 5, 10 and k = 1, 3, 6, 9, 12.
Moreover, the 13 financial indicators and 25 commodity indicators are selected from pre-

vious typical literature where these indicators show considerable predictive power in carbon 
price forecasting. The 13 financial indicators include secondary market interest rates for 
3-month Treasury bill, 10-year national bond rate [9], S&P 500 index, Dow Jones Composite 
Index, Shanghai Composite Index, Shenzhen Composite Index, 5-Year Bond Index Yield, Wil-
derHill New Energy Global Innovation Index (NEX), WilderHill Clean Energy Index (CEI) 
[10], AAA-rated corporate bond spreads, daily spread of 1-year Treasury bill and 10-year 
government bond [11], USD/CNY and China’s Economic Policy Uncertainty Index [12].

The 25 commodity indicators include ICE-UK natural gas continuous futures price 
(UKGP), Asia gas price (JKM), S&P GSCI Gas oil index excess return (GGO) [10], ICE-coal 
Rotterdam continuous futures price (GP), ICE-Brent crude oil continuous futures price 
(BOP) [13], S&P GSCI Crude oil index excess return (GCO), EUA price, China Electricity 
Price index and 17 S&P GSCI non-energy commodity indexes (GGOL, GSIL, GALU, GCOP, 
GLEA, GNIC, GZIN, GCOC, Gcof, Gcor, GCOT, Gsoy, Gsug, Gwhe, GFC, GLH, GLC) [14].

In addition, it should be emphasized that the collection and analysis methods are complied 
with the terms and conditions for the source of all data.
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Methodology
PCA.  The principal Components Analysis (PCA) was first introduced to non-random 

variables by Pearson (1901), and then extended to random vectors [15]. Nowadays, it’s the 
most widely used dimension-reduction method [16].

PCA is an algorithm to transform the columns of a dataset into a new set of features called 
Principal Components, which contain less variables and retain as much information about 
the original variable as possible. Specifically, the PCA extracts diffusion indexes Ft

PCA  as a 
weighted sum of predictors Xi,t, which can be expressed as follows:

	 X F ei t i t
PCA

i t, , .= +′λ 	 (2.11)

With the PCA diffusion indexes Ft
PCA ,  we can predict the target as:

	 y Ft h
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k t
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In this way, a large chunk of the information across the full dataset is effectively compressed 
into fewer feature columns. This allows for dimensionality reduction and the ability to visualize the 
separation of classes or clusters if any. However, PCA is an unsupervised learning technique that 
ignores the prediction target in the prediction process. Therefore, the forecasting result of PCA may 
not be stable. In the extreme cases, when factors are strong, PCA cannot distinguish between the 
target-relevant and irrelevant latent factors. When the factors are weak, PCA could fail to extract the 
signals from the large amount of noise, resulting in biased forecasts when all factors are used [8].

s-PCA.  The scaled PCA (s-PCA) is a novel dimensionality reduction method proposed by 
Huang et al. [8], which modifies the traditional PCA by considering the prediction target. In 
particular, the s-PCA tends to down-weight those predictors with weak forecasting power and 
overweight those with strong forecasting power. As a result, the s-PCA could overcome the 
deficiencies of PCA to identify predictors that are particularly useful for predicting targets and 
obtain more significant forecast.

Specifically, the s-PCA extracts diffusion indexes in two steps. In the first step, we develop a panel 
of scaled predictors, (γ1Xi,t,⋯,γNXN,t), where the scaled coefficient γ1 denotes the estimated slope 
through regressing the prediction target yi,t on the corresponding (standardized) indicators Xi,t:

	 y Xt i i i t t+ += + +1 1α γ ε, . 	 (2.13)

In the second step, we apply PCA to the scaled predictors to extract s-PCA diffusion 
indexes Ft

s PCA−  as the new predictors:

	 γ λi i t i t
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i tX F e, , .= +′ − 	 (2.14)

Finally, we could predict the target using the s-PCA diffusion indexes as:
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Because the target yt+h depends on the predictors instead of the loadings, the s-PCA method 
has a large chance to outperform the PCA method, especially when all factors are used. Kelly 
et al. [17], Pelger [18], Gu et al. [19], Lettau and Pelger [20,21] applied similar methods and 
demonstrated that the s-PCA can yield satisfactory results in various areas.

PLS.  In accordance with the s-PCA, partial least squares (PLS) is a supervised learning 
method that uses the prediction target to discipline its dimension reduction [22–24].
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Specifically, the PLS method extracts diffusion indexes Fk t
PLS
,  in two steps. In the first step, 

we regress each predictor (Xi,t,⋯,XN,t) on the prediction target:

	 X y ui t i i t t, , .− −= + +1 0 1ϕ ϕ 	 (2.16)

In the second step, we extract PLS diffusion indexes Ft
PLS  through running a time-series 

regression for each predictor (Xi,t,⋯,XN,t) and the corresponding ϕ̂ i  estimated in Eq (2.16):

	 X Fi t t t
PLS

i t, .= + + −θ ϕ υ^
1 	 (2.17)

Finally, we could predict the target using the PLS diffusion indexes estimated in Eq (2.17):

	 y Ft h
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The PLS method makes dependent variable connect tightly with the independent variable 
and thus may achieve satisfactory results. Kelly and Pruitt [23], Light et al. [25] found that the 
PLS method exhibited strong forecasting power even with relatively small data.

LSTM.  As a special form of recurrent neural network (RNN), long-short term memory 
(LSTM) neural network is able to handle the long-term dependence of time-series data well. 
The LSTM neural network structure contains a series of recurrently connected sub-networks 
(i.e., memory modules), each of which contains one or more self-connecting cells, as well as a 
system of three gating units controlling information flow (input gate, output gate, and forget 
gate). Specifically, the execution steps in an LSTM network can be summarized as follows:

Firstly, determine the information that needs to be extracted from the cell through the 
forget gate (ft):

	 f b W x U ht f f t f t= + +( )−σ 1 , 	 (2.19)

whereby σ is a sigmoid activation function that sets the information flow weight to a value 
between 0 and 1. 0 means that the information is completely deleted and 1 means that all 
information is retained. xt is the current input vector and ht is the current hidden layer vector. 
bf, Wf, and Uf are the bias, input weights, and loop weights of the forget gate, respectively.

Next, update the state of information in the cell. Let gt be an input gate between 0 and 1 
controlled by the sigmoid activation function:

	 g b W x U ht g g t g t= + +( )−σ 1 . 	 (2.20)

Then the updated cell state Ct on the basis of Ct−1 is:

	 C f C g b W x U ht t t t c c t c t= + + +( )− −
∗ ∗

1 1tanh . 	 (2.21)

Lastly, the message output controlled by the output gate ot is:

	 h o Ct t t= ( )∗ tanh , 	 (2.22)

whereby the detailed output gate controlled by sigmoid activation function is:

	 o b W x U ht o o t o t= + +( )−σ 1 . 	 (2.23)

In conclusion, LSTM model contains not only the external loop between the hidden layer 
cells involved in RNN, but also the self-loop within the cells. Because of this special structure, 
LSTM model can reflect the nonlinearity of the financial time series data and the complex 
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interactions between features. Therefore, LSTM model may have higher prediction accuracy 
compared to traditional econometric models and other machine learning algorithms.

Empirical analysis model evaluation metrics
The coefficient of determination (R2), the root mean square error (RMSE) and the mean absolute 
error (MAE) are three widely used metrics to evaluate the performance of the prediction model. 
Among them, R2 indicates the degree of fitting to the actual value, whose value ranges between 0 
and 1. Models with R2 values closer to 1 perform better. RMSE indicates the deviation between 
the predicted value and the true value. MAE measures the average absolute error between the 
predicted value and the true value. The smaller the RMSE values and MAE values are, the better 
the performance of the prediction model is. The three evaluation metrics are calculated as follows:

	 R
y y

y y
t

N

t t

t

N

t t

2 1

2

1

2
1= −

−( )
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=

=

∑
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	 MAE
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t t= −
=∑

1
1

^ , 	 (3.3)

where y y yt t t, ,^  denote the true value, predicted value and average value at time t, respec-
tively. N is the number of data points.

In addition, we follow Campbell and Thompson [26] and employ ROS
2  to evaluate the out-

of-sample performance of the prediction model further, which is defined as follows:

	 R
y y

y y
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m t M m t
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2 1
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−( )
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where y y ym t M m t B m t+ + +, ,. .^ ^  represent the true value, the predicted value of the prediction model, 
and benchmark prediction of the historical average model at time m+t, respectively. m is the total 
length of the training period and validation period. q is the length of the test period. A positive ROS

2  
statistic implies that the prediction model has better performance than the benchmark model.

Results and discussion
This paper employs a new dimensionality reduction method named s-PCA to predict carbon 
prices. In this section, we predict the carbon price in three steps. Firstly, we construct a library 
of indicators that affect carbon prices, including technical, financial and commodities indi-
cators. Secondly, we apply the s-PCA method to reduce the dimensionality of the indicators. 
Finally, we employ traditional regression method and LSTM to predict carbon prices based on 
the diffusion indexes. The parameters of the LSTM model are adjusted according to the R2 of 
the validation set. To verify the superiority of the s-PCA method in carbon price prediction, 
PCA and PLS are selected for comparative analysis. Then we will treat Hubei as a research 
subject, in which the prediction horizon and the number of diffusion indexes are set to be 1.

In-sample results
The in-sample results of all methods of Hubei in predicting carbon prices are shown in Tables 
2 and 3. Based on all results, the analysis of each method is as follows:
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In the case of prediction based on linear regression method, the prediction performance 
of the model based on the s-PCA method is significantly better than that based on the PCA 
method and the PLS method. Specifically, the R2 of the s-PCA is 71.65%, which is much larger 
than that of the PCA and PLS, which is 20.02% and 68.11%, respectively. In addition, the 
RMSE and MAE of the s-PCA are 2.69 and 2.11 respectively, which are smaller than that of 
the PCA and PLS, which are 4.53 and 2.86 in terms of RMSE, 3.48 and 2.24 in terms of MAE, 
respectively.

In the case of prediction based on the LSTM method, s-PCA method still has the highest 
R2 and the lowest errors, which indicates that s-PCA method perform better than the PCA 
method and the PLS method in carbon price prediction. Specifically, the three evaluation 
metrics of the s-PCA method (R2=99.67%, RMSE=0.29, MAE=0.22) are much better than 
the PCA method (R2=97.28%, RMSE = 0.83, MAE = 0.69) and the PLS method (R2=99.55%, 
RMSE = 0.34, MAE = 0.27), which shows that the s-PCA method can indeed improve the 
prediction accuracy of carbon prices.

Compared with the linear regression method, the LSTM model could improve the pre-
diction performance of the s-PCA method. Specifically, the prediction based on the s-PCA 
method and the LSTM model achieves larger R2, as along with smaller RMSE and MAE (R2 = 
99.67%, RMSE = 0.29, MAE = 0.22) than the prediction based on the s-PCA method and the 
linear regression method (R2 = 71.65%, RMSE = 2.69, MAE = 2.11).

As a consequence, in the in-sample analysis, the s-PCA method has a stronger performance 
than the PCA method and the PLS method in carbon price prediction. In addition, the LSTM 
model could improve the performance of the s-PCA method compared to the linear regres-
sion method.

Out-of-sample results
Tables 4 and 5 present the out-of-sample prediction performance of Hubei carbon price by all 
methods. The statistical significance for RMSE and MAE is based on the Diebold and Mariano 
[27] test (D-M test), in which the alternative hypothesis is that the prediction accuracy of the 
s-PCA method is higher than that of the benchmark model. The benchmark model is based 
on historical average, which is a widely used out-of-sample benchmark according to Welch 
and Goyal [28]. The observations can be summarized as follows:

The RMSEs and MAEs for all prediction methods are significantly small at the 1% level, 
which indicates that all prediction methods outperform the historical average benchmark 
in terms of out-of-sample RMSE and MAE. In other words, these prediction methods show 
strong out-of-sample forecasting capability in carbon price prediction.

Table 2.   In-sample results based on linear regression.

R2 RMSE MAE
s-PCA 71.65% 2.69 2.11
PCA 20.02% 4.53 3.48
PLS 68.11% 2.86 2.24

https://doi.org/10.1371/journal.pone.0296105.t002

Table 3.   In-sample results based on LSTM method.

R2 RMSE MAE
s-PCA 99.67% 0.29 0.22
PCA 97.28% 0.83 0.69
PLS 99.55% 0.34 0.27

https://doi.org/10.1371/journal.pone.0296105.t003

https://doi.org/10.1371/journal.pone.0296105.t002
https://doi.org/10.1371/journal.pone.0296105.t003
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In the case of out-of-sample prediction based on the linear regression method, the s-PCA 
method yields significantly larger ROS

2  as well as smaller MASE and MAE (R2=68.94%, 
RMSE=1.95, MAE=1.16) than the PCA method (R2=18.06%, RMSE=4.94, MAE=2.26) and 
the PLS method (R2=66.87%, RMSE=2.05, MAE=1.22). The results indicate that the s-PCA 
method is a better dimensionality reduction method when using linear regression method to 
predict carbon prices.

In the case of out-of-sample prediction based on the LSTM model, the s-PCA method per-
forms much better than the PCA method and the PLS method. As can be seen from  
Table 5, the ROS

2  of the s-PCA method is 85.12%, which is larger than the PCA method and 
the PLS method. In addition, the RMSE and MAE of the s-PCA method are 0.83 and 0.60, 
respectively, which are significantly smaller than the other two comparative methods. The 
results indicate that the s-PCA method outperforms other dimensionality reduction methods 
when predicting carbon prices with the LSTM model.

The LSTM model can improve the prediction accuracy of the s-PCA method in carbon 
price prediction. By comparing three evaluation metrics of the s-PCA method with linear 
regression method and the s-PCA method with the LSTM model, we can find that the perfor-
mance of the s-PCA method with LSTM model is much more excellent than that of the s-PCA 
method with linear regression method. Therefore, using the LSTM model to predict carbon 
prices can improve the prediction performance of the s-PCA method.

In sum, the results in this section shows that consistent with the in-sample results, the 
s-PCA method is superior to both the PCA method and the PLS method for carbon price 
prediction. Moreover, the LSTM model can improve the prediction performance of the s-PCA 
method in terms of predictability.

Robustness test

Alternative proxies of carbon prices
The carbon trading volumes of the Hubei Carbon Emissions Exchange, Guangzhou Carbon 
Emissions Exchange, and Shanghai Environmental Energy Exchange account for more than 
half of the total market in China, which indicate that the carbon markets in Hubei, Guangdong, 
and Shanghai can be a good representative of the Chinese carbon market. For this reason, we 

Table 4.   Out-of-sample results based on linear regression.

ROS
2 RMSE MAE

s-PCA 68.94% 1.95*** 1.16***

PCA 18.06% 4.94*** 2.26***

PLS 66.87% 2.05*** 1.22***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t004

Table 5.   Out-of-sample results based on LSTM method.

ROS
2 RMSE MAE

s-PCA 85.12% 0.83*** 0.60***

PCA 74.79% 1.40*** 0.97***

PLS 81.47% 1.23*** 0.78***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t005

https://doi.org/10.1371/journal.pone.0296105.t004
https://doi.org/10.1371/journal.pone.0296105.t005
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further use the carbon prices of Guangzhou and Shanghai to test the out-of-sample perfor-
mance of the s-PCA method. Tables 6 and 7 report the out-of-sample results for predicting the 
carbon prices of Guangzhou and Shanghai. The results show that the s-PCA method continues 
to perform better (i.e., larger ROS

2 , smaller RMSE and MAE) than other comparative methods. 
Moreover, the LSTM model can improve the prediction accuracy of the s-PCA method. These 
results prove that our out-of-sample results are robust to other proxies of carbon prices.

Different prediction horizons
Huang et al. [8] argue that it is possible to achieve satisfactory prediction results by chance 
after data mining on prediction horizons. To alleviate this concern, this paper further choose 
another four prediction horizons to test the performance of the s-PCA method. Specifically, 
we set the prediction horizon in [3,6,9,12].

Tables 8 and 9 report the forecasting results for different prediction horizons. It can be seen 
that for any of the four prediction horizons, the s-PCA method generates larger ROS

2 , smaller 

Table 6.   Out-of-sample results based on linear regression for Guangzhou and Shanghai.

Guangzhou Shanghai

ROS
2 RMSE MAE ROS

2 RMSE MAE

s-PCA 33.57% 0.33*** 10.67*** 30.94% 4.99*** 3.81***

PCA 34.23% 0.34*** 8.18*** 52.47% 3.67*** 2.42***

PLS 79.52% 0.80*** 5.92*** 60.52% 2.70*** 1.50***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t006

Table 7.   Out-of-sample results based on LSTM for Guangzhou and Shanghai.

Guangzhou Shanghai

ROS
2 RMSE MAE ROS

2 RMSE MAE

s-PCA 67.84% 7.42*** 6.01*** 60.15% 2.73*** 1.50***

PCA 75.09% 6.53*** 3.50*** 62.78% 2.64*** 1.47***

PLS 89.95% 4.15*** 2.55*** 74.73% 1.62*** 1.05***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t007

Table 8.   Out-of-sample results based on Linear Regression for different prediction horizons.

prediction horizon=3 prediction horizon=6

ROS
2 RMSE MAE ROS

2 RMSE MAE

s-PCA 35.15% 3.95*** 2.27*** 24.99% 4.92*** 2.24***

PCA 42.28% 3.60*** 2.17*** 35.27% 4.53*** 2.02***

PLS 64.32% 2.67*** 1.99*** 53.26% 3.66*** 1.98***

prediction horizon=9 prediction horizon=12

ROS
2 RMSE MAE ROS

2 RMSE MAE

s-PCA 45.66% 3.86*** 2.78*** 45.56% 3.87*** 2.81***

PCA 49.83% 3.86*** 2.74*** 48.88% 3.74*** 2.67***

PLS 62.92% 3.66*** 2.27*** 56.58% 2.97*** 1.99***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t008

https://doi.org/10.1371/journal.pone.0296105.t006
https://doi.org/10.1371/journal.pone.0296105.t007
https://doi.org/10.1371/journal.pone.0296105.t008
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RMSE and MAE than the other comparative methods. In addition, the s-PCA method com-
bined with the LSTM model achieve better performance than the s-PCA method combined 
with the linear regression model. These results all prove that the out-of-sample results are 
robust to different prediction horizons.

Alternative forecasting window size
Following Sun and Huang [4], Zhou and Wang [13], we consider another forecasting window 
size by dividing the data set into a training set (80%), a validation set (10%), and a test set 
(10%).

Tables 10 and 11 report the out-of-sample results for alternative forecasting window size. 
We observe that all of the prediction methods always generate significant R sOS

2 , RMSEs and 
MAEs. Among these methods, the s-PCA method has stronger prediction performance (larger 
ROS

2 , smaller RMSE and MAE) than other competing methods. Furthermore, the LSTM 
model can improve the prediction performance of the s-PCA method by generating larger 
ROS

2 , RMSE and MAE. This is consistent with our results when dividing the data set into a 

Table 9.   Out-of-sample results based on LSTM for different prediction horizons.

prediction horizon=3 prediction horizon=6

ROS
2 RMSE MAE

ROS
2 RMSE MAE

s-PCA 71.43% 1.61*** 1.50*** 63.48% 2.45*** 1.39***

PCA 84.61% 1.06*** 1.13*** 79.81% 1.48*** 1.07***

PLS 89.73% 0.56*** 0.89*** 88.92% 1.04*** 0.70***

prediction horizon=9 prediction horizon=12

ROS
2 RMSE MAE

ROS
2 RMSE MAE

s-PCA 71.20% 3.16*** 1.83*** 60.96% 2.25*** 1.58***

PCA 86.74% 2.10*** 1.34*** 86.09% 1.28*** 1.08***

PLS 95.39% 1.09*** 0.85*** 89.06% 1.01*** 0.86***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t009

Table 10.   Out-of-sample results based on linear regression for alternative forecasting window size.

ROS
2 RMSE MAE

s-PCA 49.09% 4.50*** 4.56***

PCA 52.38% 4.14*** 4.21***

PLS 60.78% 3.74*** 3.51***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t010

Table 11.   Out-of-sample results based on LSTM for alternative forecasting window size.

ROS
2 RMSE MAE

s-PCA 69.91% 3.49*** 2.78***

PCA 84.82% 2.76*** 1.98***

PLS 90.94% 2.14*** 1.03***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t011

https://doi.org/10.1371/journal.pone.0296105.t009
https://doi.org/10.1371/journal.pone.0296105.t010
https://doi.org/10.1371/journal.pone.0296105.t011
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training set (60%), a validation set (20%), and a test set (20%). Hence, the out-of-sample pre-
diction results are robust to alternative forecasting window size.

Different size of diffusion index
According to the empirical analysis in the previous section, we can learn that the s-PCA 
method is superior to other comparative methods based on the first diffusion index. In order 
to test the robustness of the out-of-sample prediction performance for the s-PCA method, 
we employ the first and second diffusion indexes to re-predict the carbon price based on all 
forecasting methods.

The out-of-sample prediction results are reported in Tables 12 and 13 when we use the first 
and second diffusion indexes. It can be seen that the s-PCA method outperforms other com-
parative methods with larger ROS

2 , smaller RMSE and MAE. Furthermore, compared with the 
s-PCA method with the linear regression method, the s-PCA method with the LSTM model 
performs better, indicating that the LSTM model can improve the prediction performance of 
the s-PCA method. Overall, the out-of-sample results suggest that the prediction performance 
of the s-PCA method is robust when we use the first and second diffusion indexes.

Market timing
In contrast to studying the statistical significance of carbon price prediction, it is more mean-
ingful for investors to study its economic significance, which could give them investment 
advice and generate possible profits. Following He et al. [29], we further study the economic 
benefits of the s-PCA method from the perspective of market timing.

In this study, we will take a long position at the time t if the carbon price at time t+30 is 
higher than the carbon price at time t. Otherwise, we will take a short position. At the end of 
time t+30, we will close the position we took. The market timing strategy based on the carbon 
price prediction for time t can be expressed as follows:

	 A t
if P P
otherwise
t t( )=
>

−







+1
1

30,
,

, 	 (5.1)

Table 12.   Out-of-sample results based on linear regression for different size of diffusion index.

ROS
2 RMSE MAE

s-PCA 21.65% 0.21*** 4.71***

PCA 48.30% 0.49*** 3.25***

PLS 61.90% 0.63*** 2.65***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t012

Table 13.   Out-of-sample results based on LSTM method for different size of diffusion index.

ROS
2 RMSE MAE

s-PCA 70.66% 0.70*** 1.55***

PCA 86.46% 0.87*** 1.39***

PLS 89.01% 0.90*** 0.79***

Note: *, **, *** indicate statistical significance at 10%, 5%, 1% level, respectively.

https://doi.org/10.1371/journal.pone.0296105.t013

https://doi.org/10.1371/journal.pone.0296105.t012
https://doi.org/10.1371/journal.pone.0296105.t013
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where A(t) is the action we take at time t, 1 denotes that we take a long position, and -1 
denotes that we take a short position.

To evaluate the performance of the market timing strategy, we consider the Buy-and-Hold 
strategy as a benchmark strategy, which takes a long position at time t, and close the position 
at time t+30.

Table 14 reports the market timing results for carbon prices. Here, the average return is 
annualized and in percentage. It can be seen that the s-PCA method has the largest average 
returns in all methods and market timing strategies, which is 38.14% based on the linear 
regression method and 70.39% based on the LSTM model, respectively. However, the risks 
of the s-PCA method, which are measured by standard deviation, are also much higher than 
most other market timing strategies, which is 12.66% based on the linear regression method 
and 12.26% based on the LSTM model, respectively. When we take risk into consideration, 
the performance of a market timing strategy can be measured in terms of the Sharpe ratio. We 
observe that the Sharpe ratio of the s-PCA method with the linear regression method is 3.93 
and that of the s-PCA method with the LSTM model is 7.49. These Sharpe ratios are much 
higher than those of most other market timing strategies, except for the Sharpe ratio of the 
PLS method with the LSTM model, which is 7.68.

In a word, the s-PCA method is of greater economic importance compared to other market 
timing strategies. Moreover, the LSTM model can improve the performance of the s-PCA 
method in terms of the market timing strategy.

Conclusions and future work
In this paper, we employ the s-PCA model proposed by Huang et al. [8] to predict carbon 
price with 71 technical indicators, 13 financial indicators and 25 commodity indicators. First, 
we construct a factor library in which indicators are likely to have an impact on the carbon 
price. Second, we use the s-PCA method to reduce the dimensionality of the influencing fac-
tors. Third, after dimensionality reduction, we employ the linear regression method and the 
LSTM model to predict the carbon price. Fourth, we examine the economic significance of the 
s-PCA method from a market timing perspective.

Using the carbon price of Hubei for empirical analysis, the prediction performance of the 
s-PCA method has been compared with the PCA method and the PLS method. The empiri-
cal results show that the s-PCA method is superior to other comparative methods from both 
a statistical perspective and an economic perspective. Specifically, the s-PCA method yields 
larger R2, smaller RMSE and MAE in both in- and out-of sample analysis. In addition, the 
LSTM model can provide significant improvements to the s-PCA method for carbon price 
prediction, which may due to its properties of long-term memory and nonlinearity. Our 
results are robust to a series of settings, including different carbon markets, different forecast-
ing horizons, alternative forecasting window size, and different size of diffusion index. From 

Table 14.   Market timing results for carbon prices.

Prediction method Average return(%) Standard deviation (%) Sharpe ratio
s-PCA Linear Regression 38.14 12.66 3.93

LSTM 70.39 12.26 7.49
PCA Linear Regression 4.35 6.57 0.96

LSTM 20.81 11.91 2.28
PLS Linear Regression 14.52 9.17 2.07

LSTM 70.27 11.93 7.68
Buy-and-Hold 37.05 14.84 3.25

https://doi.org/10.1371/journal.pone.0296105.t014

https://doi.org/10.1371/journal.pone.0296105.t014
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the perspective of market timing, an investor can achieve higher average return and Sharpe 
ratio by applying the s-PCA method than applying other comparative strategies.

In the future, (a) we should look into more advanced prediction models to further improve 
the prediction performance of the s-PCA method. (b) We should construct more realistic 
investment strategies and provide more useful advice to investors. (c) We need to analyze the 
performance of the s-PCA method in other carbon markets.
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