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Abstract

Fasciola hepatica is an internal parasite of both human and veterinary relevance. In order to

control fasciolosis, a multitude of attempts to predict the risk of infection such as risk maps

or forecasting models have been developed. These attempts mainly focused on the influ-

ence of geo-climatic and meteorological features. Predicting bovine fasciolosis on farm level

taking into account farm-specific settings yet remains challenging. In the present study, a

new methodology for this purpose, a data-driven machine learning approach using a ran-

dom forest classification algorithm was applied to a cross-sectional data set of farm charac-

teristics, management regimes, and farmer aspects within two structurally different dairying

regions in Germany in order to identify factors relevant for the occurrence of F. hepatica that

could predict farm-level bulk tank milk positivity. The resulting models identified farm-spe-

cific key aspects in regard to the presence of F. hepatica. In study region North, farm-level

production parameters (farm-level milk yield, farm-level milk fat, farm-level milk protein), leg

hygiene, body condition (prevalence of overconditioned and underconditioned cows,

respectively) and pasture access were identified as features relevant in regard to farm-level

F. hepatica positivity. In study region South, pasture access together with farm-level lame-

ness prevalence, farm-level prevalence of hock lesions, herd size, parity, and farm-level

milk fat appeared to be important covariates. The stratification of the analysis by study

region allows for the extrapolation of the results to similar settings of dairy husbandry. The

local, region-specific modelling of F. hepatica presence in this work contributes to the under-

standing of on-farm aspects of F. hepatica appearance. The applied technique represents a

novel approach in this context to model epidemiological data on fasciolosis which allows for

the identification of farms at risk and together with additional findings in regard to the
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epidemiology of fasciolosis, can facilitate risk assessment and deepen our understanding of

on-farm drivers of the occurrence of F. hepatica.

Introduction

Parasitic infections are complex in their nature and a threat for host health and well-being.

Globally, Fasciola hepatica is an internal parasite of both human and veterinary relevance.

Between 2.4 million and 17 million people are estimated to be infected with liver flukes and

more than 180 million are assumed to be at risk [1–3]. Ruminant livestock represent a critical

reservoir for human infection in some geographical areas [4–6]. In Europe, farm-level preva-

lence of fasciolosis in dairy cows has been determined to regionally range from 7% to 80%

[7–9]. Fasciola hepatica has an intricate lifecycle that incorporates intermediate snail and

definitive mammal hosts. Eggs shed in the feces of the mammalian host release miracidia in

fresh water which subsequently infect susceptible amphibious snails of the Lymnaeidae family.

The intermediate host holds a key position in transmission and asexual reproduction of F.

hepatica [10–12]. Its distribution is largely dependent on geo-climatic, ecological, anthropo-

genic, and habitat-associated factors. Even though several mathematical modelling approaches

to predict the occurrence of fasciolosis have been presented, the spatial distribution of F. hepat-
ica remains incompletely understood, especially on farm level [13–15]. Recent efforts have

focused on quantifying and understanding the relevance of climatic and meteorological condi-

tions to characterise the occurrence of F. hepatica [14, 16, 17]. As an example, Roessler et al.

[14] have incorporated meteorological and temperature-related variables as well as informa-

tion on local soil and vegetation properties to predict the occurrence of the intermediate host.

However, farm conditions and individual farm-related epidemiological factors hold an impor-

tant share in promoting transmission on a regional scale and models solely based on climatic

and environmental factors are only partly able to predict the presence of F. hepatica on a cer-

tain farm [18–20]. Besides the need to improve our understanding of the spatial distribution

and the relevance of environmental (e.g. vegetation and soil characteristics) and climatic (e.g.

temperature, humidity, rainfall) aspects in F. hepatica transmission, research is required to

predict the presence of F. hepatica on farm level based on farm characteristics, management

practices, and production parameters [13, 21, 22]. A comprehensive knowledge of relevant

aspects of this biological system, their interplay, and common occurrence is paramount in

order to fully comprehend the on-farm presence of F. hepatica. Data-driven machine learning

approaches recently have drawn attention since they have the capability to determine impor-

tant aspects and patterns in epidemiological situations [23–25]. Random forest (RF) is a

machine learning approach that allows for the identification of relevant features in data sets

despite the potential presence of interactions and correlations among variables. Furthermore,

RF is known for its inherent feature of variable importance ranking [24, 26]. This creates a

suitable prerequisite for implementation of RF in modelling of parasitic infections and for

identifying key farm features associated with parasite presence. The aim of this work was the

application of a RF approach to a multifactorial data set of dairy cow housing conditions, man-

agement practices, and production parameters to identify and rank relevant covariates for

farm-level presence of F. hepatica. For this purpose, we were able to build upon previous work

of our group using a cross-sectional data set [27–29]. The application of a machine learning

approach increases the understanding of the on-farm network of factors affecting farm-level

positivity for this important helminth. Furthermore, describing farm-level occurrence of F.
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hepatica based on farm characteristics contributes to our knowledge of this system and pro-

vides a set of relevant aspects that are to be considered in regard to F. hepatica in an applied

epidemiological context.

Materials and methods

Study population

Data on housing conditions, management regimes, and animal health on German dairy farms

were collected in the context of an extensive, descriptive, cross-sectional study [30]. Three geo-

graphically and structurally different dairying regions (region North: federal states of Lower

Saxony and Schleswig-Holstein; region East: federal states of Thuringia, Saxony-Anhalt, Bran-

denburg, and Mecklenburg-Western Pomerania; region South: federal state of Bavaria) were

included in order to cover the range of potential animal husbandry practices in dairy produc-

tion. A total number of 86,304 dairy cows (North: 24,980 cows; East: 49,936 cows South:

11,388 cows) on 765 farms (North: 253; East: 252; South: 260) were included in the study. Sam-

ple size calculation and farm selection are described in [28, 29, 31]. In brief, sample size calcu-

lation was based on the formula suggested for prevalence studies:

n ¼
Z2Pð1 � PÞ

d2

where n is the sample size to be calculated, Z the level of confidence, P the assumed prevalence,

and d the precision. Sample size was conceived to cover different distribution scenarios, i.e.

different expected prevalences e.g. of F. hepatica. These different scenarios were calculated at a

power of 80%, a significance level of 5%, and a confidence level of 95% in order to obtain an

optimal and feasible sample size. A standard deviation of 7 was assumed [32, 33]. To be able to

estimate the expected value with a certain degree of precision, a precision of ±1, ±2, ±3, and ±4

was used [33]. Given the aforementioned considerations and taking into account feasibility,

the goal was to visit 250 farms within each of the three regions. Selection was stratified by

administrative district of the farms and herd size, i.e. number of lactating and dry cows, within

the federal states and study regions. Information for sampling was extracted from the national

animal information data base (HIT) as well as from the Milchprüfring Bayern e.V. (Bavarian

Milk Testing Association) and an automated approach yielded farms that were to be contacted.

Selected farms received an invitation to participate as well as information on the study by mail.

Interested farm managers had to autonomously contact their respective regional study team in

order to arrange time and date of the farm visit. Within each region, 1,250 farms, i.e. five times

the number of farms required to meet the sample size, were contacted in order to cover a

response rate of 20%. Since participation rate turned out to be by far less than expected

(<10%), a second round of invitations was sent out. Written consent for participation and

data inspection was obtained from each farm. All data were handled in alignment with Ger-

man and European data protection legislation. Farm visits were scheduled as one time assess-

ments between January 2017 and August 2019.

Data collection

Paper-based data entry forms and questionnaires were used to record data during the farm

visit. Subsequently, all assessments were transferred to one SQL data base containing all the

available information on the included animals and farms. All lactating and dry cows present

on the day of the farm visit were included and from each animal, the individual ear tag identifi-

cation number was recorded. Body condition score (BCS) was assessed using the system pro-

vided by Edmonson et al. [34]. Leg and udder cleanliness were recorded according to Cook
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and Reinemann [35]: 1 = little to no manure, 2 = minor splashings, 3 = plaques of manure,

4 = solid, confluent plaques of manure. Tarsal areas were assessed from a caudolateral perspec-

tive to detect any form of alterations [36, 37]. If hocks were covered by solid plaques of manure

and hence an assessment was not possible, cows received a score of 6. Only the more severe

alteration was documented. The Sprecher lameness scoring system [38] was implemented to

record locomotion in loose housing facilities whereas the Stall Lameness Score (SLS) [39] was

used to document weight shifting between the rear limbs, sparing of a limb while standing,

unequal weight bearing when stepping from side to side, and standing on the edge of the kerb.

Alterations of the tail were assessed as follows: 1 = no visible change, 2 = visible deviance of

axis or bulge/swelling, 3 = amputated tail.

Production data on milk yield (in kg), milk fat (in kg), milk protein (in kg), as well as calv-

ing intervals (in days) were extracted from HIT and the national milk recording system (DHI).

Production data were available on farm level, i. e. farm level milk yield, milk fat, and milk pro-

tein, respectively, adjusted for number of cows per farm for the three years prior to the farm

visit. Calving intervals were available on cow level for the three years period prior as well.

Information on somatic cell count (SCC) was available on cow level with monthly assessments

for up to 12 months prior to the farm visit. Parity data were retrieved from DHI. A face-to-

face, pen-and-pencil interview was conducted with the responsible farm manager as elaborated

on by Jensen et al. [40]. In brief, the attitude of the farmers towards their work on the farm was

assessed and farmers rated their consent to each statement on a five-point Likert scale

(“strongly disagree”, “disagree”, “neutral”, “agree”, “strongly agree”). Moreover, management

procedures on the animals during the period around calving were recorded as follows: 1 = in

all/most cases; 2 = in suspicious cases, 3 = rarely/never. All attitude and management-related

questions and the respective variables are compiled S2 Table. Pasture access for dairy cows,

farming type (organic vs. conventional), and income type of the farm (dairy farming as main

source of income vs. dairy farming as sideline source of income) were recorded during the

interview as well. A bulk tank milk (BTM) sample was collected from the central bulk tank on

each farm by the farm manager to be analysed for F. hepatica antibodies. Farm managers were

asked to collect the sample towards the end of the grazing season (August–November) in

order to increase comparability across farms. BTM antibodies were determined using the

IDEXX Fasciolosis Verification Test (IDEXX GmbH) as previously reported [27]. ELISA

results with a sample/positive control ratio (S/P)> 30% were considered seropositive.

Data handling

Plausibility checks were run automatically within the central data base in alignment with a pri-

ori determined threshold values. Four of the co-authors carried out additional plausibility

checks of all variables within the data set. In case of implausible values, they were checked for

in the data base as well as in the original paper-based questionnaires and data entry forms to

detect irregularities both during data export as well as during transcription of the written rec-

ords. If implausible values could not be corrected based on the available sources, the record

was set to “missing”. The statistical software R version 4.2.0 [41] was used for all statistical

analyses. All implemented packages including references are summarised in S3 Table.

Body condition score, stratified by stage of lactation and breed, was categorised into under-

condition, optimal condition, and overcondition according to previous work [31, 42, 43]. Leg

and udder cleanliness were dichotomised into no/slight contamination (scores 1 and 2) and

considerable contamination (scores 3 and 4). Likewise, hock lesions were dichotomised into

no lesions and hairless spots vs. more severe lesions (swelling and/or wound). Cows in loose

housing were classified as lame with a locomotion score� 3 [44]. In tied cows, lameness was
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defined as the presence of at least two of the four behavioural patterns of the SLS during a 90 s

observation period [39, 45, 46]. Tail changes were dichotomised into no changes (score 1) and

visible changes (scores 2 and 3). All animal-level information on the aforementioned variables

was raised to farm level by calculating farm-level prevalences.

A Bayesian bootstrap approach was conducted to obtain a single median value for the four

available values for milk yield, milk fat, milk protein, and calving interval. As for SCC, infor-

mation was available on cow level with up to twelve potential values. This approach enabled us

to condense the available information for every single animal into one median value reflecting

the individual cow. A second round of bootstrapping raised the information to the farm level.

Parity was directly raised to farm level.

The five-point Likert scale items of the attitude variables were condensed from five to three

categories, i.e. disagreement, neutrality, and agreement. As missing data were present in the

scoring part of the data set (S1 Table) as well as in the attitude part and among the variables

reflecting management procedures, a non-parametric multivariate imputation by chained ran-

dom forest was implemented to impute the missing observations and replace them with plausi-

ble values [47]. This approach is able to substitute missing data using all other variables in the

data set as predictors by combining random forest imputation and multivariate imputation by

chained equations. Iterations are imputed for every single missing value multiple times until

the Out-of-Bag (OOB) prediction error stops to improve i.e., the highest possible prediction

accuracy is achieved. This allows for a realistic, plausible imputation and adheres to the origi-

nal structure of the underlying data [47]. To complement the analyses on the imputed data

and to allow for a direct comparison of a model using imputed data and a model based on a

data set without missing values, we created a complete cases data set for each study region

where observations with missing values for single variables were excluded from further analy-

ses. A binary variable (F. hepatica seropositive/seronegative) was created based on the thresh-

olds of the BTM ELISA: results with a sample/positive control ratio (S/P) > 30% were

considered seropositive. Fasciola hepatica presence on a farm was defined as BTM seropositiv-

ity of a farm.

Random forest for the identification and ranking of farm-level aspects

important for the presence of F. hepatica
Breiman’s random forest algorithm for classification was applied to forecast F. hepatica pres-

ence on farms based on the set of covariates and to identify relevant key predictors [26]. The

randomForest function [48] was implemented and tuneRF() identified the optimal tuning

parameters i.e., mtry (= the number of variables evaluated at each node) and searched for the

maximised prediction accuracy with respect to the OOB error estimate, i.e. identified the mtry

value that produced the smallest OOB error. Each tree within the RF is constructed based on a

random, varying bootstrap sample of the original data [26, 49]. Each node of every single tree

is split in alignment with the best split among a random subset of all predictors. This proce-

dure allows to address correlation from individual trees and is robust to overfitting. Moreover,

at each iteration of the bootstrap, observations not included in the bootstrap are called OOB

sample from which the OOB error estimate can be obtained by aggregation of all OOB predic-

tions. The estimation of an unbiased estimate of the test set error hence is conducted internally

during the run [50–52]. The data set was split into training and test data with a ratio of 70:30

of training vs. testing. A RF was generated on the training data and predictions were validated

on the test data. Based on the obtained confusion matrix, evaluation metrics, i.e. precision, pre-

dictive accuracy, recall, and F1 score, were calculated. A total number of 1,000 trees was used

at the tuning step. The importance of each of the covariates was assessed via the mean decrease
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accuracy (MDA), a means to indicate how much removing a single variable reduces the accu-

racy of the prediction. Accordingly, high ranking variables contribute the most to model fit

and prediction accuracy in comparison with low ranking variables [26]. Permutation p-values

were estimated for the random forest importance metrics of the included variables using the R

package rfPermute [53]. A total number of 1,000 permutation replicates were run.

Data accessibility

The final imputed data sets used for the current analyses are available in Mendeley Data at

https://doi.org/10.17632/5p8tzvw9mh.1. The complete cases data sets are provided as support-

ing information (S1, S2 Data).

Results

Study regions North and South were included in this work, since only two farms were positive

for F. hepatica in region East. Parts of the descriptive data have been described elsewhere

[27–29].

Region North

A complete descriptive overview of continuous and categorical variables within the imputed

data set is provided in Tables 1 and 2, respectively.

BTM antibody data were available for 200 farms. After removal of 12 farms which were not

enrolled to DHI, the final data set for analysis comprised of a total of 17,806 dairy cows on 188

farms housing a mean of 95 cows (range 10.0–486.0; median 79.00). Missing values were

imputed for scorings, attitude variables, and management measures around calving. Alto-

gether, 161 farms (85.6%) were free-stall operations, 14 pasture-based systems (7.5%), and 13

farms (6.9%) were assigned to the “other” category containing deep straw-bedded packs and

tied housing. Organic farming principles were adhered to on six farms (3.2%) and for two

farms(1.1%) dairy farming represented a sideline income which was the reason to exclude

these variables from the data set due to the low number of observations. Cows had access to

pasture on 150 farms (79.8%) and to an outdoor exercise area on 52 farms (27.7%). Fasciola
hepatica antibodies were confirmed in BTM samples of 28 farms (15.0%). As for the attitude

data, the variables Animal handling easy, Care male calves, Patience, Discussion improvements,
and Painwere excluded due to only few observations in some categories. Likewise the variables

BHB check and BCS check were excluded. Tables 3 and 4 display the descriptive results of the

complete cases data set.

The complete cases data set comprised of 179 farms housing 17,410 cows with a mean of 97

cows per farm (range 17.0–486.0; median 84.0). One hundred and fifty-five farms (86.6%) had

free stall housing compared with twelve pasture-based operations (6.7%), and twelve farms

(6.7%) in the “other” category. Pasture access was granted on 139 farms (77.7%) and an out-

door exercise was present on 46 farms (25.7%). Fasciola hepatica antibodies were detected on

29 farms (16.2%).

A total number of 1,000 trees were grown in the RF with three variables being the best num-

ber of variables to be tried at each split. All features incorporated in the RF are provided in

Table 5. The OOB was 14.0%. Precision of the RF was 98.3% and predictive accuracy 86.5%.

Recall and F1 score appeared to be 86.5% and 92.8%, respectively.

Fig 1A displays the ranked variables of the random forest of the imputed data with seven

factors (p� 0.05) relevant for on-farm F. hepatica seropositivity highlighted in red.

Next to the top ranking variable farm-level milk protein (MDA 7.1%, p = 0.002), farm-level

milk fat (MDA 5.5%, p = 0.006), leg hygiene (MDA 5.3%, p = 0.02), and prevalence of
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overconditioned cows (MDA 4.8%, p = 0.02) appeared among the top-ranking covariates. Fur-

ther relevant features were pasture (MDA 4.1%, p = 0.02), prevalence of underconditioned

cows (MDA 3.5%, p = 0.04), and farm-level milk yield (MDA 3.4%, p = 0.02). The RF results

for the complete cases data set are illustrated in Fig 1B. The forest was grown with a precision

of 97.9%, a predictive accuracy of 85.2%, a recall of 86.6%, and a F1 score of 92.0%. Production

trait related factors represented the top three important features starting with farm-level milk

fat (MDA 6.3%, p = 0.001), followed by farm-level milk yield (MDA 5.7%, p = 0.004), and

farm-level milk protein (MDA 5.3%, p = 0.005). Pasture (MDA 4.9%, p = 0.007) was the third

top-ranking feature. Similarly to the model on the imputed data, leg hygiene (MDA 4.0,

p = 0.04) and prevalence of overconditioned cows (MDA 3.5%, p = 0.03) appeared among the

most important features.

Region South

Descriptive results of the imputed data set are illustrated in Tables 1 and 2. Parasitological data

were obtained from 240 out of 260 farms. Since 28 farms did not participate in DHI, they were

removed and the data set for analysis consisted of 212 farms housing 9,847 dairy cows with a

mean of 46 cows (range 5.0–231.0, median 41.0). A total number of 54 farms (25.5%) housed

Table 1. Descriptive statistics of continuous variables within the imputed data set for each of the two study regions (North = 188 farms, South = 212 farms).

North South

Variable Mean Range 1st Qu. Median 3rd Qu. Mean Range 1st Qu. Median 3rd Qu.

Underconditioned1 20.1 0.0–66.7 12.2 19.9 27.4 10.8 0.0–61.8 4.0 8.3 14.3

Optimally conditioned2 69.0 0.0–91.9 64.7 69.7 74.8 71.5 35.3–100.0 62.6 71.7 80.8

Overconditioned3 11.0 0.0–100. 3.8 7.7 13.8 17.7 0.0–60.7 7.9 15.7 25.1

Parity4 2.5 1.6–3.7 2.3 2.4 2.7 2.5 1.7–3.7 2.3 2.5 2.7

Udder hygiene5 22.7 0.0–71.1 12.5 19.0 30.0 21.4 0.0–76.3 9.7 19.3 29.4

Leg hygiene6 41.6 5.8–85.9 26.6 38.9 57.5 32.4 0.0–88.5 18.7 29.8 42.9

Hock lesions7 14.2 0.0–43.8 6.4 11.4 19.4 15.9 0.0–77.8 6.2 12.5 23.8

Lameness8 25.9 0.0–76.9 14.3 25.9 35.4 24.7 0.0–67.6 14.5 23.1 33.3

Tail changes9 11.7 0.0–42.3 6.6 10.1 14.6 5.8 0.0–28.9 2.1 4.9 8.3

Milk yield4, 10 9,047 4,362–11,622 8,238 9,170 9,974 7,538 3,940–10,482 6,893 7,600 8,338

Milk fat4, 10 370.0 202.0–457.0 345.0 375.0 404.0 312.4 161.0–434.6 284.8 316.2 343.6

Milk protein4, 10 307.0 145.0–392.0 283.0 315.0 339.0 263.6 128.4–370.4 240.6 267.4 294.3

SCC4, 11 219.0 123.0–664.0 187.0 212.0 241.0 205.0 106.2–421.8 166.6 197.6 230.9

Calving interval12 414.0 359.0–552.0 399.0 409.0 422.0 396.0 355.8–471.8 376.5 392.1 411.5

Herd size 95 10–486 51 79 115 46.5 5.0–231.0 27.0 40.5 59.0

1 Farm level prevalence of underconditioned cows in %
2 Farm level prevalence of optimally conditioned cows in %
3 Farm level prevalence of overconditioned cows in %
4 Bayesian bootstrap
5 Farm level prevalence of contaminated udders in %
6 Farm level prevalence of contaminated legs in %
7 Farm level prevalence of hock lesions (swellings and/or wounds) in %
8 Farm level prevalence in %
9 farm level prevalence of amputated tails and tails with deviation and/or swelling/bulge
10 in kg
11 × 1000 cells/ml
12 in days

https://doi.org/10.1371/journal.pone.0296093.t001
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Table 2. Descriptive statistics of categorical variables within the imputed data set for each of the two study regions (North = 188 farms, South = 212 farms).

Variable Categories North South

Counts (nfarms) Percent (%farms) Counts (nfarms) Percent (%farms)

Pasture access No 38 20.2 140 66.0

Yes 150 79.8 72 34.0

Exercise area No 136 72.3 162 76.4

Yes 52 27.7 50 23.6

Housing Tie stall - - 54. 25.5

Free stall 161 86.6 151. 71.2

Pasture based system 14 7.5 - -

Other 13 6.9 7 3.3

Farming type Conventional 182 96.7 179 84.4

Organic 6 3.2 33 15.6

Main/Sidelinea1 Main 186 98.9 179 84.4

Sideline 2 1.1 33 15.6

Study year 1 64 34.0 83 39.2

2 74 39.4 84 39.6

3 50 26.6 45 21.2

Satisfaction animal health2 Disagreement 34 18.1 27 12.7

Neutrality 36 19.1 40 18.9

Agreement 118 62.8 145 68.4

Strain3 Disagreement 106 56.4 107 50.5

Neutrality 37 19.7 51 24.1

Agreement 45 23.9 54 25.5

Emotional relationship4 Disagreement 16 8.5 22 10.4

Neutrality 25 13.3 22 10.4

Agreement 145 78.2 168 79.2

Continuing education5 Disagreement 24 12.8 19 9.0

Neutrality 16 8.5 27 12.7

Agreement 148 78.7 166 78.3

Facial expression6 In all/most cases 28 14.9 84 39.6

In suspicious cases 118 62.8 86 40.6

Rarely/never 42 22.3 42 19.8

Temperature7 In all/most cases 53 28.2 83 39.2

In suspicious cases 25 13.3 17 8.0

Rarely/never 110 58.5 112 52.8

Udder control8 In all/most cases 14 7.5 - -

In suspicious cases 157 83.5 - -

Rarely/never 17 9.0 - -

Vitamins9 In all/most cases 142 75.5 - -

In suspicious cases 20 10.6 - -

Rarely/never 26 13.8 - -

HHS10 No 92 48.9 169 79.7

Yes 96 51.1 43 20.3

(Continued)
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Table 2. (Continued)

Variable Categories North South

Counts (nfarms) Percent (%farms) Counts (nfarms) Percent (%farms)

Documentation11 No 144 76.6 177 83.5

Yes 44 23.4 35 16.5

1 Dairy farming as main source of income or sideline/supplementary source of income
2 “I am satisfied with the animal health situation on my farm”
3 “My daily work puts strain on me”
4 “I can imagine myself building an emotional relationship with a cow”
5 “I regularly attend events and conferences of continuing education”
6 “I have a look at the facial expression and the eyes of my cows during the period around calving”
7 “I check body temperature using a thermometer”
8 “I check the udder after calving”
9 “I preventively administer vitamins and minerals”
10 Herd Health Services; “I am enroled to systematic and professional herd health services”
11 “I document cases of health issues in a written form”

https://doi.org/10.1371/journal.pone.0296093.t002

Table 3. Descriptive statistics of continuous variables within the complete cases data set for each of the two study regions (North = 179 farms, South = 207 farms).

North South

Variable Mean Range 1st Qu. Median 3rd Qu. Mean Range 1st Qu. Median 3rd Qu.

Underconditioned1 20.6 0.0–100.0 12.5 19.8 27.8 10.0 0.0–61.8 4.0 8.3 14.3

Optimally conditioned2 68.9 0.0–91.9 64.7 69.8 75.2 71.5 35.3–100.0 62.6 71.7 80.9

Overconditioned3 10.5 0.0–100.0 3.6 7.5 13.8 17.7 0.0–60.7 7.8 15.7 25.0

Parity4 2.5 1.6–3.7 2.3 2.4 2.6 2.5 1.7–3.7 2.3 2.5 2.7

Udder hygiene5 22.0 0.0–85.7 9.9 19.4 30.1 21.4 0.0–76.3 9.7 19.2 21.4

Leg hygiene6 40.4 0.0–95.2 22.2 34.8 57.9 32.3 0.0–88.5 18.6 29.2 43.3

Hock lesions7 13.7 0.0–47.5 4.7 11.1 20.7 15.7 0.0–77.8 6.0 12.5 23.9

Lameness8 26.0 0.0–76.9 15.1 23.0 26.0 24.5 0.0–67.6 14.4 23.1 33.0

Tail changes9 12.3 0.0–53.3 6.8 9.9 15.6 5.8 0.0–28.9 2.0 4.8 8.1

Milk yield4, 10 9,079 4,362–11,622 8,307 9,174 9,954 7,552 3,940–10,482 6,914 7,611 8,350

Milk fat4, 10 370.3 202.1–458.5 347.1 374.5 402.8 312.7 161.0–434.6 285.8 316.4 343.7

Milk protein4, 10 308.1 145.2–392.0 283.7 315.1 308.1 264.1 128.4–370.4 241.2 267.8 295.0

SCC4, 11 219.4 122.9–663.9 184.8 211.8 242.4 203.3 106.2–421.8 166.1 195.6 225.5

Calving interval12 412.6 359.3–552.4 398.7 407.9 420.0 395.8 355.8–471.8 376.3 392.1 411.4

Herd size 97.3 17.0–486.0 57.5 84.0 116.0 46.2 5.0–231.0 27.0 40.0 58.5

1 Farm level prevalence of underconditioned cows in %
2 Farm level prevalence of optimally conditioned cows in %
3 Farm level prevalence of overconditioned cows in %
4 Bayesian bootstrap
5 Farm level prevalence of contaminated udders in %
6 Farm level prevalence of contaminated legs in %
7 Farm level prevalence of hock lesions (swellings and/or wounds) in %
8 Farm level prevalence in %
9 farm level prevalence of amputated tails and tails with deviation and/or swelling/bulge
10 in kg
11 × 1000 cells/ml
12 in days

https://doi.org/10.1371/journal.pone.0296093.t003
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Table 4. Descriptive statistics of categorical variables within the imputed data set for each of the two study regions (North = 179 farms, South = 207 farms).

Variable Categories North South

Counts (nfarms) Percent (%farms) Counts (nfarms) Percent (%farms)

Pasture access No 40 22.3 136 65.7

Yes 139 77.3 71 34.3

Exercise area No 133 74.3 157 75.8

Yes 46 25.7 50 24.1

Housing Tie stall - - 53 25.6

Free stall 155 86.6 147 71.0

Pasture based system 12 6.7 - -

Other 12 6.7 7 3.4

Farming type Conventional 173 84.1

Organic 33 15.9

Main/Sidelinea1 Main - - 174 84.1

Sideline - - 33 15.9

Study year 1 61 34.1 80 38.6

2 71 39.7 82 39.6

3 47 26.3 45 21.7

Satisfaction animal health2 Disagreement 30 16.8 26 12.6

Neutrality 33 18.4 38 18.4

Agreement 116 64.8 143 25.1

Strain3 Disagreement 94 52.5 104 50.2

Neutrality 41 22.9 51 24.6

Agreement 44 24.6 52 25.1

Emotional relationship4 Disagreement 16 8.9 22 10.6

Neutrality 28 15.6 21 10.1

Agreement 135 75.4 164 79.2

Continuing education5 Disagreement 22 12.3 19 9.2

Neutrality 17 9.5 25 12.1

Agreement 140 78.2 163 78.7

Facial expression6 In all/most cases 29 16.2 83 40.1

In suspicious cases 109 60.9 84 40.6

Rarely/never 41 22.9 40 19.3

Temperature7 In all/most cases 52 29.1 82 39.6

In suspicious cases 19 10.6 17 8.2

Rarely/never 108 60.3 108 52.2

Udder control8 In all/most cases 11 6.1 - -

In suspicious cases 150 83.8 - -

Rarely/never 18 10.1 - -

Vitamins9 In all/most cases 133 74.3 - -

In suspicious cases 19 10.6 - -

Rarely/never 27 15.1 - -

HHS10 No 87 48.6 165 79.7

Yes 92 51.4 42 20.3

(Continued)
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their cows in tie stalls, whereas 151 farms (71.2%) were free-stall operations and seven farms

(3.3%) were assigned to the “other” category. Organic farming was present on 33 farms

(15.6%) and for 33 farms (15.6%) dairy production represented a sideline source of income.

Cows had pasture access on 72 farms (34.0%) and an outdoor exercise area on 50 farms

(23.6%). Fifty farms (23.6%) were positive for F. hepatica in BTM samples.

The complete cases data set comprised of 207 farms housing 9,570 cows with a mean herd

size of 46 cows (range 5–231, median 40.0). Descriptive statistics are compiled in Tables 3 and

4. Free stall housing was provided on 147 farms (71.05), 53 farms (25.6%) tied their cows, and

seven farms (3.4%) were in the “other” category. Thirty-three of the farms were organic

(15.9%) and 174 farms (84.1%) adhered to conventional farming practices. On 33 farms

(15.9%), dairy farming was a sideline income, whereas 174 farms (84.1%) relied on dairy farm-

ing as the only source of income. Pasturing grounds were provided to cows on 71 farms

(34.3%) and an outdoors exercise area was present on 50 operations. (24.2%). Fasciola hepatica
was present on 49 farms (23.7%).

Similar to Region North, the variables Animal handling easy, Care male calves, Patience,
Discussion improvements, Pain, BHB check, and BCS check were excluded due to only few

observations in some categories. Additionally, Udder control and Vitamins were excluded for

the same reason. Results of the RF are presented in Fig 2 with relevant (p� 0.05) factors

highlighted in red.

The RF was grown with 1,000 trees and four variables appeared to be optimal to be tried at

each split yielding an OOB error of 13.7%. The forest of the imputed data was generated with a

precision of 77.8%, a predictive accuracy of 83.1%, a recall of 100%, and a F1 score of 87.5%.

With a MDA of 30.0% (p = 0.001), pasture turned out to be by far the most important factor to

describe the presence of F. hepatica on farm level. Farm-level lameness prevalence was the sec-

ond highest ranking variable (MDA 8.7%, p = 0.005 followed by farm-level prevalence of hock

lesions (MDA 6.3%, p = 0.008). Other relevant features were herd size (MDA 6.1%, p = 0.005),

parity (MDA 4.9%, p = 0.03), farming type (MDA 4.5%, p = 0.007), and farm-level milk fat

(MDA 3.3%, p = 0.009). As for the complete cases data set, the model performance covered a

precision of 98.0%, a predictive accuracy of 87.3%, a recall of 87.3%, and a F1 score of 92.3%.

Pasture was the top ranking variable with a MDA of 30.0% (p = 0.001) followed by farm-level

Table 4. (Continued)

Variable Categories North South

Counts (nfarms) Percent (%farms) Counts (nfarms) Percent (%farms)

Documentation11 No 135 75.4 173 83.6

Yes 44 24.6 34 16.4

1 Dairy farming as main source of income or sideline/supplementary source of income
2 “I am satisfied with the animal health situation on my farm”
3 “My daily work puts strain on me”
4 “I can imagine myself building an emotional relationship with a cow”
5 “I regularly attend events and conferences of continuing education”
6 “I have a look at the facial expression and the eyes of my cows during the period around calving”
7 “I check body temperature using a thermometer”
8 “I check the udder after calving”
9 “I preventively administer vitamins and minerals”
10 Herd Health Services; “I am enroled to systematic and professional herd health services”
11 “I document cases of health issues in a written form”

https://doi.org/10.1371/journal.pone.0296093.t004
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lameness prevalence (MDA 8.4%, p = 0.003), farm-level prevalence of hock lesions (MDA

8.4%, p = 0.002), parity (MDA 7.6%, p = 0.008), farming type (MDA 4.8%, p = 0.004), herd

size (MDA 4.3%, p = 0.02), and milk fat (MDA 2.3%, p = 0.02).

Discussion

Fasciola hepatica has a complex lifecycle and a volatile epidemiology which render prediction

on farm level challenging. Forecasting models to assess the risk of individual farms have

Table 5. Compilation and description of all features included in the random forest models.

Feature Feature type Explanation

Calving Interval Continuous Farm level median of calving interval

Continuing education Categorical Farmer confirms regular participation in events and/or conferences of continuing education; categories: disagreement,

neutrality, agreement

Documentation Categorical Documentation of cases of health issues in a written form by farmer; yes/no

Emotional relationship Categorical Farmer can imagine building an emotional relationship with a cow; categories: disagreement, neutrality, agreement

Exercise Categorical Presence of an outdoor exercise area for cows; yes/no

Farming type Categorical Conventional vs. organic farming

Facial expression Categorical Farmer has a look at the facial expression and the eyes of cows during the period around calving; categories: in all/most cases,

in suspicious cases, rarely/never

Herd size Continuous Number of lactating and dry cows

HHS Categorical The farm is enrolled to systematic and professional herd health servises; yes/no

Hocks Continuous Farm level prevalence of hock lesions (more severe lesions, i.e. swelling and/or wound)

Housing Categorical Housing type;

region North: Free stall housing, pasture-based systems, other (tied housing, straw-bedded packs)

region Soutch: Free stall housing, tie stall housing, other (e.g. straw-bedded packs)

Lameness Continuous Farm-level lameness prevalence based on locomotion score� 3 (loose housing) and Stall Lameness Score� 2 (tied housing),

respectively

Leg hygiene Continuous Farm-level prevalence of contaminated lower legs (considerable contamination, score� 3)

Main sideline Categorical Dairy farming as main or sideline source of income

Milk fat Continuous Farm-level median of milk fat

Milk protein Continuous Farm-level median of milk protein

Milk yield Continuous Farm-level median of milk yield

Optimally conditioned Continuous Farm-level prevalence of optimally conditioned cows

Overconditioned Continuous Farm-level prevalence of overconditioned cows

Parity Continuous Farm-level median of parity

Pasture Categorical Presence of pasture access; yes/no

Satisfaction animal

health

Category Farmer expresses satisfaction with the animal health situation on the farm; categories: disagreement, neutrality, agreement

SCC Continuous Farm-level median somatic cell count

Season Categorical Spring, summer, fall, winter

Strain Categorical Farmer expresses that the daily farm wotk puts strain on them; categories: disagreement, neutrality, agreement

Tail Continuous Farm-level prevalence of tail lesions (visible changes, i.e. deviance of axis and/or bulge/swelling, amputation)

Temperature Category Farmer checks body temperature of cows during the period around calving using a thermometer; categories: in all/most cases,

in suspicious cases, rarely/never

Udder control Categorical Farmer checkst he udder of cows after calving; categories: in all/most cases, in suspicious cases, rarely/never

Udder hygiene Continuous Farm-level prevalence of contaminated udders (considerable contamination� score 3)

Underconditioned Continuous Farm-level prevalence of underconditioned cows

Vitamins Categorical Farmer preventivela administers vitamins and minerals to cows durin the period around calving; categories: in all/most cases,

in suspicious cases, rarely/never

Year Categorical Study years 1, 2, and 3

https://doi.org/10.1371/journal.pone.0296093.t005
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focused on seasonal and climate-driven factors [14, 54, 55]. The problem encountered by all of

these models is the limited applicability to other regions, their restricted ability to extrapolate

conclusions, and their insufficient validity on farm level [54]. In the absence of holistic predic-

tion models taking into account the interplay of different factors associated with parasite

occurrence, optimal, farm-specific control strategies cannot be identified and additional efforts

are necessary to address the complex epidemiology of fasciolosis and to identify key parame-

ters [22]. Bennema et al. [21] have drawn attention to farm-specific management factors,

which may play a role in regard to predicting infection risk. Using two region-specific data

sets covering a total number of 27,653 dairy cows on 400 farms across Germany as well as

including comprehensive information on production parameters, husbandry methods, man-

agement regimes, and farmer attitude, we were able to apply a RF approach and to identify

and rank relevant features related to parasite occurrence on farm level.

A substantial characteristic of RF algorithms is the provision of variable importance mea-

sures illustrating the degree of association between a certain covariate and the response. This

allows for the evaluation of a set of available features and their differential importance in

regard to the target. Hence, in an epidemiological situation such as fasciolosis with a life cycle

involving several stages subjected to a plethora of features associated with parasite

Fig 1. Variable importance plot for the random forest models in study region North. Predictors with a permutation p-

value� 0.05 are highlighted in red. The higher the Mean Decrease Accuracy value (on the x-axis, in %), the more the

predictive accuracy of the model would suffer if removing the respective predictor. In cases of negative permutation

importance values, permutation revealed that accuracy of the permutated data was superior to the real data which translates

into the irrelevance of the respective variables. A: Results for the RF model on the imputed data (nfarms = 188); B: Results of

the RF model on the complete cases data set (nfarms = 179).

https://doi.org/10.1371/journal.pone.0296093.g001

Fig 2. Random forest model results for study region South. Predictors with a permutation p-value� 0.05 are

highlighted in red. The higher the Mean Decrease Accuracy value (on the x-axis, in %), the more the predictive accuracy of

the model would suffer if removing the respective predictor. In case of negative permutation importance values,

permutation revealed that accuracy of the permutated data was superior to the real data which translates into the

irrelevance of the respective variables for the assessed setting. A: Results for the RF model on the imputed data (nfarms =

212); B: Results of the RF model on the complete cases data set (nfarms = 207).

https://doi.org/10.1371/journal.pone.0296093.g002
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development, intermediate host occurrence, and transmission between host species [20, 23,

26], RF allows to determine those factors that are most important for the presence of F. hepat-
ica in the first place. Random forest algorithms are robust to outliers, noise, and overfitting

and make no assumptions about the data being analysed [26, 56]. Moreover, a factor can be

important to the system based on its relevance also to other input variables and hence be high

ranking without being statistically significant and detached from the idea of the direction of

the association between predictor and target. This allows for a holistic view of an epidemiologi-

cal situation considering its complexity and the interplay among variables. Therefore, RF

appeared to be an intuitive approach to model the occurrence of F. hepatica based on farm

characteristics and to identify key factors associated with farm-level presence of the parasite.

Given the situation that data from two structurally different dairy regions were analysed in this

study, the results have the advantage that they can be extrapolated to similar settings of dairy

production acknowledging the respective region-specific characteristics and aspects that merit

consideration.

In the context of data collection of the present study, a comprehensive set of covariates was

assessed and information in regard to these factors was recorded. At first glance, a number of

factors included in the RF models might not intuitively appear to be relevant for the presence

of F. hepatica. Yet, when conducting the presented analyses, we did not intend to restrict the

inclusion of covariates on an a-priori judgement of their relevance, but we rather aimed at

including as many of these features as possible and specifically also those that might not have

been known to be associated with F. hepatica. As the results of this study confirm, a number of

factors indeed turned out to not be important for the outcome and during the analyses

removal or addition of these factors did not yield an improvement nor a deterioration of

model performance. Based on the results of the present work, hence the next step would be a

specific study with a comprehensive set of features with relevance to the biology and epidemi-

ology of F. hepatica incorporating the aspects identified as important in the course of the pres-

ent work.

In the model of the imputed data for southern herds, recall was 100%. A perfect recall

means that false negatives are not existent in the model classification and every negative pre-

diction thus is correct. Given the data where the number of positives, i.e. farms seropositive for

F. hepatica, is relatively low in relation to the negatives, i.e. farms seronegative for F. hepatica,

correct classifications and an optimised model performance were crucial. We therefore applied

several steps to optimise model performance and obtain the highest possible model perfor-

mance parameters. On the data level, the data were elaborately checked for plausibility and

cleaned prior to the analyses and subsequently edited to enter the modelling procedure. As

another element of model optimisation, different splitting ratios of the data were examined in

order to determine the one ratio that would yield the best model performance. Model perfor-

mance parameters then were tuned using a manual approach. Different values for the number

of trees to grow, for the number of variables to be randomly sampled as candidates at each

split, and for the number of permutation replicates to run were evaluated also in different com-

binations in order to obtain the best possible model performance parameters. The manual

approach was particularly feasible in the present work, since the number of parameters to be

defined was relatively small. Yet, it is very important to be aware fo the fact that this opens the

possibility to introduce human bias since potential combinations of parameters could have

been overlooked. Given the very satisfactory outcome of the models and the fact that extensive

time and effort was dedicated to optimise model performance at several levels, this bias yet

may well have been minor.

Pasture access appeared to be among the most important features in all models across both

regions. Considering the epidemiology of F. hepatica which relies on the ingestion of infective
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metacercariae via vegetation to complete its life cycle [57], this finding is little surprising. Nev-

ertheless, pasture access represents a certain type of dairy farming in region South which may

hence mediate its relevance in regard to F. hepatica. For instance, farms offering pasture access

may differ considerably in their management practices and housing facilities from operations

on which pasturing is not performed. Furthermore, pasture access may be the prerequisite for

other identified factors to come into play when occurring together and creating a certain on-

farm setting. This thought is further corroborated by two other high ranking variables of

importance, i.e. farming type and herd size. Herd size has previously been associated with the

presence of F. hepatica [7]. Additionally, herd size in region South probably is a proxy for farm

characteristics meaning that large farms may be more intensely managed with a greater level

of industrialisation whereas small farms are more likely to be run according to organic princi-

ples and may more frequently incorporate pasture access. Accordingly, these characteristics

may translate into the risk of F. hepatica presence on the farm being more distinct on organic

operations.

Farm-level lameness prevalence was the second highest ranking variable describing F.

hepatica presence in region South. Lameness is a widespread issue in dairy production and has

negative implications for animal health, welfare, and productivity [58, 59]. Lameness has fur-

thermore been associated with housing conditions and farm management [60, 61]. In particu-

lar, organic farming (i.e. farming type) and pasture access, both top-ranking variables in study

region South, have been demonstrated to be beneficial for lameness dynamics within a herd

[62]. Likewise, pasture access has been identified to lower the odds of dirty legs [63]. Leg

hygiene ranked third in the imputed data model and fifth in the complete data model in study

region North, not in the study region South, though. Nevertheless, it is not surprising that pas-

ture access, which lowers the risk for lameness and for soiled legs [31, 63, 64], increases the

risk for dairy herds to be infected with F. hepatica. The result of hock lesions ranking third in

study region North complements the reasoning elaborated on above. Hock lesions are com-

mon in dairy cows and have been associated with lameness due to common risk settings favor-

ing their occurrence [31].

Production parameters, i.e. farm-level milk yield, milk fat, and milk protein appeared

among the top ranking features linked to the presence of F. hepatica in both the imputed and

the complete cases data as well as in both study regions. Previous studies have elucidated asso-

ciations between production parameters and the presence of F. hepatica [65, 66]. According to

Mezo et al. [67], a mean of 1.5 kg of milk loss is to be expected in cows per day when a strong

infection level is present on farm. Moreover, adverse effects on milk fat and milk protein have

been associated with the parasite [68].

Median farm level parity was a relevant predictor in study region South. Since the parasite

can persist for more than two years within the host [11, 69], depending on the time point of

infection, positive results can stem from cows in a higher parity being persistently infected or

reinfected. The idea of higher age being associated with seropositivity is supported by Pinilla

et al. [70] who have identified a higher risk of infection in animals older than one year com-

pared with younger cattle. Moreover, seropositivity may mainly be traced back to younger

cows in lower parities which remain seropositive from getting infected as heifers. This may be

particularly the case in study region South, since it is common to rear youngstock on more

remote pastures and alpine pastures, which usually are exposed to geographical and meteoro-

logical risk factors for fasciolosis different from those present on their home farm. Hence, the

relevance of median parity level in the present study could be mediated by heifers and young

cows carrying infections. This finding specific to region South explicitly demonstrates that

infection sources differ between both studied regions, as the environmental differences young

stock and adult cows are exposed to are less profound in region North. Additionally, the age-
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dependent theory outlined above could also be applied to region North where yet parity

appeared not to be a top ranking feature.

Body Condition Score appeared among the relevant features in the models in study region

North. Interestingly, both overcondition and undercondition made it to the top in northern

herds (imputed data) and only overcondition appeared in the complete cases data model

which seems contradictory in the first place. Yet, since body condition has frequently been

used as an indicator of animal health, and previous studies have acknowledged the association

of F. hepatica with body condition in cattle [65, 71] supporting the outcome of the present RF

models, this result emphasises the importance of this feature. Probably, any body condition of

cows that is below or above the optimum may either predisope these animals to disease or be

an indicator for the presence of disease. Moreover, in the context of the present work, subopti-

mal body condition may also act as a proxy for other husbandry-associated characteristics that

may translate into relevance for F. hepatica presence as well.

In order to correctly interpret our results, some limitations to this study are to be consid-

ered. Firstly, a cross-sectional study design was pursued throughout data collection which

entails some inherent limitations [72, 73]. Since predictors and outcomes are recorded at the

same time, observer bias might enter the data collection process. We addressed this issue by

following strict and rigorous standard operating procedures throughout the study period

which were continuously reassessed during the data collection period in order to ensure uni-

form and unbiased data acquisition. Furthermore, a three-month pilot phase prior to the

actual start of data collection was launched in order to identify potentially challenging points

in the interview questionnaires or data entry forms and to subsequently modify procedures

accordingly. Thirdly, weekly telephone conferences among the study teams were conducted in

order to discuss upcoming topics and to identify challenges during data acquisition. Given

these measures, we are convinced that the introduction of bias through observers can be con-

sidered minor. As a second point, a cross-sectional study design does not allow to draw infer-

ence on causal relationships between covariates and outcomes. Specific study designs are

required to further dwell into the causalities within the data set. Thirdly, the voluntary partici-

pation of farmers and the required proactivity to get in touch with the study team may have

created a certain level of selection bias. Proactive, open minded farmers who are interested in

recent scientific findings and who are willing to constantly improve animal welfare and hus-

bandry on their operations based on the state-of-the-art in the field may have been more

encouraged to participate which may subsequently have translated into overall improved ani-

mal health situations compared with the true underlying population. On the other hand, farm-

ers who were confronted with health issues in their herds and hence saw an opportunity for

external consultation may have been more inclined to participate. As a consequence, the study

population could yield higher prevalences of disease than actually present in the target popula-

tion. A certain level of selection bias might be the reason why not enough variation was seen in

a considerable part of the attitude and management-related variables which eventually led to

the exclusion of these factors due to low numbers of observations in certain categories. Sec-

ondly, this bias could have entailed that the majority of factors related to farmer attitude and

on farm management procedures have not appeared to be relevant even though previous stud-

ies have determined farmer attitude to be a crucial part in decision-making processes and can

be related to animal health. Although we cannot exclude some extent of selection bias in this

context, we still believe it has been considerably reduced by the sampling procedure.

Using questionnaires and entry forms for data collection has been shown to entail missing

or inconsistent data [74] which impairs unbiased data analysis and negatively interferes with

machine learning algorithms [75]. Removing incomplete rows from the data set is associated

with considerable loss of information and may lead to skewed results and decreased statistical
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power of the analysis. Multiple imputation approaches allow for the estimation of parameters

assuming a missing at random mechanism present in the data. This means that the mechanism

of missingness can solely be traced back to the data. On the other hand, data may not be missing

at random but be missing due to unobserved aspects. However, it is virtually impossible to deter-

mine the true missingness mechanism present in the data [76, 77]. In the present study, missing

values for single variables were present both at cow and herd level. If the percentage of missing

values for a single variable did not exceed a threshold of 10%, we conducted a non-parametric,

multivariate imputation via chained random forest in order to address this issue. Missing values

were not imputed for the target. This allowed for the inclusion of a larger number of farms which

otherwise would have been lost for analysis and increased reliability, power, and transferability of

the analysis. Yet, this approach could be associated with potential inaccuracy and necessitates fur-

ther steps to ensure reliable inference from the analyses. Therefore, we conducted each anaylsis in

a duplicate setting. After identification of the optimal model parameters, one model per study

region was fitted using the imputed data set and one using the complete cases data set without

imputations. This enabled us to compare the outcomes of both models, to identify potential con-

gruences or disagreements between models which eventually strengthensa the reliability of the

results. According to Héraud-Bousquet et al. [76], sensitivity analyses for the exploration of the

robustness of inference are important in cases where missing data are present and imputations

are conducted. In the current work, the variables with the highest percentages of missing values

were imputed at cow level and subsequently the information was raised to farm level, i.e. farm

level prevalences, which probably were not abundantly susceptible to an outstanding level of bias

induced by the imputed values additionally because the missing values at cow level were also dis-

tributed across farms. Moreover, for the variables imputed at farm level, the percentage of missing

values that were imputed were less than 2% of the data. This was the reason why we chose not to

conduct a sensitivity analysis as suggested and rather compared the model results of the RF of the

imputed data with the results of a model fitted on a complete cases data set. Both the models of

the imputed data as well as the models of the complete cases data largely agreed on the impor-

tance of the top ranking features which clearly emphasises the relevance of these factors. Some

factors that appeared in the imputed data models but not in the ones on the complete data might

be spurious and their relevance needs to be regarded with caution despite seeming plausible.

Here, some inaccuracy might have entered the analysis, but this may be traced back both to

potential bias through the imputations as wells to potential bias in the complete cases data set.

Therefore, it needs to be regarded as a limitation that a sensitivity analysis was not reproduced as

outlined by Héraud-Bousquet et al. [76]. As the win of accuracy, reliability, and possibility of

extrapolation clearly outweighs the potential drawbacks of the imputation and given the congru-

ence of the models in the ranking of the centrally important features, we are confident that the

model results presented here are valid and robust.

Faecal analysis as well as individual milk samples would have increased the knowledge gain

and would have allowed to generate a more holistic view of the parasitological situation on a

given farm. Furthermore, these data would have allowed to include site-specific meteorlogical

data into the analysis. Yet, this was beyond the scope of data collection in the context of this

study and could not be realised within the frame of the present work. Therefore, this may well

be considered in future work.
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67. Mezo M, González-Warleta M, Castro-Hermida JA, Muiño L, Ubeira FM. Association between anti-F.

hepatica antibody levels in milk and production losses in dairy cows. Vet Parasitol. 2011; 180:237–42.
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76. Héraud-Bousquet V, Larcen C, Carpenter J, Desenclos JC, Le Strat J. Practical considerations for sen-

sitivity analysis after multiple imputation applied to epidemiological studies with incomplete data. BMC

Med Res Methodol. 2012; 12:73. https://doi.org/10.1186/1471-2288-12-73 PMID: 22681630

77. Potthoff RF, Tudor GE, Pieper KS, Hasselblad V. Can one assess whether missing data are missing at

random in medical studies? Stat Methods Med Res. 2006; 15:213–234. https://doi.org/10.1191/

0962280206sm448oa PMID: 16768297

PLOS ONE Random forest-based prediction of Fasciola hepatica occurrence

PLOS ONE | https://doi.org/10.1371/journal.pone.0296093 December 21, 2023 22 / 22

https://doi.org/10.4103/0019-5154.182410
http://www.ncbi.nlm.nih.gov/pubmed/27293245
https://doi.org/10.1016/j.chest.2020.03.012
http://www.ncbi.nlm.nih.gov/pubmed/32658654
https://doi.org/10.1186/s12874-020-01038-3
http://www.ncbi.nlm.nih.gov/pubmed/32513107
https://doi.org/10.1186/1471-2288-12-73
http://www.ncbi.nlm.nih.gov/pubmed/22681630
https://doi.org/10.1191/0962280206sm448oa
https://doi.org/10.1191/0962280206sm448oa
http://www.ncbi.nlm.nih.gov/pubmed/16768297
https://doi.org/10.1371/journal.pone.0296093

