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Abstract

Transportation networks play a crucial role in society by enabling the smooth movement of

people and goods during regular times and acting as arteries for evacuations during catas-

trophes and natural disasters. Identifying the critical road segments in a large and complex

network is essential for planners and emergency managers to enhance the network’s effi-

ciency, robustness, and resilience to such stressors. We propose a novel approach to rap-

idly identify critical and vital network components (road segments in a transportation

network) for resilience improvement or post-disaster recovery. We pose the transportation

network as a graph with roads as edges and intersections as nodes and deploy a Graph

Neural Network (GNN) trained on a broad range of network parameter changes and disrup-

tion events to rank the importance of road segments. The trained GNN model can rapidly

estimate the criticality rank of individual road segments in the modified network resulting

from an interruption. We address two main limitations in the existing literature that can arise

in capital planning or during emergencies: ranking a complete network after changes to

components and addressing situations in post-disaster recovery sequencing where some

critical segments cannot be recovered. Importantly, our approach overcomes the computa-

tional overhead associated with the repeated calculation of network performance metrics,

which can limit its use in large networks. To highlight scenarios where our method can prove

beneficial, we present examples of synthetic graphs and two real-world transportation net-

works. Through these examples, we show how our method can support planners and emer-

gency managers in undertaking rapid decisions for planning infrastructure hardening

measures in large networks or during emergencies, which otherwise would require repeated

ranking calculations for the entire network.

Introduction

Motivation

Roads are essential components of a transportation network that facilitate the efficient move-

ment of goods, services, and people. However, road networks increasingly face challenges due
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to natural hazards such as floods or fires, which have become more frequent and severe due to

climate change [1, 2], which has led to increased traffic disruptions, resource inefficiencies,

and compromised safety. For example, after Hurricane Katrina in 2005, roads along the I-10/I-

12 corridor remained impassible for many months after the event [3]; many services in New

Orleans did not regain even half of their pre-Katrina capacity after two years [4]. Therefore, it

is crucial to understand road network vulnerability and develop effective resource planning

and risk management strategies to mitigate such monumental impacts.

Road network vulnerability analysis is a crucial process that involves assessing the suscepti-

bility of a transportation infrastructure to various risks and potential disruptions. This analysis

plays a pivotal role in enhancing the resilience of road networks, ensuring their ability to with-

stand and recover from unforeseen events such as natural disasters, accidents, or deliberate

attacks. By systematically evaluating the vulnerabilities within a road network, transportation

authorities can identify weak points, assess potential impact scenarios, and develop effective

strategies to mitigate risks. The importance of road network vulnerability analysis lies in its

ability to inform decision-makers about potential vulnerabilities, allowing for the implementa-

tion of targeted measures to enhance the overall reliability and functionality of the transporta-

tion system. This proactive approach not only helps minimize the impact of disruptions on

traffic flow and public safety but also contributes to the sustainable development of resilient

and adaptive transportation networks in the face of evolving challenges.

Assessing the vulnerability of road networks poses significant technical challenges. Tradi-

tional methods often rely on computationally expensive algorithms, which render acquiring

vulnerability metrics challenging. This challenge becomes even more pronounced when inter-

diction methods are employed [5]. Interdiction involves intentionally removing network ele-

ments to evaluate the resulting impact on network flow. The computational burden associated

with such analyses further complicates timely network vulnerability assessment. Moreover, the

computational burden becomes even more pronounced when dealing with uncertainty and

the need for repeated vulnerability simulations, such as in the case of uncertain events like

earthquakes. This limitation hinders our ability to perform repeated scenario or post-event

analyses to develop network mitigation strategies.

Surrogate models often enable fast approximation of network vulnerability and resilience [6,

7], which can be advantageous in many situations involving decision-making under uncertainty

and repeated simulations. Previous studies have extensively utilized betweenness centrality, a

fundamental metric in graph theory, for vulnerability and resilience analysis [8–10]. The

research findings suggest that betweenness centrality provides valuable insights into the impor-

tance of individual roads, which can indicate network vulnerability. Transportation planners

and policymakers can effectively allocate resources and implement targeted interventions to

enhance network resilience by identifying roads with high betweenness centrality. Using

betweenness centrality as a proxy for assessing network vulnerability offers a practical approach

to prioritizing critical roads and strengthening transportation systems’ overall robustness.

Building upon this relationship between the betweenness centrality measure and vulnera-

bility, we propose a novel and efficient method for calculating edge betweenness centrality in

weighted road networks. By leveraging the power of graph neural networks (GNNs), our

approach allows for a fast and accurate approximation of edge betweenness centrality. This

computational efficiency makes our method particularly suitable for large-scale road networks,

where traditional techniques face significant computational challenges, especially when

repeated simulations are necessary. By establishing the correlation between edge ranking and

important vulnerability metrics, our framework demonstrates its effectiveness in approximat-

ing network vulnerability practically and efficiently. This contribution enables better decision-

making in resilience and post-disaster recovery applications.
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Literature review

Significant literature exists related to network component ranking for post-disaster recovery,

where an optimal sequencing (ranking) for repairing components is necessary to maximize

the speed of network recovery or resiliency. Vugrin et al. [11] presented a bi-level optimization

algorithm for optimal recovery sequencing in transportation networks. Gokalp et al. [12] pro-

posed a bidirectional search heuristic strategy for post-disaster recovery sequencing of bridges.

Bocchini and Frangopol [13] presented a model for recovery planning for a network of high-

way bridges damaged by an earthquake by maximizing resilience and minimizing the time

required to return the network to a target functionality and within a restoration cost. Road

repair prioritizing based on damage [14], average daily traffic volumes [15], or network robust-

ness [16, 17] have been proposed. Many heuristic and meta-heuristic optimization techniques

have been employed to minimize the effect of extreme events and develop restoration pro-

grams [11, 18–25]. However, these studies are limited to small networks due to the significant

computational overhead of the optimization methods employed. Some studies have been per-

formed on large networks [22, 25, 26]; however, these are limited to a small number of disrup-

tions in the network occurring at any time. As large-scale events like Hurricane Katrina have

shown, many disruptions could co-occur following a significant event—Katrina impacted

15,947 lane miles of highway in Alabama, 60,727 in Louisiana, and 28,889 in Mississippi,

August 2005 [27].

Transportation network criticality metrics and network disruption analyses have been sum-

marized in these review papers [5, 28, 29]. Most studies on pre-disaster component ranking

employ a network performance metric such as importance or criticality [30–32], adaptability

or resilience [33, 34], or vulnerability [35]. Disruptions in a transportation network are simu-

lated by modifying link(s) in the network, then evaluating the network’s performance in the

modified condition. This process aims to understand and quantify the modified link’s relative

importance to other links in the network. The aforementioned studies use this procedure and

performance metrics to estimate the importance rank of road segments. De Oliveira et al. [36]

ranked the streets in Rio De Janeiro regarding vulnerability, network reliability, and traffic

congestion. Esfeh et al. [37] proposed a combined data-driven and analytical ranking approach

for roads in a network using a vulnerability index that considers the spatiotemporal impact of

incidents in one link to the surrounding links. These studies rank the road’s importance based

on network topology and traffic-related parameters.

Graphs offer an intuitive approach to rank critical road segments for emergencies and rou-

tine traffic situations. Measures such as edge betweenness centrality (EBC) [38] and node

betweenness centrality (NBC) [39] are commonly used for this purpose. EBC provides valuable

insights into the flow of information within a graph [40]. High-importance edges, character-

ized by higher EBC values, are significant in maintaining the information flow. Disrupting an

edge associated with a large EBC can significantly impact the overall information flow in the

graph [41]. Betweenness centrality has been explored for transportation networks in [42],

where a dynamic betweenness centrality framework was proposed to identify real-time con-

gestion and vulnerable areas in transportation networks. To evaluate their suitability, Oldham

et al. [43] tested various centrality measures for different network classes. Derrible [44] dem-

onstrated how betweenness centrality can provide insights for designing infrastructure sys-

tems. Altaweel et al. [45] investigated the relationship between future population scaling and

past node centrality in a network. Demšar et al. [46] found a strong correlation between streets

with high betweenness and highways/main roads in the Helsinki Metropolitan area. The valid-

ity of critical components obtained from EBC has been verified using open-source macro-

scopic traffic simulation frameworks such as SUMO (Simulation of Urban MObility) and
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OpenStreetMap (OSM) [47]. Wu et al. [48] expanded upon the conventional Brandes

approach by incorporating origin-destination (O/D) flow and gravity models into betweenness

centrality calculations. These studies highlight the practical relevance and effectiveness of

betweenness centrality in transportation networks. They provide valuable insights into ranking

critical road segments and their contributions to network flow, supporting decision-making in

transportation planning and management. Despite the significant advantages of the between-

ness centrality metric, computing it to rank road segments in a large network of hundreds or

thousands of nodes and edges remains challenging [49].

Recent advancements in computing and the availability of large data sets have resulted in

powerful machine learning and deep learning methods. Such learning-based methods have

been used in transportation networks for travel time prediction [50], traffic forecasting [51],

and missing traffic data imputation [52]. Mendonça et al. [53] proposed a simple neural net-

work with graph embedding to estimate the approximate NBC. GNN is a deep learning archi-

tecture that leverages the graph structure and feature information to perform various tasks,

including node/edge/graph classification [54, 55]. Maurya et al. [56, 57] proposed a GNN-

based node ranking framework, and Fan et al. [58] utilized GNNs to determine high-impor-

tance nodes. Park et al. [59] used GNNs to estimate node importance in knowledge graphs. In

the current literature, these GNN-based methods have been shown to work exclusively on

node centrality ranking on unweighted directed and undirected graphs.

Gaps and contributions

Based on the literature review, the following gaps are identified in existing works in the con-

text of network resiliency and post-disaster recovery research. First, most of the literature

focuses on ranking interrupted components; only a few address the full network component

ranking after interruption. However, due to the computational overhead, such studies are

limited to small and medium-sized networks only (20-100 nodes and 50-200 edges). Next,

studies have been limited to identifying the ranking of critical segments of a network to be

recovered, assuming that all identified segments can be recovered; however, cases where

some of the most critical segments cannot be recovered are not addressed. Hence, applying

these techniques for large transportation networks in rapid decision-making, such as

improving the network’s resiliency following a minor disruption or post-disaster recovery

planning, is limited.

Our main contribution in this paper is a new learning method based on GNN to aid in the

rapid importance ranking of street segments in a large network affected by minor and major

interruptions. Specifically, through GNN we estimate the edge importance ranking to quantify

network modifications due to interruptions. Such interruptions are modeled using edge

weights, restructuring of nodes and edge formation, and node/edge failures. Conventionally,

GNNs aggregate node features of the neighboring connected nodes in the graph. Such repeti-

tive aggregation captures the overall structural and neighborhood information of the node of

interest. Our proposed method modifies the conventional GNN architecture to work on edges

instead of nodes. This modification to the original edge-adjacency matrix leads to a unique

representation. As EBC considers both the network topology and traffic data (using travel time

as a surrogate) as edge weights, the GNN is trained to output the EBC-based road importance

edge ranking after training over multiple scenarios of simulated network interruption events.

We develop an edge-adjacency matrix by modifying the original GNN architecture to work

with edges (instead of nodes). To the best of our knowledge, this is the first application of

GNN to estimate the importance ranking of the road segments in a large transportation

network.
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Conventional road importance ranking algorithms are limited to small and mid-size net-

works as ranking is computationally intensive for large networks. Once trained, the GNN

model proposed in this paper is swift and scalable at the inference stage; hence, it can rapidly

estimate the road importance rank where quick decision-making is critical. To demonstrate

the model’s generalizability, we show the proposed method’s performance on three types of

synthetic networks and two different sizes of real-world transportation networks: the US free-

way network and the Minnesota transportation network. The trained GNN model can per-

form edge ranking for static and dynamic graphs considering directed and undirected cases.

We demonstrate that GNN-based ranking results are comparable with conventional methods

such as centrality and vulnerability-based ranking while achieving road ranking significantly

faster for large graphs.

Organization

The remainder of this paper is organized as follows. First, in the ‘Preliminaries’ section, we

present the basics of graph theory, EBC, and edge feature representation. Next, the working

principles of GNN and information propagation in the learning stage are described. Subse-

quently, in the ‘Proposed GNN Framework’ section, we present the new GNN-based frame-

work, which forms the core of the contributions claimed in this paper. In the ‘Results’ section,

we evaluate the performance of the proposed approach on synthetic graphs. Next, we demon-

strate the performance of two real-world transportation networks. Afterward, two potential

applications of the proposed framework are discussed in the ‘Applications’ section. Finally, the

conclusions are presented.

Preliminaries

This section introduces the concepts and terminologies necessary to follow the material pre-

sented in this paper. The basics of graph theory are explained along with an introduction to

the edge adjacency matrix, which describes the spatial connection between edges in a graph. A

brief introduction to EBC is also provided, followed by details of edge feature representation

in the graph topology. Finally, the basic concepts of Graph Neural Networks (GNNs), includ-

ing how the information of edges is exchanged and accumulated, are described. The original

GNN algorithm [60] proposes the message passing on nodes. In contrast, the message passing

is on edges here, and the GNN predicts edge importance rank through the edge adjacency

matrix and the edge feature vectors.

Basics of graph theory

A graph G; is defined as ðV; EÞ—here V denotes the set of nodes or vertices of the graph and

E � V � V symbolizes the edges. The neighbor set of node i 2 V is defined as

N i ≔ fj 2 V : ði; jÞ 2 Eg. The graph edges are weighted by wij which are associated with (i, j)
for i; j 2 V—here wij> 0 if ði; jÞ 2 E and wij = 0 otherwise. The vertex adjacency matrix (also

known as adjacency matrix) AV
¼ ½av

ij� 2 R
jVj�jVj of G ¼ ðV; EÞ is defined as [61]:

av
ij ¼

0; if i ¼ j or there is NO edge present between i and j ;

wij; if i 6¼ j and there is one edge present between i and j :

(

ð1Þ

Graphs used to model transportation networks are considered either bidirected or undi-

rected, where for an undirected graph G, wij ¼ wji 8 ði; jÞ 2 E ðj; iÞ 2 E and for a bidirected

graph wij 6¼ wji. Directed graphs are a special case of a bidirected graph obtained by setting one

of the edge weights wij!1. |�| refers to the cardinality or the number of elements in the set.
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For unweighted graphs (for both bidirected or undirected cases), the weight values are 1, i.e.,

wij = 1 8i, j. Non-zero values sparsely appear in the vertex adjacency matrix when an edge

exists between any two nodes. The unweighted edge adjacency matrix AE
¼ ½ae

mn� 2 R
jEj�jEj is

determined by the adjacency of edges [62]:

ae
mn ¼

1; if edges m and n are adjacent ;

0; otherwise :

(

ð2Þ

Fig 1 shows an example of the unweighted vertex adjacency matrix and the unweighted

edge adjacency matrix for the same graph. It is to be noted that AV
and AE

are symmetric for

both the undirected and bidirected unweighted graphs. The weights have been incorporated in

the latter stage of the framework.

Basics of EBC

Edge importance ranking depends on the edge’s ability to control the information flow (the

term information flow is contextual) between other nodes and edges of the graph and is highly

correlated with the edge weights. The edge weights greatly influence the shortest paths calcu-

lated using the graph. Edge ranking based on this criterion is called EBC [40, 63]. The EBC

score of an edge will be high if that edge contains many shortest paths making the information

flow more accessible and faster throughout the whole graph. The edges with high betweenness

centrality are called ‘bridges’. Removing bridges from the graph can be disruptive; in some

cases, one graph can segregate into several smaller isolated graphs.

For a given graph G ¼ ðV; EÞ, EBC of an edge e is the sum of the fraction of all-pairs short-

est paths that pass through e and is given by [63]:

cBðeÞ ¼
X

s;t2V

sðs; tjeÞ
sðs; tÞ ð3Þ

where, V and E are the set of nodes and edges, respectively, s and t are the source and terminal

nodes while calculating the shortest paths. σ(s, t) is the number of shortest (s, t) paths and σ(s,
t|e) is the number of those paths passing through edge e 2 E.

The conventional method to calculate this betweenness centrality is through Brandes’s algo-

rithm [40]. This algorithm has a space complexity of OðjVj þ jEjÞ and time complexity

OðjVjjEjÞ for unweighted networks. For weighted networks, the time complexity increases to

Fig 1. Vertex adjacency matrix and edge adjacency matrix of a sample graph network.

https://doi.org/10.1371/journal.pone.0296045.g001
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OðjVjjEj þ jVj2 log jVjÞ [64]. This algorithm is computationally prohibitive for large-scale net-

works (examples shown later in the ‘Results’ section). Additionally, this algorithm is sensitive

to small perturbations in the network, such as changes in edge weights or regional node or

edge failures. As a result, EBC is recalculated every time from scratch when there is a change in

the graph. Hence, edge importance ranking estimation using EBC could be impractical for

making rapid decision-making, e.g., in disaster response and recovery planning scenarios. To

address this issue, in this paper, we pose the estimation of EBC as a learning problem and

develop a deep learning-based framework whose time complexity is OðjVjÞ, hence can be uti-

lized for large networks with perturbations.

Node and edge feature embeddings

The adjacency matrices represent the connection information between the nodes and edges;

however, the complete neighborhood information for nodes and edges is still incomplete

beyond their immediate neighbors. The feature representation for nodes and edges embeds

the knowledge of k-hop neighbors—hence the information is more exhaustive. Feature repre-

sentation of the graph components is a way to represent the notion of similarity in graph com-

ponents. Such embeddings capture the network’s topology in a vector format which is crucial

for numerical computations and learning. The most popular method for node embedding is

Node2Vec [65].

Node2vec [65] is a graph embedding algorithm to transform a graph into a numerical

representation. This algorithm generates a feature representation for each node that portrays

the whole graph structure, such as node connectivity, weights of the edges, etc. Two similar

types of nodes in the graph will have the same numerical representation in Node2vec algo-

rithm. This representation is obtained through second-order biased random walks, and this

process is executed in three stages:

1. First order random walk
A random walk is a graph traversing procedure along the edges of the graph, best under-

stood by imagining the movement of a walker. First-order random walks sample the nodes

on the graph along the graph edges depending on the current state. In each step/hop, the

walker transitions from the current state to the next referred to as a 1-hop transition. In Fig

2(a), the walker is at node v and three neighboring nodes are u1, u2, and u3 with the respec-

tive edge weights, w(v, u1), w(v, u2), and w(v, u3). These weights determine the probability

of the walker transitioning to the next node. The transition probability for the first step is

given as,

pðuijvÞ ¼
wðui; vÞX

ui2N v

wðui; vÞ
¼

wðui; vÞ
Degree of node v ð4Þ

Here, N v is the set of neighboring nodes of v. One random walk is generated by performing

multiple one-hop transitions; this process is repeated to multiple random walks, a function

of the current state.

2. Second-order biased walk
In the second-order biased walk, the edge weights selection differs from the first-order ran-

dom walk. A new bias factor term α is introduced to reweigh the edges. The value of α
depends on the current state, previous state, and potential future state, as shown in Fig 2(b).

If the previous and future states are not connected, then a ¼
1

q
, q is the in-out parameter. If
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the previous and future states are identical, then a ¼
1

p
, where p is the return parameter. If

the two states (the previous state and the future state) are connected but not identical, then

α = 1. Considering the bias factors, the 2nd order transition probability is given as:

pðuijv; tÞ ¼
apqðt; uiÞwðui; vÞX

ui2N v

apqðt; uiÞwðui; vÞ ð5Þ

3. Node embeddings from random walks:
Repeated generation of random walks from every node in the graph results in a large corpus

of node sequences. The Word2Vec [66] algorithm takes this large corpus as an input to

generate the node embeddings. Specifically, Node2vec uses the skip-gram with negative

sampling. The main idea of the skip-gram is to maximize the probability of predicting the

correct context node given the center node. The skip-gram process for the node embedding

is shown in Fig 3.

From the node embedding, the edge embedding is obtained using the average operator—

edge embedder for e(i, j) is
f ðiÞ þ f ðjÞ

2
, where the edge ends are nodes i and j; the node

embedding of i and j are f(i) and f(j), respectively.

Node2Vec [65] can also be used for edge feature representation. The original implementa-

tion is found to be slow and memory inefficient [67]. Hence, a fast and memory efficient ver-

sion of Node2Vec called PecanPy (Parallelized, memory efficient and accelerated node2vec

in Python) [67, 68] is utilized in this paper. PecanPy makes the Node2Vec implementation

efficient on the following three fronts:

Fig 2. Conceptual representation of Node2Vec. (a) Parameters for transition probability calculation for the 1st order random walk, and (b)

parameters for transition probability calculation for the 2nd order biased walk.

https://doi.org/10.1371/journal.pone.0296045.g002
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(a) Parallelism: The estimation of transition probability and the random walk generation pro-

cesses are independent, but are not parallelized in the original Node2Vec. PecanPy par-

allelizes the walk generation process, which makes the operation much faster.

(b) Data Structure: The original implementation of Node2Vec uses NetworkX [69] to store

graphs which is inefficient for large-scale computation. However, PecanPy uses the Com-

pact Sparse Row (CSR) format for sparse graphs—which has similar sparsity properties to

the transportation network that is addressed in this paper. The CSR formatted graphs are

more compactly stored in memory and run faster as they can utilize cache more efficiently.

(c) Memory: The original version of Node2Vec pre-processes and stores the 2nd order transi-

tion probabilities, which leads to significant memory usage. PecanPy eliminates the pre-

processing stage and computes the transition probabilities whenever it is required, without

saving.

PecanPy is capable of calculating the node and edge feature embeddings for both the

undirected and bidirected graphs.

Details of Graph Neural Network (GNN)

Neural network models for graph-structured data are known as GNNs [70]. These models

exploit the graph’s structure to aggregate the feature information/embeddings of the edges and

nodes [71]. Feature aggregation from the structured pattern of the graph enables the GNN to

predict the probability of edge existence or to predict node labels. The graph structure infor-

mation is assimilated from the adjacency matrix and the feature information matrix of nodes

and edges, which form the inputs, and training using a loss function. Message passing occurs

in each GNN layer when each node aggregates the features of its neighbors. The node feature

vector is updated by combining it with the aggregated features from its adjacent nodes. In the

first layer, the GNN combines the features of its immediate neighbors, and with an increasing

Fig 3. This is an illustration of the skip-gram model for node embedding. For a sample random walk of length 7, a sliding window of length 3 is used

to prepare the inputs and outputs for training the Word2Vec model. The embedding of the trained Word2Vec model is the node feature embedding.

https://doi.org/10.1371/journal.pone.0296045.g003
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number of layers, the depth of assimilating the neighboring edge features increases accord-

ingly. The edge feature vector is updated with the aggregated features from its adjacent edges,

and this procedure repeats for each GNN layer. There are three steps in a GNN, elaborated as

follows:

• Step 1: Message passing of edge features:
The original message-passing algorithm is applied to the node features passing via the

graph’s edges. Since this work focuses on ranking the edges, each edge is associated with

edge features/embedding. The vector Rd
represents such features as a latent dimensional

representation. A popular algorithm to obtain such representation is Node2vec [65], as

discussed previously. The new framework presented in this paper contains a modified ver-

sion of the message-passing concept—edge features are aggregated and passed to the neigh-

boring edges. In this way, the GNN learns the structural information. An example of the

message passing step is shown in Fig 4. While conventional implementation of GNNs uses

the message passing on the nodes, such passing is performed on the edges here, which is the

novelty.

• Step 2: Aggregation:
Messages are aggregated after all the messages from the adjacent edges are passed to the edge

of interest. Some popular aggregation functions are:

Sum ¼
X

j2N i

FðhjÞ; Mean ¼

X

j2N i

FðhjÞ

jNij

Max ¼ Max
j2N i

FðhjÞ; Min ¼ Min
j2N i

FðhjÞ

ð6Þ

where, N i is the set of neighboring edges of edge i (edge of interest). Considering

Fig 4. Schematic diagram of the message passing of GNN. (a) This is a sample graph with 4 nodes and 5 edges. Each edge has its own embedding

vector shown as hi for ith node, i 2 {a, b, c, d, e}; (b) message passing procedure of edge d using the edge vectors of the neighboring edges b, c, and e and

transforming them, finally “passing” them to the edge of interest. This process is repeated, in parallel, for all the edges in the graph. The transformation

function can be a simple Neural network (RNN or MLP) or an affine transform, F(hi) = Wihi + bi.

https://doi.org/10.1371/journal.pone.0296045.g004
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‘AGGREGATE’ as the aggregation function (sum, mean, max, or min of the neighboring

edge message transform), the aggregated message μ at layer k can be expressed as:

m
ðkÞ
i ¼ AGGREGATEðkÞðfhðkÞj : j 2 N igÞ ð7Þ

• Step 3: Update:
These aggregated messages update the source edge’s features in the GNN Layer. In this

updated step, the edge feature vector is combined with the aggregated messages and is exe-

cuted by simple addition or concatenation:

Addition : hðkþ1Þ

j ¼ sðGðOðhðkÞj Þ þ m
ðkÞ
i ÞÞ

Concatenation : hðkþ1Þ

j ¼ sðGðOðhðkÞj Þ � m
ðkÞ
i ÞÞ

ð8Þ

where, σ is the activation function, O is a simple multi-layer perceptron (MLP), and Γ is

another neural network that projects the added or concatenated vectors to another dimen-

sion. In short, the updating step from the previous layer can be summarized as follows:

hðkþ1Þ

j ¼ COMBINEðkÞðhðkÞj ; m
ðkÞ
i Þ ð9Þ

The output of each GNN layer is forwarded as the input to the next GNN layer. After k-th

GNN layers/iteration, the edge embedding vector at the final layer captures the edge feature

information and the graph structure information of all adjacent edges from 1-hop distance to

the k-th hop distance. The edge feature vector of the 1st layer is obtained using NodeVec [65].

Proposed GNN framework

Building on the concepts of the GNN presented previously, the proposed GNN framework for

estimating edge ranking is presented next. This section introduces the algorithm along with

the architecture being proposed. A description of the modified adjacency matrix and its use in

edge betweenness ranking is described. This is followed by the details of the edge feature aggre-

gation process in the GNN module. Finally, the details about the ranking loss function are

presented.

Algorithm and the GNN architecture

Fig 5 shows the overall process of calculating the edge ranking using GNN. This framework

takes the graph structure—specifically the edge adjacency matrix—and the feature matrix as

inputs to estimate the edge ranking vector depicting the importance of each edge in the

graph structure. The GNN module is at the core of this procedure, whose inputs are the

edge feature matrix and the two variants of the edge adjacency matrix. Starting with initial

weights in the GNN module, the edge importance ranking vector of the model is calculated

by backpropagating the errors through the GNN layers and then updating the weights

iteratively.

Edge adjacency matrix. The edge adjacency matrix is not unique for all graph structures.

For instance, a pair of non-isomorphic graphs—the three-point star graph S3 and the cycle

graph on three vertices C3 have identical edge-adjacency matrices as shown in Fig 6. Hence we

introduce two variants for this matrix—modified edge adjacency matrix based on node degree

~AE and the modified edge adjacency matrix based on edge weight Â E . The modified edge
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adjacency matrices are obtained from the edge adjacency matrix using the functions ψd and

ψw, respectively—shown in detail in Algorithm 1: lines 13-32, and the corresponding example

is shown in Fig 7. The edge weights of edges a, b, c, d, and e are ðO a!;O a Þ, ðO b
!;O

b
 Þ,

ðO c!;O c Þ, ðO d
!;O

d
 Þ, and ðO e!;O e Þ, respectively, where ðO

i!
6¼ O

i 
Þ for bidirected

graph and ðO
i!
¼ O

i 
¼ OiÞ for an undirected graph, and i 2 (a, b, c, d, e). The matrix ~AE is

unique to each graph; ÂE retains similar features to the original edge adjacency matrix and is

non-unique to graph structures.

Fig 5. Proposed framework for edge importance ranking.

https://doi.org/10.1371/journal.pone.0296045.g005
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Fig 6. Non-uniqueness of the edge adjacency matrix and the corresponding modifications proposed in the new framework.

https://doi.org/10.1371/journal.pone.0296045.g006

Fig 7. Modified edge adjacency matrices from the edge adjacency matrix of a sample graph network.

https://doi.org/10.1371/journal.pone.0296045.g007
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GNN module. The pseudo-code for the GNN framework and the GNN architecture are

shown in Algorithm 1 and Fig 8, respectively. The initial feature for an edge is obtained from

the edge embeddings as discussed in the ‘Preliminaries’ section, denoted as H0
. The features of

its k-hop neighbors are aggregated at the k-th layer. A simple summation of the edge feature

vectors is used here for aggregation. At each layer, the feature matrix H0
is multiplied with the

modified adjacency matrices i.e., ~AE and ÂE . Then, for each edge, the features of the adjacent

edges are summed, as shown in Fig 8 and Algorithm 1: line 5-6, with the Leaky-ReLU activa-

tion function. The choice of this activation function is not arbitrary and was an outcome of an

extensive exercise with different activation functions (details omitted here for brevity).

Fig 8. Proposed Graph Neural Network (GNN) architecture. This module takes the edge adjacency matrix and the edge feature/embedding matrix

obtained from Node2vec/PecanPy as inputs and calculates the edge importance ranking.

https://doi.org/10.1371/journal.pone.0296045.g008
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Subsequently, the aggregated edge features from each GNN layer are mapped to a Multilayer

Perceptron (MLP) unit, which outputs a vector of vector space; RE , and each value of this vec-

tor corresponds to each edge of the network as shown in Fig 9 and Algorithm 1: line 7-8. Dur-

ing training, the MLP learns to predict a single score based on the input edge features and the

graph connection. Single MLP units are implemented in all layers to output the scores, which

are then summed separately as ~S and Ŝ for the modified adjacency matrices ~AE and ÂE ,

respectively. The MLP unit comprises of three fully connected layers and a hyperbolic tangent

as the tuned nonlinearity function. The two scores ~S and Ŝ are multiplied to obtain the final

score for each edge as shown in Algorithm 1: line 12. In this architecture, the weights of all the

hidden units are initialized using Xavier initialization [72]—which is a standard technique

used for weight initialization to ensure the variance of the activations in every layer is identical.

Due to the equal variance in every layer, the exploding or vanishing gradient problems are

prevented.

Algorithm 1 GNN based edge betweenness ranking algorithm (forward propagation)
Input: Number of Edges E, Edge weight List Ω, unweighted Edge adja-
cency matrix AE, Feature matrix H0, GNN depth K, GNN weight matrices
W(k)

Output: Edge betweenness centrality value vector S(EdgeBet)
1: ~AE  cdðA

E
Þ ▷ function ψd modifies AE based on node degree

2: ÂE  cwðA
E
Þ ▷ function ψw modifies AE based on edge weight

3: ~Hð0Þ ¼ Ĥð0Þ ¼ H0

4: for k = 1, � � �, K do
5: ~HðkÞ  �ð ~AE ~Hðk� 1Þ W ðkÞÞ

6: ĤðkÞ  �ðÂE Ĥðk� 1Þ W ðkÞÞ ▷ � is the activation function
7: ~S ðkÞ  MLPð ~HðkÞÞ

8: Ŝ ðkÞ  MLPðĤðkÞÞ ▷ MLP is the multi-layer perceptron
9: end for
10: ~S  

X

k¼1;...;K

j~S ðkÞj

11: Ŝ  
X

k¼1;...;K

jŜ ðkÞj

12: SðEdgeBetÞ  ~S � Ŝ

Fig 9. Multi-Layer Perceptron (MLP) module.

https://doi.org/10.1371/journal.pone.0296045.g009
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13: function ψd ðA
E
Þ

14: ~AE ¼ zerosðE; EÞ
15: for i ¼ 1; � � � ; E do
16: for j ¼ iþ 1; � � � ; E do

17: ~AEði;jÞ ¼
AE
ði;jÞ

Degree of the node connecting edge i and j
18: ~AEðj;iÞ ¼ ~AEði;jÞ
19: end for
20: end for
21: return ~AE

22: end function
23: function ψw ðA

E
Þ

24: ÂE ¼ zerosðE; EÞ
25: for i ¼ 1; � � � ; E do
26: for j ¼ 1; � � � ; E do

27: ÂEði;jÞ ¼
AE
ði;jÞ

ðO
i
!þ O

j
!Þ=2

28: ÂEðj;iÞ ¼
AE
ðj;iÞ

ðO
i
 þ O

j
 Þ=2

29: end for
30: end for
31: return ÂE

32: end function

Loss function

A ranking loss function is used to estimate the loss due to the differences in the ranking pre-

dicted by the proposed model compared to the target EBC ranking. Such ranking loss func-

tions have previously been used for recommendation systems to rank or rate products or users

[73]. The margin ranking loss function is defined as follows:

LðSðmodelÞi ; SðtrueÞi ; yÞ ¼ Max ð0; � y � ðSðmodelÞi � SðtrueÞi Þ þMarginÞ

y ¼
1; if SðmodelÞi should be ranked higher than SðtrueÞi

� 1; if SðtrueÞi should be ranked higher than SðmodelÞi

(
ð10Þ

where, SðmodelÞ
i is the predicted ranking-score, and SðtrueÞi is the EBC score obtained using Bran-

des Algorithm [63] as shown in Eq 3. In this study, the margin value is set to 1 to allow some

flexibility.

Conventional edge ranking algorithm for comparison purposes

In this section, we describe two vulnerability-based network indices [74, 75] which have been

used for ranking important roads: (a) network efficiency-based measure and (b) probabilistic

measure of distance between networks. These two metrics are summarized as follows:

Network efficiency-based vulnerability measure. Considering a connected network G,

the network efficiency metric [74] is given by:

EðGÞ ¼
1

NðN � 1Þ

X

i6¼j2G

1

dij
; dij ¼

‘ij if pathði; jÞexists

0 if i ¼ j

1 if pathði; jÞdoes not exists

8
><

>:
ð11Þ
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where, ℓij is the shortest path between node i and j, and N is the total number of nodes in the

network. The metric E(G) represents an average across all node pairs of the reciprocals of the

node pair distance. A large value of E(G) corresponds to faster travel times in the network. If

any link in the network is disconnected, which can occur following a disruption, E(G) reduces.

Hence, edge importance ranking can be calculated based on the network efficiency reduction

for edge interruption –removing a high-ranked edge will lead to large network efficiency

reduction. Therefore, the network vulnerability [76] can be defined as the relative drop in net-

work efficiency caused by the removal of an edge i:

CE
D
ðiÞ ¼

EðGÞ � EðG n figÞ
EðGÞ

ð12Þ

here, G {i} denotes the network G without the edge i.
Probabilistic measure of distance between networks. This vulnerability measure is

based on node-to-node distance distribution whose density values are the number of nodes

that are connected at a distance k, where a� k� b, with each node i = 1, � � �, N of the graph G.

This continuous distance distribution for each node is given by:

Piða � k � bÞ ¼ ni;k: ð13Þ

The un-normalized distance distribution over the whole graph is given by,

~PGðkÞ ¼
Xn

i¼1

Piða � k � bÞ ¼
Xn

i¼1

ni;k: ð14Þ

The normalized distance distribution over the whole graph is then given by

PGðkÞ ¼
~PGðkÞZ

I

~PGðkÞ dk
:

ð15Þ

I is the interval where the continuous probability density function (PDF) is defined. Such

PDFs can be obtained for the original uninterrupted graph G and the interrupted graph G {i},
denoted as PG(k) and PG {i}(k), respectively. After deleting the ith edge, the shortest path

between nodes should theoretically increase for some or all cases, which means that the histo-

gram for the interrupted graph PG {i}(k) will shift to the right compared to PG(k) with some

change in the distribution shape. This distance between the distributions will determine the

vulnerability of the network to edge interruption.

For comparing two probability distributions, several distance and divergence measures, like

Kullback-Leibler (KL) divergence and Jensen-Shannon (JS) divergence, can be used. A robust

distance measure for network vulnerability analysis is the Wasserstein distance [75] or the

Earth Mover (EM) distance, given by:

WðPGðkÞ; PGnfigðkÞÞ ¼ inf
g2GðPGðkÞ;PGnfigðkÞÞ

Eðx;yÞ�g½jjx � yjj�: ð16Þ

Here, Γ(PG(k), PG {i}(k)) represents the set of all joint distribution γ(x, y) whose marginals

are PG(k) and PG\{i}(k)) respectively. Intuitively, γ(x, y) indicates the amount of mass trans-

ported from x to y to transform the distribution PG(k) into the distribution PG\{i}(k).

Both of these aforementioned vulnerability measures need to calculate the All pair
shortest path for all the cases when one of the edges is interrupted. The fastest way to cal-

culate the All pair shortest path is using Johnson’s Algorithm [77], and it has a

computational complexity of OðjVjjEj þ jVj2 log jVjÞ. Hence, the vulnerability-based edge
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ranking procedure will have a computational complexity of OðjVjjEj2 þ jEjjVj2 log jVjÞ. We

found that these vulnerability-based edge ranking techniques also correlated well with the

Edge Betweenness Centrality-based edge ranking technique (Brandes’s method).

Results

Experimental results for both the synthetic and real-world cases with undirected and bidir-

ected cases are presented in this section. First, details of training for the proposed architecture

are discussed. Then, the network performance on synthetic graphs of two real-world transpor-

tation networks is presented.

Training

Hardware and software configuration. In terms of computing resources, the experi-

ments were conducted on a dedicated computer and the details are shown in Table 1.

Following best practices, the graph datasets are divided into training (�80%), validation

(�10%), and testing (�10%) datasets [78]. The EBC ranking is calculated using the Brandes’s

method [40] for all graphs in the training and testing datasets. These rankings are used as tar-

get vectors for training the GNN. The test graphs are not used for training; the model learns to

map edge features and importance via MLP to the ranking scores. Training and testing graphs

contain variable numbers of nodes and edges, and the GNN is trained and tested on the same

type of synthetic graph. The performance of the GNN model is compared with the EBC and

other edge ranking algorithms, and the evaluation accuracy is measured using Spearman’s

rank correlation coefficient.

Evaluation metrics—Spearman’s rank correlation coefficient. Spearman’s rank correla-

tion coefficient [79] is defined as the ratio of the covariance of two rank variables and the prod-

uct of their standard deviations. With n number of observations, the n raw scores of variables

xi and yi are transformed to the ranks R(xi) and R(yi) for the joint random variables X and Y.

Then the Spearman’s rank correlation coefficient ρ is expressed as follows:

rs ¼
covðRðXÞ;RðYÞÞ

sRðXÞsRðYÞ
ð17Þ

where, cov(R(X), R(Y)) is the covariance of the rank variables; σR(X) and σR(Y) are the standard

deviations of the rank variables. If all the n ranks are distinct integers, this can be simplified as:

rs ¼ 1 �
6
P

r2
i

nðn2 � 1Þ
ð18Þ

where ri = R(xi)−R(yi) is the difference between the two ranks of each observation, and n, is the

number of observations. The range of Spearman’s coefficient ρs is −1� ρs� 1; ρs = 1, −1, and

0 denote perfectly positive, perfectly negative, and no correlation, respectively.

Table 1. Hardware and software configuration used for experiments.

CPU model and speed Intel Core i9-10940X CPU @ 3.30 GHz

Available Hard disk 1 TB

Available RAM 64 GB

GPU type and specification NVIDIA GeForce RTX 3090—24 GB

Programming Python 3.7, Matlab 2022a

Deep Learning framework PyTorch, Numpy, Scipy, CUDA 11.6

GNN framework NetworkX, Node2Vec, Pecanpy, Gensim

https://doi.org/10.1371/journal.pone.0296045.t001
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Hyper-parameters. A model size of 10000 (number of edges in the largest graph) is used

here as a typical example for a medium-sized urban transportation network in the U.S. The

size of the edge adjacency matrix (input) size is fixed at 10000 edges (Fig 8), and smaller graphs

can be accommodated by populating only the upper left portion of this matrix, with zeros else-

where. The network is trained using the ADAM (Adaptive Moment Estimation) optimizer,

which is a variant of the stochastic gradient descent (SGD) algorithm [80]. The hyper-parame-

ter training was performed with a learning rate of 0.0005 and a dropout ratio of 0.3. The num-

ber of epochs used for training is 50, and the number of hidden neurons (embedding

dimension) and the number of GNN layers () were optimized. The experiments use an embed-

ding dimension of 256 and 5 layers. The edge features are obtained using PecanPy with the

feature vector of length 256. BFS approach with p = 1 and q = 2 is used to search the shortest

path. Since the calculation of the ranking loss function requires a comparison of edge pair

ranking for all possible combinations of edge pairs, i.e.
jEj
2

� �
for jEj edges, instead, 20 times the

number of edges are randomly sampled [57].

Performance on synthetic networks

Three synthetic random graphs are used to evaluate the performance of the proposed method:

(a) Erdős—Rényi variant-I [81] i.e., Gnp—graphs containing n nodes (fixed number) where

each edge (u, v) appears independent and identically distributed with probability p; (b) Erdős

—Rényi variant-II [81] i.e., Gnm—graphs containing n nodes (fixed number) and m edges,

with edges uniformly connected to random nodes. Unlike Erdős—Rényi variant-I, the number

of edges in Erdős—Rényi variant-II are fixed; and (c) Watts–Strogatz model [82]—a random

graph generation model that produces graphs with small-world properties such as local clus-

tering and average shortest path lengths. The small world random graph has been used in

applications such as electric power grids, networks of brain neurons and airport networks

[83]. Both undirected and bidirected cases are considered in each synthetic graph type.

Synthetic graph generation parameters. Table 2 shows the synthetic graph generation

parameters. Here, Ufa; bg and U½a; b� represent discrete and continuous uniform distributions

between the ranges a and b, respectively. Here, ⌊�⌉ denotes the nearest integer function.

T ðc; d; eÞ denotes a triangular continuous probability distribution with a lower limit left c,
peak at mode d, and upper limit right e. With the graph generation parameters chosen

Table 2. Generation parameters of the synthetic graphs.

Synthetic Graph Type Generation Parameters

Erdős—Rényi-I (ER-I) or Gnp random # nodes Uf1000; 5000g

Probability of edge creation 1.2/(Nos of nodes -1)

Edge weights (undirected) U½0; 100�

Edge weights (bidirected) O~i ¼ U½0; 100�;O i ¼ T ð1; 1; 5Þ �O~i
Erdős—Rényi-II (ER-II) or Gnm random # nodes Uf1000; 5000g

# edges U½1:4; 1:6� �Nos of nodes
Edge weights U½0; 100�

Edge weights (bidirected) O~i ¼ U½0; 100�;O i ¼ T ð1; 1; 5Þ �O~i
Watts-Strogatz (WS) or Small world # nodes Uf2000; 4000g

Mean degree 4

Probability of edge rewiring 0.5

Edge weights U½0; 100�

Edge weights (bidirected) O~i ¼ U½0; 100�;O i ¼ T ð1; 1; 5Þ �O~i

https://doi.org/10.1371/journal.pone.0296045.t002
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arbitrarily for this case study, we generate 1000 training graphs, 100 validation graphs, and 100

test graphs for each case.

Model training time. Fig 10(a) displays the evolution of the evaluated training and valida-

tion marginal ranking loss for each epoch. The progression of Spearman’s rank correlation

coefficient over epochs for both training and validation data is also depicted in Fig 10(b). It is

observed from Fig 10(a) that after 50 epochs, the training loss continues to decrease while the

validation loss starts to increase—indicating the ‘overfitting’ phenomenon in deep learning

[84]. As ‘early stopping’ is considered one of the robust ways to prevent overfitting by halting

training when the validation loss ceases to improve, the training process was terminated at 50

epochs. Each epoch took approximately 175 seconds to train on average, resulting in a total

training time of�2.43 hours.

Performance and comparison with other methods. The Spearman correlation for the

three types of synthetic graphs including undirected and bidirected cases is shown in Table 3.

The first two rows, ‘training’ and ‘testing’, show the comparison or correlation between the

edge importance ranking obtained from EBC and GNN. The results also compare the edge

importance ranking obtained from the network-efficiency-based vulnerability measure (Eff.

Vul.) and the vulnerability based on the probabilistic distance measure between networks

(Prob. Vul.) with the proposed GNN framework in the subsequent rows. The high correlation

observed in the results shows that the proposed GNN framework is able to predict the edge

importance rank for various examples studied. The detailed ranking score statistics in the

form of the Box and Whisker plot are also shown in Fig 11. The standard deviations for the

estimated scores are small, indicating that the method is also robust.

Fig 10. Evolution in the learning phase. (a) Training and validation loss over epochs and (b) Evaluation metric (for training and validation data) over

epochs.

https://doi.org/10.1371/journal.pone.0296045.g010

Table 3. Spearman’s coefficient on synthetic graphs.

Graph ER-I ER-II WS

Undirected Bidirected Undirected Bidirected Undirected Bidirected

Training 0.94 ± 0.005 0.90 ± 0.006 0.93 ± 0.006 0.90 ± 0.008 0.94 ± 0.003 0.90 ± 0.005

Testing 0.92 ± 0.009 0.88 ± 0.009 0.92 ± 0.012 0.88 ± 0.014 0.92 ± 0.005 0.87 ± 0.006

Eff. Vul. 0.90 ± 0.010 0.84 ± 0.021 0.88 ± 0.011 0.85 ± 0.015 0.82 ± 0.008 0.85 ± 0.011

Prob. Vul. 0.85 ± 0.018 0.77 ± 0.031 0.82 ± 0.020 0.79 ± 0.024 0.78 ± 0.012 0.81 ± 0.014

https://doi.org/10.1371/journal.pone.0296045.t003
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Inference speed. The proposed framework’s inference speed combines the latencies of

GNN and PecanPy. While the computational overhead with the inference part of the GNN

is on the order of milliseconds, PecanPy has a relatively large computational overhead.

Hence, the complexity of the overall framework is governed by the complexity of the

PecanPy, which has a time complexity of OðjVjÞ [85]. Fig 12 compares the proposed GNN-

based edge ranking approach with the EBC-based and vulnerability-based edge ranking tech-

niques in a semi-log plot. Vulnerability based ranking approach is extremely time-consuming

for large graphs (computational complexity of OðjVjjEj2 þ jEjjVj2 log jVjÞ); hence we show

the results only for graphs with a maximum of 1,000 nodes. Also, beyond the graph size of

about 2,000 nodes, the proposed GNN method outperforms Brandes’ EBC-based ranking

method (computational complexity of OðjVjjEj þ jVj2 log jVjÞ). It should be noted that these

comparisons apply to the inference phase of the GNN and do not include the training phase.

These results underscore the advantage of the proposed GNN method for large graphs com-

pared to the conventional method. Results show that the proposed method can generate results

significantly faster in the inference phase while accompanied only by a slight reduction in

accuracy, which can be very beneficial in emergency response scenarios.

Two variants of edge-adjacency matrices are used in the proposed framework, as shown in

Fig 8. Using the edge adjacency matrix, or the modified edge adjacency matrices, individually

results in Spearman’s values between 0.48-0.91, while combining ~AE and ÂE outperforms

these cases, resulting in a value of 0.92.

Ablation studies on road networks

Following, the performance of the proposed GNN framework is evaluated on six transporta-

tion networks around the world through ablation studies. 1) the U.S. inter-state highway net-

work, 2) Minnesota state road Network (US), 3) Aachen city transportation network

(Germany), 4) Edinburgh city transportation network (Scotland), 5) Road network of country

Fig 11. Results of edge ranking score distributions for synthetic graphs; box and whisker plot shows the median, the lower and upper quartiles,

any outliers (calculated using the interquartile range), and the minimum and maximum values that are not outliers.

https://doi.org/10.1371/journal.pone.0296045.g011
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of Luxembourg (Europe), and 6) Santa Barbara city transportation network (US). In our analy-

sis, we take into account both undirected and bidirected scenarios. In the undirected case, we

assume equal travel times in both directions. This following ablation study simulates the edge

importance ranking due to a dynamic change in the network parameters resulting from con-

struction activities or functional factors such as travel time. Two scenarios are considered in

this study:

(i) Case I: In this case, the effects of minor congestion or interruption of traffic on roads are

simulated through random perturbations in the edge weights according to r ×Oi where Oi

is the weight of edge i, and the values of r are sampled from a uniform distribution

U½0:8; 1:2�. The number of nodes and edges for the graphs remains unchanged.

(ii) Case II: In this case, major interruption scenarios rendering a small number of edges inop-

erable, such as from accidents or natural disasters, are simulated. In addition to the edge

weights specified previously, i.e., r ×Oi with r 2 U½0:8; 1:2�, the number of edges in the

graph is modified as well. The number of edges is sampled from a discrete uniform distribu-

tion U½0:99; 1� � E—which is based on a maximum of 1% edge deletion from the original

network. Here, � denotes the nearest integer function. While the 1% edge deletion number

is arbitrarily assumed for the ablation study, this is not far from reports from previous

events such as from a 20-year return period event resulting in 0.6%-0.7% loss in the road

inventory [86].

Fig 12. Comparison of times required for computation for edge ranking of graphs between the conventional methods and the proposed GNN-

based approach.

https://doi.org/10.1371/journal.pone.0296045.g012
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Data for the U.S. system is obtained from the Environmental Systems Research Institute,

Inc. (ESRI) [87]. It includes approximately 60k miles of interstate highways in the U.S. After

condensing tiny segments using geographic clustering [88], the resulting graph contains 997

nodes (road junctions) and 1490 edges (streets). The network information of a much larger

network, Minnesota state road network, is obtained from the network repository [89], which

contains 2640 nodes (road junctions) and 3302 edges (roads). The remaining four transporta-

tion network datasets are acquired from Pyrosm, a Python library for OpenStreetMap data

[90]. These datasets also underwent the same condensation process, yielding graphs with

approximately 1500 edges each. The edge weights are assigned from travel times obtained

through the Google Distance Matrix API [91], and denoted asG
i!

andG
i 

for bidirectional

travel time on edge i. Table 4 presents the generation parameters for the GNN operation for all

the real-life transportation networks.

The US transportation network is shown in Fig 13(a). The EBC scores obtained for this net-

work are shown in Fig 13(b)–roads highlighted in red are the most critical roads, i.e., changes

to these segments such as edge weights or addition and deletion, will impact the overall net-

work significantly. In the context of GNN training, validation, and testing, the primary

Table 4. Generation parameters of the transportation networks; for each network, the training, testing, and validation data are generated from a range of edge

weights as follows:Oi ¼ 0:5� ðG!i þG i Þ � U½0:8; 1:2� for undirected graphs, andO!i ¼ G!i � U½0:8; 1:2� andO i ¼ G i � U½0:8; 1:2� for bidirected graphs.

Transportation Network Generation Parameters Case I Case II

US Highway, USA # nodes 997 997

# edge 1490 U½0:99; 1� � 1490

Minnesota, USA # nodes 2640 2640

# edge 3302 U½0:99; 1� � 3302

Aachen, Germany # nodes 791 791

# edge 1498 U½0:99; 1� � 1498

Edinburgh, Scotland # nodes 864 864

# edge 1497 U½0:99; 1� � 1497

Luxembourg, Europe # nodes 692 692

# edge 1495 U½0:99; 1� � 1495

Santa Barbara USA # nodes 821 821

# edge 1499 U½0:99; 1� � 1499

https://doi.org/10.1371/journal.pone.0296045.t004

Fig 13. EBC score calculated for the U.S. freeway network. (a) Road network shown on the map, (b) Normalized EBC score.

https://doi.org/10.1371/journal.pone.0296045.g013
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distinction among simulations lies in the change of edge weights, reflecting changes in travel

time due to factors such as congestion (Case-I) and a deletion of edges (e.g., due to road clo-

sures) resulting from catastrophic events (Case-II). More details regarding this change can be

found in Table 4. Spearman correlation is calculated for both previously described cases, con-

sidering both undirected and bidirected graphs, to assess perturbation scenarios. The results of

these evaluations are detailed in Table 5. The ranking score statistics in Fig 14 and Table 5

show a high Spearman score, underscoring the effectiveness of our GNN approach.

For better visualization purposes, we compare the ranking of edges/roads using our pro-

posed GNN with EBC, as depicted in Fig 15. This comparison plot demonstrates that the

trained GNN architecture, using EBC-based ranking as a surrogate target, effectively mimics

the performance of EBC-based ranking with much less computational cost, leveraging its

capacity to generalize from a broad range of network parameter changes and disruption

events. Hence, GNN-based ranking is useful for a fast approximation of critical road segments

(Fig 12), making it beneficial for the application of hazard simulation and rapid decision-

Table 5. Spearman’s coefficient on us freeway network.

Graph Case I Case II

Undirected Bidirected Undirected Bidirected

Train 0.92 ± 0.009 0.92 ± 0.008 0.89 ± 0.015 0.91 ± 0.014

Test 0.89 ± 0.014 0.92 ± 0.009 0.89 ± 0.017 0.90 ± 0.015

Eff. Vul. 0.77 ± 0.004 0.75 ± 0.006 0.76 ± 0.010 0.74 ± 0.008

Prob. Vul. 0.83 ± 0.006 0.81 ± 0.006 0.83 ± 0.011 0.80 ± 0.010

https://doi.org/10.1371/journal.pone.0296045.t005

Fig 14. Edge ranking score distributions for US freeway Network. The Box and Whisker plot shows the median, the lower and upper quartiles, any

outliers (calculated using the interquartile range), and the minimum and maximum values that are not outliers.

https://doi.org/10.1371/journal.pone.0296045.g014
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making in emergency situations for large networks. It is also noteworthy that while the GNN

was trained on EBC-based ranking, it has not been explicitly trained on network-efficiency-

based vulnerability measure-based ranking (Eff. Vul.) and the vulnerability based on the prob-

abilistic distance measure between networks based ranking (Prob. Vul.). Despite this, Fig 14

and Table 5 demonstrate that the GNN is capable of approximating the ranking based on these

more computationally intensive quantities. This finding underscores the versatility of our pro-

posed method and its potential applicability in scenarios where directly calculating vulnerabil-

ity metrics might be impractical.

Fig 15. Comparison between EBC based road ranking and the proposed GNN-based road ranking of US highway

network for different scenarios; the color bar shows the road ranking.

https://doi.org/10.1371/journal.pone.0296045.g015
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In this study, we tested our framework on the Minnesota state network, depicted in Fig 16,

using the previously described scenarios Case-I and Case-II for both undirected and bidirected

graphs. Fig 16 shows the EBC scores for the graph, and the evaluation metric is summarized in

Table 6 and Fig 17. As with the previous case, the GNN method yields high correlation values,

showing that the GNN method performs well even for such a large graph. However, impor-

tantly, the vulnerability-based metrics cannot be calculated for this graph even using the

computational resources deployed for this exercise. This underscores the advantage of the

GNN method to evaluate large networks quickly, which may be necessary for emergency

response or now-casting for natural disasters.

The Spearman’s coefficient of our GNN-based framework on additional four worldwide

networks are shown in Table 7. The average Spearman correlation exceeds 0.9, which under-

scores the performance of our approach.

Applications to resilience and post-disaster recovery

Rapid identification of critical road segments is crucial for emergency response management

to allow timely mitigating actions such as adjusting traffic signal timings or re-routing traffic

[92]. This section describes two concrete applications of the proposed method: inter-disaster

road resiliency enhancement and post-disaster recovery. As shown in the ablation studies, the

GNN-based edge ranking can be applied to calculate EBC for both large and small networks

Fig 16. Edge betweenness centrality score for Minnesota State transportation network.

https://doi.org/10.1371/journal.pone.0296045.g016

Table 6. Spearman’s coefficient on minnesota transportation network.

Graph Case I Case II

Undirected Bidirected Undirected Bidirected

Train 0.91 ± 0.008 0.88 ± 0.011 0.88 ± 0.015 0.80 ± 0.019

Test 0.87 ± 0.013 0.83 ± 0.020 0.81 ± 0.023 0.74 ± 0.029

https://doi.org/10.1371/journal.pone.0296045.t006
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rapidly. This allows it to be applied to understand the effects and mitigate high-frequency traf-

fic flow disruptions such as congestion or for expeditious decision-making during significant

events.

In everyday situations and planning without the need for urgency in decision-making, the

conventional Brandes’ EBC algorithm is sufficient to analyze the graph. However, decision-

making under time constraints requires an algorithm to analyze a graph (pre-trained) rapidly.

One such example is illustrated using a small graph in Fig 18. For the pre-disaster scenario G*,
edges e8, e9, and e6 are ranked 1, 2, and 8, respectively. Following a disruption to e8 rendering

it non-operative, e9 is no longer the most critical connection; the edge e6 assumes a new impor-

tance rank in the modified graph, and new resource allocation to increase the resiliency of the

network is crucial. Otherwise, the risk that the network will be disconnected increases

substantially.

Post-disaster recovery sequencing is another application where the proposed GNN method

will prove beneficial. This task involves the identification of street segments during every stage

of a sequential recovery process, which can be extremely cumbersome to calculate for large

networks using conventional methods. To illustrate this idea, we consider the uninterrupted

graph G* shown in Fig 18. The modified (post-disaster) network topology G is shown in Fig 19

(A), where e8, e10, and e6 are rendered inoperative. Considering the disrupted edge set as M,

where the edges are interchangeably represented as elements of set M as, e8$m1, e10$m2,

Fig 17. Edge ranking score distributions for Minnesota road network; also shown are median, the lower and upper quartiles, any outliers

(calculated using the interquartile range), and the minimum and maximum values that are not outliers.

https://doi.org/10.1371/journal.pone.0296045.g017

Table 7. Spearman’s coefficient on Aachen, Edinburgh, Luxembourg, and Santa Barbara Transportation networks.

City Graph Case I Case II

Undirected Bidirected Undirected Bidirected

Aachen Train 0.92 ± 0.007 0.92 ± 0.007 0.90 ± 0.011 0.91 ± 0.008

Test 0.89 ± 0.021 0.89 ± 0.017 0.90 ± 0.010 0.90 ± 0.010

Edinburgh Train 0.94 ± 0.005 0.95 ± 0.005 0.92 ± 0.009 0.92 ± 0.010

Test 0.91 ± 0.012 0.92 ± 0.011 0.92 ± 0.010 0.92 ± 0.012

Luxembourg Train 0.88 ± 0.008 0.89 ± 0.008 0.87 ± 0.009 0.87 ± 0.010

Test 0.85 ± 0.014 0.85 ± 0.019 0.86 ± 0.011 0.86 ± 0.011

Santa Barbara Train 0.93 ± 0.006 0.95 ± 0.004 0.92 ± 0.009 0.93 ± 0.009

Test 0.92 ± 0.009 0.93 ± 0.007 0.92 ± 0.016 0.93 ± 0.011

https://doi.org/10.1371/journal.pone.0296045.t007
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and e6$m3, the importance rank for the three edges are 1, 4, and 8, respectively. Recovery

sequencing attempts to answer the cardinal question of the order in which to restore function-

ality to the disrupted segments. This process should also guide the actions in the event one or

more segments identified cannot be recovered.

Algorithm 2 Sequential repairment procedure for post-disaster recovery
Input: Full edge set N with cardinality (number of edges) jN j ¼ N of
the original network G* and associated edge connection list and edge
weight list, disrupted edge set M with cardinality (number of dis-
rupted edges) jMj ¼ M. M � N
Output: Rank of edges for recovery in every repair stage.
1: Network of N edges has M damaged links, hence the post-disaster

network G has (N − M) links. For the first repairment stage, there
are M possibilities.

2: Create M different graphs with only one recovered edge; such graphs
have (N − M + 1) links. Graph Gi will have the (N − M) uninterrupted
edges and one recovered mi, mi 2M. Here, Gi denotes the disrupted
network with recovered mi in the disrupted edge set. Also, the mi is
associated with one edge, say ex in G*, ex 2 N

3. Find the rank (Ri) of the recovered edge mi (or ex) in the respective
graph Gi.

Fig 18. Example scenario for inter-disaster road resiliency improvement; the edge importance ranking order significantly changes with only a

minor change in the graph topology, underscoring the need to rapidly estimate edge importance ranking.

https://doi.org/10.1371/journal.pone.0296045.g018
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4: Use a comparison-based sorting algorithm based on ranking (Ri) from
the previous graph. The sorted list should be the repair priority
for this stage.

5: If Ri for mi (or ex) from Gi is the same as Rj for mj (or ey) from Gj,
then construct a graph Gij with recovered mi and mj. For this new
graph, Ri and Rj are calculated, and the tie is settled. If Ri = Rj
in Gij, then both mi and mj are assigned the same rank.

6: For 3-way ties, where Ri from Gi, Rj from Gj, and Rk for mk (or ez)
from Gk are all the same, three graphs are created Gij, Gjk, Gik and
the same procedure as Step 5 is followed to obtain the rank of
repair for mi, mj, and mk for a specific repair stage. This can be
extended to p-way ties, where p

2ð Þ graphs are created to settle the
ties.

7: This procedure yields the ranking order for the link repairment in
the current stage. It is recommended to repair the link with Rank 1
in this list. However, if this is not possible, then the link with
Rank 2 should be repaired to maximize network efficiency.

8: In the next stage, with one recovered edge, we have (M − 1)
disrupted edges. Repeat this whole process until all the edges are
repaired.

We propose Algorithm 2 to address such crucial questions related to post-disaster recovery

sequencing. To better explain the idea, the process is explained in relation to the simple graph

described previously. As there are three inoperative edges, three scenarios are created (Fig 19

(B.1)–19(B.3)); in each case, only one of the edges is repaired. The rank of the repaired edges

on the partially recovered network determines the importance of repairment. From Cases B.1,

B.2, and B.3, it is clear that for the partially recovered network, m1 (e8) and m3 (e6) contribute

more compared to m2 (e10), respectively for G1, G3, and G2. Hence m2 (e10) is the lowest rank

from a repairment standpoint. Because m1 (e8) and m3 (e6) are both ranked 1 in G1 and G3, the

tie scenario (B.4) also needs to be explored. Here, both links are repaired (G13), and their ranks

are compared; in this case, m1 (e8) and m3 (e6) are ranked 1 and 7, respectively, indicating m1

(e8) is more important than m3 (e6). Hence, the repairment sequencing is e8, e6, and e10. This

means e8 should be repaired first; in case e8 cannot be repaired, then e6 should be repaired.

Starting with 100% network efficiency for E(G*), the disrupted network efficiency E(G)

becomes 67.72%. For each link repair case, the improved network efficiencies become 93.68%,

88.65%, and 71.33% for e8, e6, and e10, respectively. Hence, the rank of first-stage recovery is e8,

e6, and e10, which matches the recovery rank obtained using GNN. It is important to note that

for this small graph and 3-disrupted edges, the rankings were calculated four times. For large

networks, clearly, the computational overhead with such ranking calculations and network

efficiency estimation will increase significantly and can render conventional ranking methods

impractical to apply during emergencies. This further underscores the practical advantages of

the GNN method described in this paper.

Conclusions

Edge importance ranking can be used to improve the overall efficiency of a transportation

network in terms of prioritizing the construction and maintenance of roads and bridges, and

for identifying potential bottlenecks. In this paper, we propose a novel approach for edge

importance ranking in large networks, specifically focusing on streets in a transportation

network. We utilize a GNN to learn the complex relationships between different edges and

to predict their importance based on the graph connectivity and the shortest path in terms of

travel times. This framework is learning-based and can be generalized to different network

sizes. Hence, it is robust to dynamic changes in the graph, such as changes in travel times or

PLOS ONE Edge-based GNN for ranking critical roads

PLOS ONE | https://doi.org/10.1371/journal.pone.0296045 December 21, 2023 29 / 36

https://doi.org/10.1371/journal.pone.0296045


disruptions. We evaluated the results from our method in terms of edge ranking metrics

such as EBC, network efficiency-based vulnerability, and vulnerability based on the probabi-

listic measure of distance between networks. Based on several ablation and application

experiments, the proposed GNN-based edge importance ranking approach is shown to be

Fig 19. Sample application of edge ranking framework in Post-disaster recovery. The important edges must be identified for every stage of the

sequential recovery process multiple times.

https://doi.org/10.1371/journal.pone.0296045.g019
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computationally efficient at the expense of only a moderate reduction in accuracy, which

yields significant advantages, especially for large graphs. We also present concrete examples

to firmly root the ideas to transportation applications to maintenance and recovery sequenc-

ing after disasters, where rapid ranking estimation is necessary. Furthermore, this technique

could be utilized as a surrogate model for resilience and vulnerability studies involving

uncertainty, such as earthquakes. This highlights its versatility and potential for broader use

in assessing and enhancing transportation network resilience. As a direction for future

exploration, we plan to evaluate and potentially integrate the GNN-based EBC with other

traffic-related information like population distribution. Additionally as a scope of future

work, we intend to also integrate origin-destination demand data and equity-related infor-

mation to compare our GNN based approach with egalitarian methods. Based on our study,

we can conclude that the GNN approach shows tremendous promise in networked transpor-

tation infrastructure applications where time is of the essence, including for resiliency assess-

ments and post-disaster recovery sequencing.

Appendix: Ablation studies on synthetic graphs

We performed a suite of experiments on synthetic graphs to study the effect of hyper-parame-

ters on the GNN model’s performance. The main hyper-parameters of the model are the num-

ber of GNN layers and the number of embedding dimensions; we vary these hyper-parameters

and evaluate the performance of the model. We use Erdős—Rényi variant-I (GNP random)

graphs for this study.

Varying number of layers

The number of GNN layers in the model influences the amount of information any given edge

can accumulate from its neighboring edges. For an increasing number of GNN layers, the

edges have access to information from multi-hop adjacent edges. We varied the number of

GNN layers from 1 to 5, while keeping the embedding dimension fixed (256). Additionally, we

present the model performance in Fig 20(a). Both evaluation metrics, i.e., Kendall tau and

Spearman’s correlation coefficient, show that models with small numbers of GNN layers per-

form poorly, as the feature aggregation reach for each edge is limited. Increasing the number

of GNN layers yields better ranking performance. Therefore, we fix the number of GNN layers

as 5 for all the numerical and experimental studies; increasing this number further comes at

the cost of higher training time with only a marginal improvement in accuracy.

Fig 20. Evaluation metric for different number of GNN layers.

https://doi.org/10.1371/journal.pone.0296045.g020
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Varying embedding dimensions

For any neural network, the embedding dimension (number of neurons in the hidden layers)

represents the number of learnable modal parameters. Under-parameterized models (low

embedding dimension) cannot approximate complex functions, whereas over-parameterized

models (high embedding dimension) generalize poorly. In this experiment, we change the

embedding dimension to 32, 64, 128, 256, and 512, with five layers (obtained from). We evalu-

ate the performance for all these trials and present it in Fig 20(b). Results show that an embed-

ding dimension of 256 is optimal for our case, with degrading performance for both the lower

and higher embedding dimensions.
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