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Abstract

The present study explores the epidermal growth factor receptor (EGFR) tyrosine kinase

inhibition efficacy of secondary metabolites in Trichoderma spp. through molecular docking,

molecular dynamics (MD) simulation and MM-PBSA approach. The result of molecular

docking confirmed that out of 200 metabolites screened, three metabolites such as Harzia-

nelactone A, Pretrichodermamide G and Aspochalasin M, potentially bound with the active

binding site of EGFR tyrosine kinase domain(PDB ID: 1M17) with a threshold docking score

of�– 9.0 kcal/mol when compared with the standard EGFR inhibitor (Erlotinib). The MD

simulation was run to investigate the potential for stable complex formation in EGFR tyro-

sine kinase domain-unbound/lead metabolite (Aspochalasin M)-bound/standard inhibitor

(Erlotinib)-bound complex. The MD simulation analysis at 100 ns revealed that Aspochala-

sin M formed the stable complex with EGFR. Besides, the in silico predication of pharmaco-

kinetic properties further confirmed that Aspochalasin M qualified the drug-likeness rules

with no harmful side effects (viz., hERG toxicity, hepatotoxicity and skin sensitization), non-

mutagenicity and favourable logBB value. Moreover, the BOILED-Egg model predicted that

Aspochalasin M showed a higher gastrointestinal absorption with improved bioavailability

when administered orally and removed from the central nervous system (CNS). The results

of the computational studies concluded that Aspochalasin M possessed significant efficacy

in binding EGFR’s active sites compared to the known standard inhibitor (Erlotinib). There-

fore, Aspochalasin M can be used as a possible anticancer drug candidate and further in
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vitro and in vivo experimental validation of Aspochalasin M of Trichoderma spp. are required

to determine its anticancer potential.

Introduction

The epidermal growth factor receptor (EGFR) is a transmembrane protein located on some

normal cells’ surfaces that regulates cell growth when the epidermal growth factor binds to it.

It may also be found abnormally in high levels of certain human cancer cell types, which acti-

vates their growth and progression [1, 2]. Human EGFR inhibition could slow down or stop

the growth of cancer cells [3]. The EGFR tyrosine kinase is crucial for the cellular signalling

pathways regulating apoptosis, survival, growth, proliferation and differentiation [4]. The

EGFR is considered one of the important protein targets in the development of anticancer

drugs and therefore, the inhibition of EGFR is essential for the treatment of cancer to inhibit

the progression and growth of EGFR-expressing tumor cells [2]. However, several EGFR

inhibitors have been used to treat many types of cancers, such as pancreatic, lung, breast, thy-

roid, and colon cancer, caused by the up-regulation of EGFR [5]. Globally, the FDA approved

EGFR tyrosine kinase inhibitors (viz., Erlotinib, Gefitinib, Almonertinib, Afatinib, Dacomiti-

nib, Brigatinib, Icotinib, Lapatinib, Neratinib, Pyrotinib, Osimertinib, Olmutinib, Vandetanib

and Simotinib)bind to EGFR tyrosine kinase domain and stop the EGFR activity [6, 7].

There are several reasons to conduct a study on the identification of EGFR inhibitors even

when well-established inhibitors are available for clinical use (i) as over the time resistance to

established inhibitors can develop; (ii) certain patient populations may not respond well to

established inhibitors and (iii) they may experience severe side effects and identification of

novel potential EGFR tyrosine kinase inhibitors is thus urgently required. Recent research

efforts have been focused on developing new anticancer therapies that specifically target the

EGFR signal transduction pathway, as the EGFR tyrosine kinase is involved in the initiation

and progression of various cancers [8]. However, the mutation of EGFR has resulted rapidly in

the development of clinical drug resistance to these EGFR inhibitors (especially Erlotinib and

Gefitinib) [9, 10]. The available data can greatly help to design the new EGFR inhibitors from

the diverse secondary metabolites associated with the plant and microbial sources. Apart from

the plant derived compounds, the importance of secondary metabolites of microbes is

reported in anticancer therapy using in vitro and in silico experiments [11, 12].

Microbial secondary metabolites such as antibiotics, anticancer agents, growth hormones,

and pigments, etc., are the products with low molecular mass which are not required for

microbial growth and possess excellent potential for improving animal and human health [13].

Among them, fungi and bacteria produce a wide variety of small bioactive molecules with

important therapeutic properties. Studying the therapeutic potential of secondary metabolites

produced by fungi has become the present research hotspot. Trichoderma spp. are fungi with

the extraordinary ability to produce abundant secondary metabolites with great therapeutic

potential [14]. It has been well documented that in silico evaluation of the secondary metabo-

lites through molecular docking, molecular dynamic (MD) simulation and pharmacokinetic

properties will have a substantial role in the detection of new metabolites of importance [15–

17]. Based on the above facts, the main focus of the present study was to identify the new

potential compounds from Trichoderma spp. as the inhibitors of EGFR tyrosine kinase

through in silico molecular docking, MD simulation and MM-PBSA approach.
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Materials and methods

Retrieval and preparation of secondary metabolites from Trichoderma spp.

The rationale for selecting 200 secondary metabolites produced by Trichoderma spp. as our

focused target ligand molecules (S1 Table) is that they possess attractive chemical structures

with significant biological activities such as antibacterial, antifungal, antiviral, herbicidal, nem-

aticidal and insecticidal activity [14]. Erlotinib, a well-known EGFR inhibitor, was used as a

standard inhibitor to compare the results better. The two-dimensional (2D) or three-dimen-

sional (3D) structures of selected metabolites were downloaded from the PubChem database

and ChemSpider database in Structure Data File (SDF) format. The MarvinSketch software

was used to sketch the chemical structures of metabolites that were not found in any databases.

The SDF format of structures was then converted into Protein Data Bank (PDB) format using

Open Babel software [18]. The PRODRG server (https://davapc1.bioch.dundee.ac.uk/cgi-bin/

prodrg/submit.html) optimized the geometry of the ligand PDB files prior to molecular dock-

ing. These optimized structures were then used for molecular docking studies as the ligand

molecules.

Retrieval and preparation of target protein

The crystal structure of EGFR tyrosine kinase domain with 4-Anilinoquinazoline inhibitor

Erlotinib (PDB ID: 1M17) was obtained as a target protein from the Research Collaboratory

for Structural Bioinformatics Protein Data Bank (RCSB PDB) website with a resolution of 2.60

Å [8, 19]. The 3D structure of the protein was prepared for performing the molecular docking

using BIOVIA Discovery Studio Visualizer software (version 4.0) [20]. The ligand and water

molecules found in the crystallized structure were deleted. After adding the protein’s missing

hydrogen atoms and atomic solvation parameters, the Kollman united atom charges were

assigned. The protein structure was subjected for energy minimization using Swiss-PDB

Viewer software (version 4.1.0) to relieve steric clashes and optimize the structure’s geometry.

After energy minimization, the more realistic and stable protein conformation was obtained

for docking studies and the prepared protein molecule was further validated by Ramachandran

plot analysis prior to molecular docking studies.

Molecular docking studies

The molecular docking studies were performed using the AutoDock Vina program, which was

implemented within the PyRx software (version 0.8) to predict the binding orientation and

affinity of ligand molecules to a target protein [21]. A grid box was defined around the target

protein to guide the docking calculations. The dimensions of the grid box were set to 93 × 66 ×
51 Å in the x, y, and z directions, respectively. A grid spacing of 0.375 Å was used to define the

search space for ligand binding. The exhaustiveness parameter was set to 100, which controls

the thoroughness of the docking search with higher values indicating a more exhaustive search

for potential binding poses. The binding energies resulting from the molecular docking were

expressed in kilocalories per mole (kcal/mol). These energies provide an estimate of the bind-

ing strength between the ligand and the target protein. The lower binding energies typically

indicate stronger binding. After the molecular docking, the results were visualized and ana-

lyzed using BIOVIA Discovery Studio Visualizer which allows examining and understanding

the binding interactions formed between the protein and the ligand molecules including a

standard drug used in the study. The obtained binding poses were further validated through

self-docking or re-docking wherein the ligand is docked back into the protein’s binding site to
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confirm that the docking program can reproduce the known binding pose accuratelyin order

to ensure the reliability of the docking results.

Structural similarity calculation

DataWarrior software (version 5.5.0) with a default fingerprint descriptor FragFp was used to

calculate the structural similarity between the compounds used in this study based on their

canonical SMILES structure and binding behaviour.

Pharmacokinetic studies

The pharmacokinetic studies were performed using the pkCSM-pharmacokinetic tool to cal-

culate the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of

lead molecules and their physicochemical properties during the process of drug discovery [22].

BOILED-Egg diagram and bioavailability radar map analysis were also achieved by using the

SwissADME platform to assess the absorption and bioavailability of lead compound [23].

Molecular dynamics simulation

After obtaining potential binding poses and affinity predictions from docking, the MD simula-

tions are employed to understand the dynamic behaviour of the ligand-protein complex over

time. The ligand-bound EGFR complex (with Aspochalasin M), the standard inhibitor-bound

EGFR complex (with Erlotinib), and the unbound EGFR are all placed in a simulation

box with appropriate solvent and ions. The GROMACS (Groningen Machine for Chemical

Simulations) (Version 2018.1) biomolecular software program was used to execute the MD

simulation [24, 25]. The SwissParam web-based tool was used to generate topologies and

parameters for lead compound and standard inhibitor compatible with the CHARMM all

atom force field. The pdb2gmx module of GROMACS was used to generate the topology files

from a protein structure in PDB format based on the CHARMM36 force field (https://www.

charmm.org/archive/charmm/resources/charmm-force-fields/) [26]. The cubic simulation

box with a buffer distance of 1 Å was created to simulate the system in periodic boundary con-

ditions. The TIP3P water model was used to mimic the behaviour of water in a real solution.

The appropriate number of counter ions such as sodium ions (Na+) and chloride ions (Cl–)

were also added to maintain a physiologically relevant environment.

After solvation, the system is likely to have high potential energy due to steric clashes and

other factors. The steepest descent algorithm was commonly used to perform an energy mini-

mization in order to relax the system and remove these high-energy configurations. The sol-

vated system was equilibrated in two steps: NVT (canonical ensemble) and NPT (isothermal-

isobaric ensemble). These steps ensure that the system reaches the desired temperature and

pressure conditions before the actual production MD run. The 100 ps (picoseconds) indicates

the length of time this equilibration simulation is run. The actual MD simulations were run for

100 ns at constant temperature (310 K) and 1 bar pressure [27]. In the simulation, the coordi-

nates were saved for the entire system at regular intervals, in this case, every pico second.

These saved coordinate snapshots, often referred to as trajectory frames, were used to analyze

the system’s behaviour over time. The various analysis modules implemented in the GRO-

MACS package were used for conducting conformational and structural analyses of MD

simulation.

The relevant data were extracted from the MD trajectories which typically involves the

RMSD (Root Mean Square Deviation), RMSF (Root Mean Square Fluctuation), Rg (Radius of

Gyration), SASA (Solvent Accessible Surface Area), and hydrogen bond formation over time

for each system (unbound EGFR, lead metabolite-bound EGFR, and standard inhibitor-
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bound EGFR). The data were saved in a format (e.g., CSV) that can be imported into QtGrace.

The QtGrace’s GUI was used to create the plots for each analysis parameter. Finally, the gener-

ated plots were analyzed to draw conclusions about how the systems differ in terms of RMSD,

RMSF, Rg, SASA, and hydrogen bond formation.

MM-PBSA analysis

The g_mmpbsa package, which employs Molecular Mechanics Poisson−Boltzmann Surface

Area (MM-PBSA) approach with GROMACS 2018.1 was employed to calculate the binding

free energy of ligand-bound protein complex based on the result of MD simulation [28, 29].

The binding energy was calculated for the lead metabolite (Aspochalasin M) bound and

known standard compound (Erlotinib) bound EGFR. The last 20 ns of the MD simulation tra-

jectories were utilized to calculate the binding energy (ΔGBinding) with dt 1000 frames of the

lead metabolite-bound protein complex by using the equations below:

DGBinding ¼ Gcomplex � GProtein þ GLigand

� �
ð1Þ

DG ¼ DEMM þ DGSolvation � TDS ¼ DEðBondedþNon� bondedÞ þ DG PolartþNon� polarð Þ � TDS ð2Þ

where, GBinding expresses the binding free energy, GComplex expresses the total energy of lead

metabolite/standard inhibitor bound target protein complex, and GProtein and GLigand express

the total energy of protein and ligand in water surrounded environment, respectively.

ΔEMMexpresses the average molecular mechanic’s potential energy in a vacuum, GSolvation

expresses the solvation energy, ΔE expresses the total energy of bonded plus non-bonded inter-

actions, ΔG expresses the estimated binding free energy, ΔH expresses the estimated enthalpy

contribution, ΔS expresses the change in system entropy upon ligand binding, T expresses the

Temperature in Kelvin.

Results and discussion

The use of small molecule inhibitors that specifically target the inhibition of the activity of

human EGFR tyrosine kinase is considered a promising therapeutic approach for cancer treat-

ment [3, 7]. The present study targeted EGFR tyrosine kinase suppression to identify the anti-

cancer inhibitors from the secondary metabolites in Trichoderma spp. through in silico
computational methods. The rationale for the selection of the crystal structure of EGFR tyro-

sine kinase domain with 4-Anilinoquinazoline inhibitor Erlotinib (PDB ID: 1M17) as our

focused target protein is that the overexpression of EGFR has been associated with the

advanced stages of numerous types of cancers, particularly lung, colon, breast, bladder and

pancreatic cancers [8, 19].

Molecular docking analysis

Docking studies are typically the first step in understanding how a ligand interacts with a tar-

get protein (EGFR). This involves predicting the preferred binding pose and affinity of the

ligand within the protein’s binding site. Among the 200 secondary metabolites evaluated, three

metabolites, namely Harzianelactone A (– 9.0 kcal/mol), Pretrichodermamide G (– 9.1 kcal/

mol) and Aspochalasin M (– 9.4 kcal/mol) present in Trichoderma spp. showed the potential

binding ability (cut-off value�– 9.0 kcal/mol) against EGFR compared to other metabolites

and standard inhibitors. In the present study, the cut-off value�– 9.0 kcal/mol was considered

the most effective threshold value of binding energy for validating correct posed molecules

and selecting the top lead molecules. Docking scores of the metabolites against the targeted
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protein are tabulated in S1 Table. The standard EGFR inhibitor, Erlotinib, showed– 7.3 kcal/

mol binding energy. The 2D structures of lead and standard compounds against EGFR tyro-

sine kinase domain are represented in Fig 1. The binding pose of top lead EGFR tyrosine

kinase inhibitors and the standard compound is depicted in Fig 2. The molecular docking

studies provide valuable insights into the amino acids that are crucial for ligand inhibition

which is crucial for rational drug design and understanding the molecular basis of biological

processes. The identification of amino acids that are important for the inhibition based on

molecular docking results typically involves analyzing the binding interactions between a

ligand (e.g., a drug or small molecule) and a target protein (e.g., an enzyme or receptor) [30].

During the study, Aspochalasin M formed hydrogen bonds with THR766 and ARG817

amino acid residues of the EGFR tyrosine kinase domain (Fig 3). The hydrogen bond forma-

tion with these amino acids plays a vital role in stabilizing the protein ligand binding and over-

all binding affinity and specificity thereby leading to enzyme inhibition. When a ligand forms

hydrogen bonds with specific amino acid residues, it helps to lock the ligand into the binding

pocket and enhances the strength of the interaction [31]. The results indicate that amino acid

THR766 has polar or hydrogen bond donor/ acceptor groups within its side chain and when

the ligand (Aspochalasin M) forms a hydrogen bond with THR766, it leads to the stabilization

of the enzyme EGFR tyrosine kinase domain. Likewise, ARG817, an arginine residue, has a

positively charged guanidine group that helps participate in hydrogen bond interactions

through their amino groups with electronegative groups on the ligand (such as oxygen atoms),

thereby enhancing the binding affinity. From the studies of Stamos et al. [19], it may be

observed that the H-bond formation with native ligand (Erlotinib) in the EGFR protein struc-

ture was observed with MET769 and THR766. In addition, they have also noted that a water

molecule was required in order to bridge the H-bond for THR766. But during the present

study, as the H-bond was formed readily with the THR766 with all the three potential inhibi-

tors and hence additional water molecule may not be required/ play any role in bridging the

hydrogen bonds with THR766. Moreover, Aspochalasin M showed hydrophobic interactions

at the active site of targeted EGFR during the study and these hydrophobic interactions are

known to play a crucial role in enhancing binding specificity [32]. The results highlight the

potential of specific metabolite, especially Aspochalasin M, as a strong EGFR inhibitor based

on its binding energies and interaction patterns.

In addition, during the re-docking, the RMSD values of the selected compounds were� 2.0

Å in the present study, which agree with the findings of Ramirez and Caballero [33],

wherein� 2.0 Å of RMSD corresponds to the good docking solutions. In the virtual screening

of 329 naturally occurring plant-based flavonoids, six flavonoids were found to be potential

EGFR inhibitors with good docking scores [34]. Sepay et al. [35] have reported that Rhamnoci-

trin derivative Tupichinols E from Tupistra chinensis showed 1.4 times more binding affinity

with EGFR tyrosine kinasethan Osimertinib (a well-known EGFR inhibitor). The four quinox-

alinone containing compounds such as CPD4, CPD15, CPD16 and CPD21 were promising to

possess a lower than −7.0 kcal/mol compared to the reference drug (Osimertinib) towards the

tyrosine kinase domain of EGFR [36].

Structural similarity calculation

The structurally similar ligand molecules will bind to the same/identical biological targets and

occupy the same region in the binding sites of protein receptors, thereby supporting in design-

ing strategies by shape similarity for their potential application during the drug discovery pro-

cess [37, 38]. This matching between the structurally similar ligand molecules may indicate the

similar pharmacological action at the protein receptor. All the selected compounds and
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Erlotinib were further used to calculate structural similarity based on the correlation between

the compound’s canonical SMILES structure similarity and binding behaviour. Fig 4 repre-

sents the more relevant range above 80% structural similarity. The compounds were arranged

by their structural similarity relationship and similar binding affinity range. Thestudy’s struc-

turally similar ligands offered similar binding affinity to the target protein (EGFR tyrosine

kinase) as they occupied the same 3D position in the binding sites of the protein receptor, as

noticed in the studies of Gowtham et al. [29].

Pharmacokinetic studies

The physicochemical and pharmacokinetics properties of lead metabolites of Trichoderma
spp. and standard EGFR inhibitor (Erlotinib) are predicted during the drug development

Fig 1. Structure of lead metabolites of Trichoderma spp. and standard inhibitor having the potential to bind at the active binding sites of

EGFR tyrosine kinase domain.

https://doi.org/10.1371/journal.pone.0296010.g001
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process. Lipinski’s rule of five is the most popular method for determining the drug-likeness

properties, which predict the ability of compounds to be active orally in the human body. This

rule helps to evaluate the drug-likeness properties viz., molecular weight (expressed as g/mol),

H-bond donors-acceptors, rotatable bonds and log P value. According to the rule, any drug-

like compound must have a molecular weight� 500 g/mol, 5 H-bond donors, 10 H-bond

acceptors, 10 rotatable bonds and a calculated partition coefficient (log P)>5. The results of

physicochemical properties are presented in Table 1.

Fig 2. 3D interaction of lead metabolites of Trichoderma spp. and standard inhibitor at the active binding sites of EGFR tyrosine kinase

domain.

https://doi.org/10.1371/journal.pone.0296010.g002
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The prediction of ADMET properties is an essential criterion during the drug discovery

process since they are responsible for around 60% of clinical drug development failure due to

their poor drug-like properties [39]. Initially, the ADMET properties are predicted using in sil-
ico tools in the drug development to filter out the compounds from the pipeline with poor

Fig 3. 2D interaction of lead metabolites of Trichoderma spp. and standard inhibitor at the active binding sites of EGFR tyrosine kinase

domain.

https://doi.org/10.1371/journal.pone.0296010.g003
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ADMET properties, hence decreasing the cost of research and development. In addition, the

ADME studies offered scientific evidence that the potential metabolites are clinically prevalent,

thereby supporting the use of the same metabolites for further in vitro and in vivo studies

(Table 2). Regarding the absorption properties, Aspochalasin M was found to have a promising

oral availability attributable to its optimal Caco-2 cell permeability (>0.9), intestinal absorp-

tion (>90%) and skin permeability (log Kp<−2.5 cm/h). The volume of distribution (VDss)

and fraction unbound (Fu) are the most imperative pharmacokinetic properties of drugs [40].

The VDss values determine the extent of drug distribution, while the unbound fraction deter-

mines the amount of unbound drug in plasma that is free to discharge. A VDss value of>0.45

predicts drug distribution in tissue, but a VDss value of<−0.15 predicts drug distribution in

plasma. Aspochalasin M, which shows the intermediate VDss value range (– 0.016), had an

Fig 4. Structural similarity of 200 compounds and standard drug used in the study. Lines between the dots represent the structurally

similar compounds and the numbers on each dot represent the compound name, as listed in S1 Table.

https://doi.org/10.1371/journal.pone.0296010.g004

Table 1. Physicochemical properties of lead metabolites of Trichoderma spp. and standard inhibitor.

Descriptor Harzianelactone A Pretrichodermamide G Aspochalasin M Erlotinib

Molecular weight (g/mol) 318.457 466.537 401.547 393.443

log P 3.7092 0.19504 3.3651 3.4051

Rotatable bonds 0 1 2 10

Hydrogen bond acceptors 3 9 4 7

Hydrogen bond donors 1 5 2 1

Polar surface area (Å2) 139.03 185.351 173.565 169.532

https://doi.org/10.1371/journal.pone.0296010.t001
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adequate distribution in plasma with an unbound fraction (0.084). These results showed that

Aspochalasin M had a good plasma distribution and significant unbound fraction, allowing it

to interact with the drug’s pharmacological target.

In addition, Aspochalasin M with log PS value => –3 suggested that it could penetrate the

central nervous system (CNS) compared to the standard inhibitor (Erlotinib). The predicted

total clearance values determine the capacity of the body to remove the drug. It was indicated

that Aspochalasin M has a good renal elimination (0.804 mL/min/kg) and was the renal

organic cation transporter 2 (OCT2) substrate compared to Erlotinib. To explore the adverse

detrimental effects of compounds on humans, it is necessary to assess their toxicology. There-

fore, it is another crucial step in the drug discovery process. In our study, toxicity tests revealed

that Aspochalasin M showed non-mutagenicity with no harmful side effects (viz., hERG toxic-

ity, hepatotoxicity and skin irritation) and exhibited favourable logBB value. It was also discov-

ered that the acute toxicity level (LD50) of Aspochalasin M to cause death was 2.638 mol/kg.

Table 2. Predicted pharmacokinetic and toxicity properties of lead metabolites of Trichoderma spp. and standard inhibitor.

Model Name Harzianelactone A Pretrichodermamide G Aspochalasin M Erlotinib

A
bs
or
pt
io
n

Water solubility (log mol/L) – 4.71 – 3.213 – 4.353 – 4.403

Caco-2 permeability (log Papp in 10−6 cm/s) 1.374 0.583 1.313 1.238

Human intestinal absorption (% Absorbed) 95.818 57.987 96.811 95.549

Skin permeability (log Kp in cm/h) – 3.569 – 2.775 – 3.341 – 2.738

P-glycoprotein substrate No Yes Yes No

P-glycoprotein I inhibitor Yes No Yes Yes

P-glycoprotein II inhibitor No No Yes Yes

D
is
tr
ib
ut
io
n Human VDss (log L/kg) 0.408 0.263 – 0.016 – 0.053

Human fraction unbound (Fu) 0.179 0.326 0.084 0.04

BBB permeability (log BB) 0.283 – 1.469 0.3 – 0.67

CNS permeability (log PS) – 2.573 – 3.99 – 1.879 – 3.384

M
et
ab
ol
is
m

CYP2D6 substrate No No No No

CYP3A4 substrate Yes No Yes Yes

CYP1A2 inhibitor No No No Yes

CYP2C19 inhibitor No No No Yes

CYP2C9 inhibitor No No No Yes

CYP2D6 inhibitor No No No No

CYP3A4 inhibitor No No No Yes

E
xc
re
tio
n Total clearance (log mL/min/kg) 0.596 0.041 0.804 0.591

Renal OCT2 substrate Yes No Yes No

T
ox
ic
ity

AMES toxicity No No No No

Human Max. tolerated dose (log mg/kg/day) – 0.398 – 0.428 – 0.723 0.002

hERG I inhibitor No No No No

hERG II inhibitor No No No Yes

Oral Rat Acute Toxicity (LD50) (mol/kg) 1.82 4.024 2.638 2.368

Oral Rat Chronic Toxicity (LOAEL) (log mg/kg bw/day) 1.728 3.227 1.76 0.88

Hepatotoxicity No Yes No Yes

Skin sensitisation No No No No

Tetrahymena pyriformis toxicity (log μg/L) 0.914 0.285 0.449 0.334

Minnow toxicity (log mM) 0.662 3.197 0.751 – 0.437

https://doi.org/10.1371/journal.pone.0296010.t002
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Finally, Aspochalasin M was found to pass the T. pyriformis and Minnow toxicity tests com-

pared to the standard inhibitor (Erlotinib).

The important factors in improving bioactivity and overall body health are the absorption

and metabolism of the drug in the human body and the drug’s bioavailability to target cells. The

pharmacokinetic properties affect the drug permeability across the various physiological barri-

ers (viz., membrane permeability, blood–brain barrier penetration and gastrointestinal absorp-

tion) in humans. The BOILED-Egg model quickly predicts passive blood–brain barrier

penetration and gastrointestinal absorption of bioactive molecules in the drug-designing pro-

cess. The BOILED-Egg diagram prepared for the lead metabolites (viz., Harzianelactone A, Pre-

trichodermamide G and Aspochalasin M) present in Trichoderma spp. and standard inhibitor

(Erlotinib) showed satisfactory results (Fig 5A). The chemicals that are anticipated to passively

cross the blood–brain barrier are located in the yolk (yellow) area of BOILED-Egg. It was

assumed that Harzianelactone A and Erlotinib would passively cross the blood–brain barrier

because they are found in the yolk of BOILED-Egg. The chemicals that are anticipated to be

absorbed passively by the gastrointestinal tract are located in the white (albumin) region of BOI-

LED-Egg. It was hypothesized that Aspochalasin M would have superior absorption in the

digestive system because it is found in the white of BOILED-Egg. The blue dots represent the

chemicals that P-glycoprotein is expected to remove from the CNS. The P-glycoprotein was

anticipated to remove Aspochalasin M and Pretrichodermamide G from the CNS. The red dots

represent the chemicals that P-glycoprotein is expected not to remove from the CNS. It was pre-

dicted that P-glycoprotein wouldn’t remove Harzianelactone A and Erlotinib from the CNS.

Protein-drug binding that influences the bioavailability and distribution of active com-

pounds is a major limiting factor in the absorption of drugs across biological barriers [41].

Besides, the oral bioavailability of the drug is also a crucial and critical factor in drug design. A

higher score lowers the amount of drug that must be delivered to achieve its anticipated phar-

macological effect and vice-versa, thereby lowering the risk of side effects and toxicity [16, 17].

The higher absorption of the molecules’ gastrointestinal tract naturally leads to improved bio-

availability. Based on the observed results, the top three binding scored metabolites (such as

Harzianelactone A, Pretrichodermamide G and Aspochalasin M) and standard inhibitor

(Erlotinib) had a considerable gastrointestinal absorption with a positive bioavailability score

of 0.55 (Fig 5B). As a result, Aspochalasin M may improve its absorption in the digestive sys-

tem when administered orally. The results highlighted that the lead metabolite Aspochalasin

M could be an excellent possible drug-like candidate for cancer treatment and could lead to

further studies.

Molecular dynamics simulation

Based on docking results, the MD simulation was run on an unbound EGFR tyrosine kinase

domain, Aspochalasin M-bound EGFR tyrosine kinase domain system, to study the dynamic

behaviour of targeted protein in a solvated environment with respect to time. Simultaneously,

the experimentally validated inhibitor (Erlotinib) of EGFR was also employed to compare the

results. In this investigation, three simulations with unbound protein and representative com-

pounds bound protein complex were run at 100 ns time. The simulation results presented the

analysis of RMSD, RMSF, Rg and SASA of protein-ligand complex, the number of ligand

hydrogen bonds maintained during MD simulation and variations in protein secondary struc-

ture and their complexes.

The RMSD is a common metric that used in MD simulations to assess the stability of a pro-

tein or protein-ligand complex over time [42]. A lower RMSD value indicates greater stability.

The RMSD plot for the EGFR-Erlotinib complex showed that it became stable at around 40 ns
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into the simulation. This suggests that the EGFR-Erlotinib complex reached a relatively stable

conformation at this point and remained stable thereafter. In contrast, the RMSD graphs for

the EGFR-Aspochalasin M and EGFR-Erlotinib complexes showed a divergence from the pro-

tein plot’s orientation at around 30 ns. This divergence indicates that both complexes started

to deviate from their initial conformations and became less stable. The EGFR-Aspochalasin M

complex exhibited greater stability in the binding site compared to the EGFR-Erlotinib com-

plex. This suggests that, despite the initial divergence, the EGFR-Aspochalasin M complex

eventually reached a stable conformation that was more favorable in the binding site compared

to the EGFR-Erlotinib complex (Fig 6A).

Fig 5. BOILED-Egg diagram (A) and bioavailability radar map (B) of lead metabolites of Trichoderma spp. and standard inhibitor. The pink

region within the hexagon shows the optimal range of each drug-likeness property. Lipophilicity (LIPO) as XLOGP3 is ranged between −0.7

and +5.0, molecular weight (SIZE) is ranged between 150 and 500 g/mol and polar surface area (POLAR) as topological polar surface area

(TPSA) is ranged between 20 and 130 Å2), insolubility (INSOLU) in water by log S scale is not> 6, in saturation (INSATU) as the fraction of

carbons in sp3 hybridization is ranged between 0.25 and 1, and flexibility (FLEX) of rotatable bonds is not> 9 [23].

https://doi.org/10.1371/journal.pone.0296010.g005
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The RMSF is a measure used to assess the flexibility or fluctuation of individual atoms or

residues within a protein structure during a simulation [43]. It helps identify regions of the

protein that experience the most or least structural variation compared to the mean structure.

The C-terminal region of the protein showed the larger fluctuations in RMSF which suggests

Fig 6. Visualization of MD simulation trajectory plots of EGFR tyrosine kinase domain in unbound, lead metabolite (Aspochalasin M)

bound and standard inhibitor (Erlotinib) bound complex during 100 ns MD simulation period. A: RMSD; B: RMSF; C: SASA; D: Rg and E:

Hydrogen bond formation. Green: unbound EGFR tyrosine kinase domain, orange: EGFR tyrosine kinase domain-Aspochalasin M complex

and purple: EGFR tyrosine kinase domain-Erlotinib complex.

https://doi.org/10.1371/journal.pone.0296010.g006
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that this part of the protein experienced significant structural variability during the simulation.

The RMSF plots for the compounds (Aspochalasin M and Erlotinib) displayed minor oscilla-

tions throughout the simulation which means that the compounds remained relatively stable

in terms of their interactions with the protein, with only small fluctuations in their positions

within the binding site. When comparing the two complexes, the EGFR-Aspochalasin M com-

plex exhibited less fluctuation (i.e., greater stability) compared to the EGFR-Erlotinib complex.

This indicates that Aspochalasin M had a more stable binding within the pockets of EGFR,

with fewer variations in its position during the simulation (Fig 6B).

The Rg is a measure that used in MD simulations to assess the compactness or spatial distri-

bution of atoms within a molecule or a region of a protein [44]. It calculates the root mean

square distance of all atoms from their common center of mass by taking into account their

masses and positions. The Rg accounts for the various masses of atoms when calculating the

distances and considers the folding, shape, and flexibility of the molecule or protein at each

time step during the simulation trajectory. It also accounts for rotational motion around an

axis. During the Rg analysis, it was observed that Aspochalasin M was tightly packed inside the

binding pockets of EGFR. This suggests that Aspochalasin M maintained a compact and stable

conformation within the binding site of the EGFR protein throughout the simulation (Fig 6C).

The SASA is a measure that used in MD simulations to calculate the exposed surface area of

a molecule, often a protein or protein-ligand complex, to the surrounding solvent molecules

[45]. The SASA analysis focuses on calculating the circumference or surface area of the hydro-

phobic cores within the protein-ligand complexes. Hydrophobic cores are typically regions of

a protein or complex that contain hydrophobic (non-polar) amino acids and are involved in

ligand binding. It is particularly useful for understanding the hydrophobic and hydrophilic

regions of a molecule. The SASA for the protein-ligand complexes decreased which indicates

that the protein and ligands (Aspochalasin M and Erlotinib) interacted effectively within the

inhibitor’s binding site. This decrease in SASA suggests that the complexes became more com-

pact or buried in the binding site due to their interaction. The EGFR bound-Aspochalasin M

complex and EGFR bound-Erlotinib complex showed contemporaneous plots on the SASA

plots. This suggests that both complexes exhibited similar behaviour in terms of SASA during

the simulation. However, the plot further suggests that the EGFR bound-Aspochalasin M com-

plex had a more effective capability for binding compared to the EGFR bound-Erlotinib com-

plex (Fig 6D).

The hydrogen bonds are important interactions between atoms in molecules, and in the

context of MD simulations, they can reveal the stability of ligand-protein interactions [31].

According to the analysis, the hydrogen bonds between the ligands and specific amino acid

residues (THR766, ASP817, MET769) were consistently present throughout the entire dura-

tion of the simulation being investigated. This suggests that these interactions were stable and

enduring over time. Aspochalasin M was found to form two hydrogen bonds, one with

THR766 and another with ASP817. On the other hand, Erlotinib formed one hydrogen bond

with MET769. It is important to note that the analysis focused on intermolecular hydrogen

bonds between the ligands and the relevant amino acid residues which means that only hydro-

gen bonds directly involved in the ligand-protein interactions were considered. Based on the

analysis, it appears that Aspochalasin M can potentially form a maximum of seven hydrogen

bonds, while Erlotinib can form up to three hydrogen bonds. This suggests that Aspochalasin

M has a greater capacity for hydrogen bond interactions with the protein compared to Erloti-

nib (Fig 6E). The MD simulation at 100 ns showed that Tupichinols E could stabilize the pro-

tein structure when it binds to EGFR tyrosine kinase [35].
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MM-PBSA analysis

Information regarding the degree of ligand affinity for the protein can be determined by ana-

lyzing the binding free energy. This energy is the difference in free energy between the

completely ligand-bound and unbound states [46] (Dong et al., 2021). Further, the MM-PBSA

analysis of the lead metabolite (Aspochalasin M)/ standard inhibitor (Erlotinib)–bound EGFR

tyrosine kinase domain complex trajectories of the last 20 ns (80–100 ns) MD simulations

were performed to determine the complex’s thermodynamics parameters such as van der

Waals energy (Evdw), electrostatic energy (EElec), polar solvation energy (ΔEPolar), SASA energy

and binding free energy (ΔEBinding), all of which are expressed as kcal/mol (Table 3). Com-

pared to other energies, van der Waals energy was the main driver of complex formation [47,

48] and it can be inferred that the binding energy and van der Waals energy significantly influ-

enced the complex formation. Based on energy calculation, the expected outcomes were largely

beneficial from an energetic standpoint. Additionally, it was discovered that the EGFR bound-

Aspochalasin M complex had larger (more negative) binding free energies than the EGFR

bound-Erlotinib complex, indicating that it is more stable and would need more energy to dis-

sociate. Our findings corroborate the outcomes of molecular docking and MD simulations

regarding the compound’s overall binding efficiency.

Conclusion

Small molecule natural products such as anEGFR tyrosine kinase inhibiting drug have

attracted great interest for cancer treatment since these molecules could potentially have a

high affinity for and inhibit the enzyme with minimal side effects. Therefore, the efficiency of

secondary metabolites of Trichoderma spp. was explored for suppressing the EGFR tyrosine

kinase to the current regime of cancer therapeutics in the present study through in silico
molecular docking, MD simulation and MM-PBSA approach. Among 200 secondary metabo-

lites, three leading metabolites (Harzianelactone A, Pretrichodermamide G and Aspochalasin

M) demonstrated the least binding energy to EGFR tyrosine kinase than the standard EGFR

inhibitor (Erlotinib). In addition, the MD simulation studies confirmed the stability of the

EGFR tyrosine kinase–Aspochalasin M complex. The pharmacokinetic and toxicity properties

further confirmed the efficiency of Aspochalasin M as a non-mutagenic with no harmful side

effects (viz., hERG toxicity, hepatotoxicity and skin sensitization) and exhibited favourable

logBB value. In addition, the BOILED-Egg model was predicted that Aspochalasin M has supe-

rior absorption in the digestive system and removed from the CNS. The positive bioavailability

score (0.55) of Aspochalasin M might improve its absorption in the digestive tract when

administered orally. In conclusion, Aspochalasin M could be an excellent drug-like candidate

for cancer treatment. Furthermore, additional in vitro and in vivo animal studies are required

to validate the anticancer effects of Aspochalasin M present in Trichoderma spp.

Table 3. Binding free energy calculations of EGFR tyrosine kinase complexed with the lead metabolite of Trichoderma spp. and standard inhibitor.

Category 1M17-Aspochalasin M complex 1M17-Erlotinib complex

Values (kcal/mol) Values (kcal/mol)

Van der Waal’s energy – 103.746 – 88.198

Electrostatic energy – 3.672 – 5.564

Polar salvation energy 26.164 20.810

SASA energy – 8.120 – 5.245

Binding energy – 79.440 – 47.338

https://doi.org/10.1371/journal.pone.0296010.t003
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Supporting information

S1 Table. Docking score of secondary metabolites of Trichoderma spp. against EGFR tyro-

sine kinase domain.
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