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Abstract

Research has shown that maladaptive personality characteristics, such as Neuroticism, are

associated with poor outcome after mild traumatic brain injury (mTBI). The current explor-

atory study investigated the neural underpinnings of this process using dynamic functional

network connectivity (dFNC) analyses of resting-state (rs) fMRI, and diffusion MRI (dMRI).

Twenty-seven mTBI patients and 21 healthy controls (HC) were included. After measuring

the Big Five personality dimensions, principal component analysis (PCA) was used to obtain

a superordinate factor representing emotional instability, consisting of high Neuroticism,

moderate Openness, and low Extraversion, Agreeableness, and Conscientiousness. Per-

sistent symptoms were measured using the head injury symptom checklist at six months

post-injury; symptom severity (i.e., sum of all items) was used for further analyses. For

patients, brain MRI was performed in the sub-acute phase (~1 month) post-injury. Following

parcellation of rs-fMRI using independent component analysis, leading eigenvector dynamic

analysis (LEiDA) was performed to compute dynamic phase-locking brain states. Main pat-

terns of brain diffusion were computed using tract-based spatial statistics followed by PCA.

No differences in phase-locking state measures were found between patients and HC.

Regarding dMRI, a trend significant decrease in fractional anisotropy was found in patients

relative to HC, particularly in the fornix, genu of the corpus callosum, anterior and posterior

corona radiata. Visiting one specific phase-locking state was associated with lower symp-

tom severity after mTBI. This state was characterized by two clearly delineated communities

(each community consisting of areas with synchronized phases): one representing an
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executive/saliency system, with a strong contribution of the insulae and basal ganglia; the

other representing the canonical default mode network. In patients who scored high on emo-

tional instability, this relationship was even more pronounced. Dynamic phase-locking

states were not related to findings on dMRI. Altogether, our results provide preliminary evi-

dence for the coupling between personality and dFNC in the development of long-term

symptoms after mTBI.

1. Introduction

A mild traumatic brain injury (mTBI) can have a significant and long-lasting impact on a per-

son’s life, but the exact pathophysiological mechanism remains a conundrum for clinicians

and scientists. Especially, untangling the influence of traumatic injury on the brain in the light

of pre-existent factors, such as personality, emotion regulation and coping, has proven to be

very challenging [1,2]. Advanced neuroimaging techniques, such as resting-state functional

MRI (rs-fMRI), have improved our understanding of mTBI and its sequelae. The human mind

is in constant motion, and so is the underlying functional architecture [3]. Considering this

time-varying nature of the human brain, it is likely that dynamic functional connectivity

(dFC) or its network analog dynamic functional network connectivity (dFNC) analysis of

fMRI data is better suited for studying the complex pathophysiology of mTBI than its static

counterpart [3,4]. There is a growing body of research on time resolved connectivity

approaches to investigate mTBI, however, to our knowledge no studies have focused on dFC

and personality [4–9].

Most measures of personality focus on the so-called Big Five personality traits, which are

Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness [10]. The stron-

gest evidence for the role of personality in recovery after mTBI has been found for Neuroti-

cism, which is positively correlated with persistent post-traumatic symptoms [11–13].

Neuroticism is the general tendency to focus on negative emotions and to worry, and therefore

to experience higher stress levels. Other personality domains of the Big Five, namely Extraver-

sion, Openness, Agreeableness, and Conscientiousness, have also been investigated, although

the direction of the association with symptoms varies between studies [11–13]. Interestingly,

studies in non-mTBI subjects have shown the existence of a hierarchical structure of the Big

Five, which is the subdivision into superordinate personality traits based on a weighted combi-

nation of the Big Five [14]. For example, evidence has been found for a Two Trait structure

(Big Two), consisting of one trait representing emotional (in)stability, and the other personal

growth / positive emotionality [14,15]. As far as we know, this has not been examined in

mTBI.

Various studies have examined brain activity and connectivity in relation to personality in

healthy individuals [16–19]. Furthermore, dFNC has been found to be related to Neuroticism

and Extraversion in patients with major depressive disorder [20]. Interestingly, cognitive net-

works that are related to Neuroticism, such as the default mode and salience network, have

also been implicated in the pathophysiology of mild TBI [16,17,21,22]. To the best of our

knowledge, the interaction between functional network connectivity and personality charac-

teristics in mTBI has not been studied. It could be hypothesized that patients with adverse per-

sonality traits, for example characterized by high Neuroticism, are less able to recover from

changes in functional connectivity resulting from the injury. It is not unlikely that perturba-

tions in the neural circuitry that is involved in emotion regulation, which is closely related to
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personality traits, may result in poor recovery [23,24]. This might also be related to micro-

structural injury to underlying white matter tracts, although our previous work has not shown

strong evidence for this [25]. Alternatively, pre-existent neural configurations of this circuitry

might determine recovery after a mTBI. Altogether, it seems worthwhile to investigate dFNC

in relation to personality in recovery after mTBI.

Over the last decade, the technical possibilities to measure dFNC have increased signifi-

cantly. Studies using dFNC typically focus on changes in functional connectivity within reoc-

curring patterns of connectivity (i.e., states), changes in spending time in specific states, and/

or changes in transition patterns between dynamic states in patients with mTBI relative to HC,

as well as relationships with outcome [4,6,26]. The majority of work has focused on sliding

window correlation (SWC) based approaches. This technique requires selecting a window size,

an implicit filtering choice that optimizes the approach to a particular range of time-resolved

changes. Initial studies use a single fixed window size, however more recent approaches, e.g.,

filterbanks, can cover an arbitrary range of frequencies [27,28]. Other approaches include

those focused on computing connectivity patterns based on phase coherence, so called phase-

locking states [29,30]. In this work we focus on a phase coherence approach called the leading

eigenvector dynamics analysis (LEiDA) [29]. This technique captures recurrent patterns of

phase locking between brain subsystems, by clustering the dominant eigenvectors of phase

coherence obtained per time point. Here we apply this method to identify specific changes in

dFNC in mTBI, which to our knowledge has not been done before.

The current exploratory study set out to investigate dFNC using the LEiDA method within

the context of an independent component analysis (ICA) based parcellation. The following

research questions were formulated: (1) Are phase-locking state measures different in patients

with mTBI in the sub-acute phase (i.e., first weeks up to 3 months post-injury) relative to

healthy controls (HC)?; (2) Is there an interaction between personality characteristics and

phase-locking state measures explaining long-term recovery of patients with mTBI in terms of

post-traumatic symptoms and functional outcome? Hereby we focus on personality features

that have been associated with emotional instability [14]; (3) Are state measures related to

microstructural changes as measured with diffusion magnetic resonance imaging (dMRI)?

The latter question will provide insight in the association between dFNC and axonal injury (as

reflected by abnormalities in diffusion metrics). We predicted that a personality profile associ-

ated with emotional instability would be related to poor long-term outcome, and that patients

with a more emotionally unstable profile would spend more time in states that are associated

with internal mentation (e.g., with a dominance of the default mode network) and would show

fewer state transitions (i.e., more rigid/less flexible dFNC). We anticipated that this would be

accompanied by little or no changes in dMRI measures, in accordance with our previous work

[25].

2. Methods

2.1. Participants

In the period between January 17, 2020 and December 12, 2022, 27 patients with mTBI and 21

healthy controls were included in this neuroimaging study. This study was part of a larger pro-

spective cohort study (AIM-TBI study, Dutch Trial Register/International Clinical Trials Reg-

istry Platform no. NL8484). Inclusion took place in the University Medical Center Groningen

(UMCG), the Netherlands, which is a level 1 trauma center. Participants aged 18 years or older

were included. Exclusion criteria were major neurologic or psychiatric comorbidity, admission

for prior TBI (all severities included; this data was acquired during patient history at the Emer-

gency Department and again via the two week questionnaire), drug or alcohol abuse, mental
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disability, language barriers or illiteracy prohibiting understanding and completion of ques-

tionnaires, and contraindications for MRI. An additional exclusion criterion for HC was:

any prior TBI. A mild TBI was defined by a Glasgow Coma Scale (GCS) score of 13–15, loss

of consciousness �30 min and/or post-traumatic amnesia �24 hours, in accordance with

the 1993 criteria of the American Congress of Rehabilitation Medicine [31]. All patients

were seen by a Neurology resident during admission at the Emergency Department, and

received head computed tomography (CT; based on the Dutch guideline for mild TBI [32]).

The healthy control group was matched with the mTBI group based on age, sex and

education.

The AIM-TBI study was approved by the by the Medical Ethical Committee of the UMCG

(METc 2018/681), and all participants provided written informed consent. Study procedures

were performed in accordance with the declaration of Helsinki.

2.2. Follow-up questionnaires

Longitudinal clinical data were acquired (while patients and HC were scanned only once). At

two weeks post-injury, the NEO-Five Factor Inventory (FFI) was used to measure the Big Five

personality traits [33]. This inventory consists of 60 items with each scored on a five point

Likert scale ranging from ‘strongly disagree’ to ‘strongly agree’. Total scores were computed

for the following personality dimensions: Neuroticism, Extraversion, Openness to Experience,

Agreeableness, and Conscientiousness. To obtain a main personality profile for every subject

that is related to emotional instability [34], principal component analysis (pca; singular value

decomposition) with varimax rotation was performed on the raw dimension scores (z-scored)

using MATLAB’s pca and rotatefactors functions. Subject scores on the first component

(which corresponded with the superordinate trait emotional instability; explaining nearly half

of the variance (47%)) were selected for further analyses.

At time of scanning, and at six months post-injury the head injury symptom checklist

(HISC) was administered to patients; for HC the interval between first and second measure-

ment was approximately six months [35]. This self-report questionnaire consists of items

related to 21 frequently reported post-traumatic symptoms, which can be scored 0 (never), 1

(sometimes) or 2 (often) for both current as well as pre-injury situation. The severity of symp-

toms was calculated as the sum of all item scores. Only the current severity level was used, so

that it could be compared with healthy controls. Twenty-five of all patients (89%) completed

questionnaire at six months.

At six months post-injury, the Glasgow Outcome Scale Extended (GOS-E) questionnaire

was also administered to patients with mTBI [36]. This eight-point scale measures outcome

from (1) death to (8) full recovery. A dichotomy between complete recovery (score = 8) and

incomplete recovery was used for statistical analyses (score < 8).

2.3. Imaging acquisition

MRI scans were made using a 3 Tesla Siemens MAGNETOM Prisma scanner (Siemens,

Erlangen, Germany) equipped with a 64-channel SENSE head coil. Patients were scanned in

the sub-acute phase post-injury (median of 30 days post-injury). A high-resolution transversal

T1-MPRAGE volume was recorded for anatomical reference (repetition time (TR) 2300 ms;

echo-time (TE) 2.98 ms; flip angle (FA) 9˚; field of view (FOV) 240×256×176 mm; voxel size

1×1×1 mm). For resting-state fMRI, 400 volumes were recorded (with eyes closed) in descend-

ing order using a multi-band 4 sequence (TR 1600 ms; TE 34 ms; FA 70˚; FOV 224×224×144

mm; voxel size 2×2×2 mm). For diffusion weighted imaging, single shot echo planar imaging

was used in 64 diffusion directions (b-value = 1500 sec/mm2, TR 5000 ms, TE 81 ms, FOV
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220×220×132 mm, voxel size 2.2×2.2×2.2 mm). In addition, two volumes without diffusion

weighting (b-value = 0 sec/mm2) were recorded, one using anterior-posterior and one using

posterior-anterior phase encoding direction. For 26 (93%) patients and all HC, also DWI data

was recorded.

Lastly, a susceptibility weighted image (SWI; TR 39 ms; TE 31 ms; FA 15˚; FOV

227×250×141 mm; voxel size 0.8×0.8×0.8 mm), and T2-FLAIR image (TR 5000 ms; TE 386

ms; FOV 256×256×192 mm; voxel size 1×1×1 mm) were recorded. These images were assessed

for traumatic lesions by an experienced radiologist (M.G.J.K.), who was blinded for group

label and data regarding CT lesions.

2.4. fMRI analysis

In Supporting Information 1 a list of abbreviations and definitions regarding the neuroimag-

ing analyses can be found. Raw imaging data were first converted to NIfTI using dcm2niix
(v1.0.20210317) and then organized into BIDS format using custom built MATLAB software.

Supporting Information 2 shows the fMRI processing pipeline. For preprocessing of the rest-

ing-state fMRI data, the fMRIPrep pipeline (v. 20.2.3) was used with slice timing correction,

co-registration of the anatomical and functional images, "fieldmap-less" SyN-based susceptibil-

ity distortion correction, normalization to MNI space, and (non-aggressive) ICA-AROMA

denoising (details of the processing steps can be found at https://fmriprep.org/en/latest/

workflows.html) [37,38]. The outputs were inspected for errors. In addition, mean framewise

displacement (FD) was computed for every subject, and compared between groups. There was

no significant group difference (t = -0.73, P = 0.47).

Constrained spatial ICA was performed using the Group ICA of fMRI Toolbox (GIFT)

implemented in MATLAB v. R2020a, with the NeuroMark_fMRI_1.0 template (available at

http://trendscenter.org/data and also within the GIFT toolbox at http://trendscenter.org/

software/gift) as spatial prior, resulting in 53 components (further subdivided into subcortical

(SC), auditory (AU), sensorimotor (SM), visual (VI), cognitive control (CC), default mode

(DM), and cerebellar (CB) domains) for every subject [39–41]. Independent component (IC)

time courses were further analyzed using the LEiDA method [29,42,43]. First, IC time courses

were bandpass filtered using a 7th order Butterworth filter (0.04–0.07 Hz) using MATLAB but-
ter and filtfilt function (which causes zero phase distortion). This bandwidth was chosen to

reduce the influence of possible artifacts, and because the Hilbert transform works better (is

better interpretable) on signals with a narrower frequency bandwidth [44]. The phase of IC

time courses was estimated using MATLAB’s hilbert function [45]. Seventeen volumes at the

beginning and at the end were removed to account for edge effects that are inherent to filtering

and Hilbert transformation (lowest frequency was 0.038 Hz, because of the slope of the filter,

thus 1/0.038 = one cycle every 26.32 sec, thus 26.32/1.6 sec = 16.45� 17 volumes), leaving 361

volumes per subject. Subsequently, at each time point, phase coherence was calculated as the

cosine of the difference in phases between two IC’s, resulting in an IC × IC phase coherence

matrix per time point. The first (leading) eigenvector (V1) was computed per time point to

extract the dominant connectivity pattern. A leading eigenvector at time point t (V1(t)) has ele-

ments that can be either positive or negative, representing the projection of the BOLD phase of

the corresponding independent components onto V1(t). Based on positive and negative signs

in V1(t), the brain is separated into two communities at time point t. The absolute values of the

elements indicate how strongly components belong to a community. Since the sign of elements

in V1(t) are arbitrary, unexpected sign flips can occur. To obtain consistency in eigenvector

order and signs over time we used the eigenshuffle.m function created by John D’Errico

(https://nl.mathworks.com/matlabcentral/fileexchange/22885-eigenshuffle). This function was
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run on the (53 × 53 × 361) phase coherence tensor, resulting in a 53 × 361 matrix per subject

containing all consistent first eigenvectors over time.

All of the subjects’ time-varying leading eigenvector matrices were concatenated in the time

direction, creating a 17,328 × 53 matrix. This matrix was analyzed using k-means clustering

(using MATLAB’s k-means function; with city block (also known as Manhattan) distance, 42

replicates, maximum iterations of 5000) to obtain phase-locking states. The optimal number of

states was estimated using the Davies-Bouldin cluster validity index [46], which indicated an

optimum of k = 5 (see Fig 1). The centroid leading eigenvectors (Vc) for every state contain ele-

ments (components) that have either positive or negative sign, corresponding with communi-

ties for a particular state. The phases of areas/components in the two communities within a

specific dynamic phase-locking state are said to be ‘locked’ in space. The clustering algorithm

assigns a state number (in our case ranging from 1 to 5) to each time point of a participant,

meaning that the distance of the first eigenvector obtained from the phase-locking matrix at

that time point to the specific state it has been assigned to is lower than the distance to the

other states. This results in a vector of 361 state-assignment values for each subject. This vector

was used to compute the following dynamic state measures: mean dwell time per state (i.e.,

mean time spent in a state before transitioning to another state), fraction of time spent per

state (i.e., total number of time points spent per state divided by the total number of time

points), number of state visits (i.e., how often a state is visited, a.k.a. visiting frequency), num-

ber of state transitions (i.e., how often a subject switches from one state to another), and state

transition probabilities (P{Xnext| Xprev}).

Fig 1. Number of clusters determined using the Davies Bouldin index. The optimal number of clusters is defined as

the one that minimizes the ratio of the within cluster scatter to the between cluster separation. Plots was made using

the scatter function implemented in Matlab.

https://doi.org/10.1371/journal.pone.0295984.g001

PLOS ONE Dynamic connectivity and personality in mild TBI

PLOS ONE | https://doi.org/10.1371/journal.pone.0295984 December 15, 2023 6 / 20

https://doi.org/10.1371/journal.pone.0295984.g001
https://doi.org/10.1371/journal.pone.0295984


2.5. DTI analysis

Supporting Information 3 shows the dMRI processing pipeline. Diffusion images were prepro-

cessed using FMRIB Software Library (FSL; v. 6.0.5) [47]. Susceptibility distortions were cor-

rected using the topup command on the B0 images with opposite phase-encoding direction.

Subsequently, brain extraction was run on the distortion corrected B0 using the bet command,

followed by correction of eddy currents and motion using the eddy command. Fractional

anisotropy (FA), mean diffusivity (MD), and the three eigenvector and eigenvalue maps were

generated using the dtifit command. The first eigenvector maps were inspected for correspon-

dence with known anatomical tracts. Additional RD maps were computed using fslmaths (by

taking the mean across the second and third eigenvalue maps).

For further analysis, FSL’s tract-based spatial statistics (TBSS) was run using the ENIGMA

pipeline (for protocol details we refer the reader to: https://enigma.ini.usc.edu/protocols/dti-

protocols/ [48]. First, the individual subject’s FA, MD, RD and AD maps were warped to the

custom ENIGMA DTI template [49]. Subsequently, these maps were projected onto the

ENIGMA DTI template skeleton. Individual skeletons were visually inspected for errors, and

then parcellated into 46 areas using the JHU WM atlas. Average FA, MD, RD and AD for

every region of interest (ROI) was computed. As mTBI is a heterogenous condition with

respect to structural injury effects on the brain, pca (singular value decomposition) with vari-

max rotation was performed on z-scored ROI data using MATLAB’s pca and rotatefactors
functions, aimed at capturing the leading pattern of microstructural changes (an approach

which also circumvents the need for a stricter correction for multiple comparisons, which

might lead to type II errors in a condition with known heterogenic diffusion abnormalities).

Thus, a Principal Component Analysis was performed on a 47 × 46 (subject × ROI) matrix for

every diffusion metric (for FA, MD, RD and AD) separately. Subject scores on the first princi-

pal component were selected for further analyses (explaining 38% of the variance).

2.6. Statistical analyses

Statistical analyses of clinical data were performed using the Statistical Package for the Social

Sciences (SPSS; IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0.

Armonk, NY: IBM Corp). Group differences in continuous variables were analyzed using

independent two sample t-tests; non-normally distributed data were tested using Mann-Whit-

ney U Tests. Categorical data was analyzed using Chi-square tests. In case a questionnaire had

multiple categories, results were considered significant at a Bonferroni corrected threshold (as

for Big Five dimension subscores: α = 0.05/5 = 0.01).

All further statistical analyses were performed using MATLAB’s Statistics and Machine

Learning Toolbox. Generalized linear models (MATLAB’s fitglm function) were used to

answer the main research questions.

For the assessment of group differences (mTBI vs. HC) in dynamic state measures (Y) the

following model was used:

Y � 1þ Groupþ Ageþ Sexþ Education

A similar model was used to assess group differences in DTI measures.

To examine the relationship between emotional instability and state measures, regarding

long-term recovery (Y; i.e., symptoms or functional outcome) in the group of patients with

mTBI, the following model formula was used:

Y � 1þ Emotional Instability∗State Measureþ Ageþ Sexþ Education
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The association between state measures (Y) and DTI measures in patients with mTBI was

assessed using the following formula:

Y � 1þ TBSS PC1þ Ageþ Sexþ Education

Here, TBSS PC1 indicates scores on the first principal component of all TBSS ROI data.

Age, sex and education were added as covariates in all analyses because of their relationship

with functional networks, white matter integrity, and personality [50–53].

Histograms of dependent variables (Y) were visually inspected, and the appropriate distri-

bution was selected accordingly (from Gaussian, poisson, gamma, and inverse gamma; bino-

mial distribution was used for dichotomized GOS-E). In case a dependent variable did not

sufficiently follow one of the known statistical distributions, the effect of a square root or log

transformation was evaluated, and if satisfactory, applied to the data. The Akaike Information

Criterion was used to compare and select (final) models. Model residuals were checked for

normality, and for scedasticity using MATLAB’s plotResiduals function and Shapiro-Wilk

tests. In addition, variance inflation factors (VIF’s) were computed for every independent vari-

able in a model to measure the degree of collinearity (models with VIF’s below 5 were

accepted).

The overall alpha was set at 0.05. Bonferroni corrections were applied to the P-values of the

overall regression models. To this end, we corrected for the number of states (k = 5; α = 0.05/

5 = 0.01) in case of state-specific measures (i.e., mean dwell time, fraction of time spent per

state, number of state visits), and the total number of specific state transitions (k*k = 25; α =

0.05/25 = 0.002) in case of state transition probabilities. Main and interaction effects of the var-

iables of interest (i.e., all variables except for age, sex, and education) were checked for signifi-

cance in case of a significant model.

3. Results

3.1. Demographics and participant characteristics

In Table 1 the general demographics and characteristics of both study groups are depicted.

Patients showed a strong trend toward higher symptom severity at six months. Table 2 shows

Table 1. General demographics and participant characteristics.

mTBI

(n = 27)

HC

(n = 21)

Test statistic P-value

Age, Mdn (range) 36 (18–62) 32 (19–70) U = 282.5 0.98

Sex, % female 37 43 χ2 = 0.167 0.68

Education level, Mdn, range* 6 (3–7) 6 (5–7) χ2 = 1.773 0.777

Head Injury Symptom Checklist (severity) at time of scanning, Mdn (range)

10 (1–33) 5 (0–25) U = 237.5 0.338

Head Injury Symptom Checklist (severity) at 6 months, Mdn (range)†

8 (0–36) 6 (0–15) U = 176.5 0.057

Big Five subscores, Mdn (range)

Neuroticism 26 (14–42) 32 (17–42) U = 552 0.023

Extraversion 43 (31–52) 37 (29–49) U = 744.5 0.086

Openness 36 (25–45) 38 (24–45) U = 612 0.307

Agreeableness 42.5 (37–50) 47 (36–56) U = 560.5 0.176

Conscientiousness 46 (33–53) 46 (32–56) U = 656.5 0.925

*Education level according to Verhage [54].

https://doi.org/10.1371/journal.pone.0295984.t001
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the other clinical characteristics of the mTBI patient group. Of the 14 patients who were admit-

ted to the inpatient ward, 11 (79%) were discharged the following day.

3.2. State measures in patients and healthy controls

Fig 2 shows the centroids for the five phase-locking states, depicted as the outer product matri-

ces (Vc*VcT), as well as spatial overlays based on a linear combination of maps of the indepen-

dent components that have positive (red) or negative (blue) sign within the centroid Vc. Fig 3

shows an example of state transitions patterns for a patient in the mTBI group. Every subject

(in both groups) visited each state at least once. Across all subjects and time points, 19.67% of

time points was spent in state 1, 19.41% in state 2, 21.25% in state 3, 19.49% in state 4, and

20.18% in state 5.

There were no significant group differences in mean dwell time, fraction of time spent per

state, number of state visits, number of transitions, nor state transition probabilities.

3.3. Interactions between state measures, personality, and outcome

The main principal component for personality that can be regarded as a measure of emotional

instability was characterized by positive coefficients for Neuroticism (0.77) and Openness to

experience (0.33), and negative coefficients for Extraversion (-0.45), Agreeableness (-0.13),

and Conscientiousness (-0.28) (also see Supporting Information 4).

Table 2. Clinical patient characteristics.

Glasgow Coma Scale score, Mdn, range 14 (13–15)

Loss of consciousness, %

Yes 55.6

No 11.1

Possible 33.3

Post-traumatic amnesia, %

Yes 92.6

No 7.4

Possible 0

Injury Mechanism, %

Traffic—automobile 11

Traffic—scooter/moped 11

Traffic—bicycle 33

Fall 37

Other 8

Time post-injury, days, Mdn (range)

30 (17–48)

Traumatic lesions on CT, % yes 22

Traumatic lesions on MRI, % yes

Yes 22

No 63

Possible 15

Hospitalized, % 52

Glasgow Outcome Scale Extended at 6 months, Mdn (range) * 7 (4–8)

Abbreviations: CT = computed tomography; MRI = Magnetic Resonance Imaging.

*Long-term outcome data was available for n = 25 patients.

https://doi.org/10.1371/journal.pone.0295984.t002
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Fig 2. Phase-locking states for the entire study sample. On the left the Vc*Vc
T (outer product) centroid matrices are

shown with both communities color-coded: in red the connections between positive elements in Vc, and in blue the

connections between negative elements (and zero for connections between elements of different communities). On the

right side a weighted map is shown per state. This map consists of two layers: one in red containing the weighted

positive (value in Vc associated with each) independent components, and one in blue containing the independent

components with negative value in Vc. The threshold was adjusted so that visualization was most optimal. Matrices

were plotted using a custom Matlab script. Centroid images were created using a custom Matlab script, and were

overlaid on 2D brain slices using Chris Rorden’s MRIcroGL version 1.2.20210317.

https://doi.org/10.1371/journal.pone.0295984.g002

PLOS ONE Dynamic connectivity and personality in mild TBI

PLOS ONE | https://doi.org/10.1371/journal.pone.0295984 December 15, 2023 10 / 20

https://doi.org/10.1371/journal.pone.0295984.g002
https://doi.org/10.1371/journal.pone.0295984


Long-term symptom severity in the mild TBI group was significantly explained by the

regression model including number of state 3 visits and emotional instability (F(8,16) = 7.26,

Pcorr = 0.002). There were significant main effects for number of visits (t = -4.39, P = 0.0005)

and emotional instability scores (t = 4.11, P = 0.0008) as well as a significant interaction

between number of visits and emotional instability scores (t = -3.32, P = 0.004; Fig 4). Patients

with higher emotional instability scores showed a strong negative relationship between num-

ber of state 3 visits and long-term symptom severity compared with patients that scored low.

In addition, the model including transition probability of state 2! 3 and emotional insta-

bility significantly explained long-term symptom severity (F(8,16) = 8.73, Pcorr = 0.0005). Fur-

ther exploration revealed main effects for state transition probability 2! 3 (t = -5.45,

P = 0.00005) and emotional instability scores (t = 5.54, P = 0.00004), accompanied by a signifi-

cant interaction between transition probability of state 2! 3 and emotional instability (t =

-4.07, P = 0.0009).

Furthermore, the model including number of state transitions and emotional instability

explained long-term symptom severity significantly (F(8,16) = 4.09, Pcorr = 0.008). The main

effects for number of transitions (t = -2.19, P = 0.04) and emotional instability (t = 3.51, P = 0.003)

were significant, as well as the interaction between these two factors (t = -2.8, P = 0.013).

No significant associations were found for long-term functional outcome (GOS-E = 8 vs

GOS-E < 8).

Within the mTBI group, there was no significant relationship between the injury-to-scan-

ning interval (in days) and state measures, when correcting for age, sex and education.

Within the HC group there were no significant results for number of visits to state 3, state

transition probability 2! 3, or number of transitions.

Fig 3. The top figure illustrates state transitions over time for a patient in the mTBI group. In the bottom figure the time

courses of all 53 independent components are depicted. In shaded gray patches, visits to state 3 are shown. Plots were made

using custom Matlab scripts.

https://doi.org/10.1371/journal.pone.0295984.g003
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3.4. Relationship between state measures and DTI

Patients with mTBI scored lower on the first principal component for FA relative to healthy

controls (F(6,40) = 3.93, P = 0.004; group: t = -1.82, P = 0.05). In Fig 5, it can be noted that the

Fig 4. Left figure shows the relationship between emotional instability scores and adjusted (fitted) long-term symptom severity in the mTBI group. Right

figure shows the interaction between emotional instability (low = blue datapoints and least squares line, high = red datapoints and line) and number of state 3

visits (x-axis) regarding adjusted long-term symptom severity (y-axis). Patients with higher emotional instability scores had a negative relationship between

symptoms and number of visits compared to patients with low scores. Plots were made using ggplot2 (version 3.3.3) functions implemented in R Statistical

Software (R Core Team, 2020). State 3 was characterized by one community consisting of insular, subcortical (basal ganglia), lateral prefrontal, supplementary

motor, cingulate cortex, sensorimotor, and auditory areas, and another consisting mainly of areas that are associated with the canonical default mode network

(with medial prefrontal, posterior cingulate, and precuneus as main areas) (see Fig 2). A description of the other states, and comparisons between states, can be

found in Supporting information 5.

https://doi.org/10.1371/journal.pone.0295984.g004

Fig 5. Coefficients for the first principal component of TBSS FA ROI data. Colors indicate the strength of

coefficients; areas with brighter colors are more strongly associated with the first principal component. Images were

created using a custom Matlab script, and were overlaid on 2D brain slices using Chris Rorden’s MRIcroGL version

1.2.20210317.

https://doi.org/10.1371/journal.pone.0295984.g005
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highest principal component coefficients for FA were found for the fornix, genu of the corpus

callosum, anterior and posterior corona radiata, and the lowest for the superior cerebellar

peduncle. There were no significant models for MD, RD or AD.

No significant associations were found between FA first principal component scores and

dynamic state measures.

4. Discussion

Sustaining a mild TBI can be a highly stressful event, both in the acute phase and at later time

points post-injury. Therefore, someone’s personality characteristics may determine the pattern

of recovery to a great extent. In the current study we found preliminary evidence for an inter-

action between a personality trait representing emotional instability and dynamic state mea-

sures in the recovery process after mTBI. No differences in dynamic state measures were

found between patients and healthy controls. We did find indications for diffusion differences

in white matter between patients and healthy controls, but this was not related to dynamic

state measures. Altogether, our results demonstrate that functional network dynamics related

to personality might outweigh effects of the (physical) injury itself in the recovery of mTBI.

In the current study, no significant differences in phase-locking state dynamics were found

between patients with mTBI and healthy controls. This finding is in accordance with our pre-

vious work on mTBI [4,22]. It is possible that connectivity changes related to the injury itself

have already resolved at one month post-injury [55]. However, there is also work that suggests

that changes in cerebral blood flow and functional connectivity can still be present, or become

even more pronounced at one month post-injury compared to earlier time points [56,57]. Our

dMRI analyses still showed some effects for fractional anisotropy, but not for the other diffu-

sion metrics, which supports our fMRI findings.

A strong association was found between persistent posttraumatic symptoms and scores on

a superordinate personality trait reflecting emotional instability, which was characterized by

high Neuroticism and moderate Openness, as we hypothesized beforehand. Our results

emphasize those of previous studies pointing to the role of Neuroticism in post-traumatic

symptoms [11–13]. The emotional instability factor found in our study is compatible with the

alpha-superordinate personality trait which was first reported by Digman et al., although we

found a positive coefficient for Openness [15]. Other studies have reported a similar superor-

dinate emotional stability factor, and in all studies this factor was characterized by high Neu-

roticism, but the degree to which the other dimensions contributed to this factor varied

somewhat between studies [14,34]. Interestingly, a recent study has shown that a trait called

Psychoticism from the Personality Disorder Inventory for the DSM-5, which is characterized

by eccentricity and cognitive and perceptual dysregulation, was associated with chronic symp-

toms in patients with mild TBI [58]. This trait can be considered as the maladaptive end of the

Openness dimension in the Big Five [59], which supports the moderate positive coefficient we

found for Openness in the emotional instability trait.

Within the mTBI group we found a strong interaction between visits a particular pattern of

brain-wide phase locking (state 3) and scores on the emotional instability component when it

comes to long-term symptoms. For patients with higher emotional instability, a higher visiting

frequency was particularly beneficial, meaning they could still recover by engaging in this

state, which might have implications for developing future therapies. The results were not

exactly as we predicted, because we expected that patients with more emotional instability, and

more persistent symptoms, would spend more time in a state resembling the canonical default

mode network. Instead, state 3 is characterized by two clearly delineated communities evolving

in anti-phase with respect to each other. One represented an executive/saliency system, with a
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strong contribution of the insulae and basal ganglia, but also of the lateral prefrontal cortex,

the supplementary motor area, the anterior/mid cingulate cortex and the sensorimotor cortex.

The other community represented the canonical default mode network. Previous studies on

mTBI indicate that higher functional connectivity between the default mode and executive/

salience networks is associated with more symptoms, possibly indicating a stronger need for

inhibiting internally directed mental processes, leading to mental fatigue [21,60]. Additionally,

in major depression disorder, higher connectivity between the executive and salience networks

was found to be beneficial [61–63]. Therefore, the fact that in state 3 the executive and salience

networks are in phase with each other while in anti-phase with the default mode network,

could signify a more optimal network structure with respect to emotion regulation, which in

turn could be associated with a more emotionally stable personality profile. A meta-analysis of

task-based fMRI studies on emotion regulation has demonstrated the importance of many

regions that were also found incorporated in state 3 in our study [64]. We found the insulae

and basal ganglia to be strongly represented in the executive/saliency community. The insula

and basal ganglia play an important role in the processing and regulation of emotions and

associated behavior [65,66]. It could be hypothesized that a strong connection between the

insula and basal ganglia is associated with more effective regulation of negative emotional sti-

muli (e.g., because of changes and difficulties experienced following the injury), which pre-

vents rumination occurring in the presence of stronger connections between insula and

default mode network.

As aforementioned, Neuroticism showed the highest coefficient within the emotional insta-

bility component. Neuroticism is associated with increased activation of (para)hippocampal

areas, which are areas known to be associated with fear learning, which is the process of learn-

ing to predict whether stimuli are a threat [17]. The setpoint of this system might be higher in

individuals with high Neuroticism, leading to a higher tendency to perceive (non-threatening)

stimuli as threatening. The insula and anterior cingulate cortex (as part of the salience net-

work) have also been found to be more active in high neurotic individuals during an avoidance

vs. approach task, which further indicates a higher setpoint for threat perception and subse-

quent avoidance [19]. Furthermore, Neuroticism is associated with decreased activation of the

basal ganglia (putamen/caudate) as well as the anterior and posterior cingulate cortex, which

are areas associated with the adjustment of fear learning based on expectations [17]. This dis-

balance between learning and predicting can lead to uncertainty and stress, which can be alle-

viated by adequate cognitive control of emotions via engagement of lateral and medial

prefrontal areas [17,64,67]. These areas are also involved in the executive/salience community

of state 3. In neurotic individuals also a less efficient, and less modular intrinsic network orga-

nization has been found [16]. Altogether, these studies support the putative efficient network

structure we observed for state 3. We also found an effect for number of state transitions, as we

predicted, which we interpret as representing cognitive flexibility. The capacity to shift

between brain states, and to arrive at states that are more efficient functional configurations

(i.e., state 3) might result in better cognitive control of emotions, although we cannot prove

causality here (the opposite might be true) [68]. Interestingly, within the HC group the results

for personality, dynamic state measures and symptoms were null. A possible explanation may

be that in non-stressful situations, there is less coupling between symptoms and personality.

This theory is supported by previous literature by our group showing that the use of certain

coping styles is not stable after mTBI [69].

Evidence for the relationship between personality and white matter structure is inconclu-

sive [70,71]. In our study, we investigated whether there was an interaction between dMRI

changes due to the injury and personality traits influencing outcome; we did not find evidence

for such an effect. Altogether, it might be possible that dFNC configurations associated with
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emotional instability are not induced by the injury, but rather reflect differences in pre-existent

psychological vulnerability to stressful events.

This study has several strengths and limitations that require mentioning. We used multi-

band fMRI which has a higher temporal and spatial resolution than non-multi-band

sequences, and a higher statistical power due to a higher temporal degrees of freedom (and

thus higher temporal signal-to-noise ratio). In addition, we used a validated preprocessing

pipeline (fMRIPrep) [37], and included ICA-AROMA [38] to remove motion artifacts.

Another strength is that we used multi-modal imaging techniques (fMRI and dMRI) to relate

personality to both dynamic FNC as well as microstructural integrity. Furthermore, it could be

argued that using ICA is a more biologically meaningful approach compared to using atlas-

based parcellations, which is an additional strength of our study. The relatively small sample

size (n = 27) is a limitation of our study. It has been shown that associations between psycho-

logical scores and fMRI data are difficult to reproduce in small samples, although there still is

debate on this topic [72,73]. Furthermore, as far as we know, reproducibility of associations

with dFNC has not been investigated. Therefore, our results need to be corroborated in larger

N studies, preferably with a longitudinal design that allows for inferences about recovery

regarding both clinical and imaging measures. Another limitation is the use of single-shell

(one b-value) dMRI. Increasing evidence suggests that multi-compartmental models of diffu-

sion are more sensitive to pathology of mTBI than traditional dMRI models [74]. Also, we

used the GOS-E for measuring functional outcome. In patients with mTBI, GOS-E scores are

heavily positively skewed. Therefore, we deemed it necessary to dichotomize this variable (into

complete vs. incomplete recovery), and this may have resulted in decreased power and subse-

quent null findings. Lastly, our study population is representative of the civilian mild TBI pop-

ulation[75–77]. However, our sample is less comparable to populations at the milder end of

the mTBI spectrum, such as patients with sports-related concussion [78].

To our knowledge, functional neuroimaging studies on personality and outcome after

mTBI have not been published so far. Our study might be a starting point for further research,

although larger samples are needed to corroborate our findings.
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