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Abstract

Some acute exercise effects are influenced by postexercise (PEX) diet, and these diet-

effects are attributed to differential glycogen resynthesis. However, this idea is challenging

to test rigorously. Therefore, we devised a novel genetic model to modify muscle glycogen

synthase 1 (GS1) expression in rat skeletal muscle with an adeno-associated virus (AAV)

short hairpin RNA knockdown vector targeting GS1 (shRNA-GS1). Contralateral muscles

were injected with scrambled shRNA (shRNA-Scr). Muscles from exercised (2-hour-swim)

and time-matched sedentary (Sed) rats were collected immediately postexercise (IPEX), 5-

hours-PEX (5hPEX), or 9-hours-PEX (9hPEX). Rats in 5hPEX and 9hPEX experiments

were refed (RF) or not-refed (NRF) chow. Muscles were analyzed for glycogen, abundance

of metabolic proteins (pyruvate dehydrogenase kinase 4, PDK4; peroxisome proliferator-

activated receptor γ coactivator-1α, PGC1α; hexokinase II, HKII; glucose transporter 4,

GLUT4), AMP-activated protein kinase phosphorylation (pAMPK), and glycogen metabo-

lism-related enzymes (glycogen phosphorylase, PYGM; glycogen debranching enzyme,

AGL; glycogen branching enzyme, GBE1). shRNA-GS1 versus paired shRNA-Scr muscles

had markedly lower GS1 abundance. IPEX versus Sed rats had lower glycogen and greater

pAMPK, and neither of these IPEX-values differed for shRNA-GS1 versus paired shRNA-

Scr muscles. IPEX versus Sed groups did not differ for abundance of metabolic proteins,

regardless of GS1 knockdown. Glycogen in RF-rats was lower for shRNA-GS1 versus

paired shRNA-Scr muscles at both 5hPEX and 9hPEX. HKII protein abundance was greater

for 5hPEX versus Sed groups, regardless of GS1 knockdown or diet, and despite differing
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glycogen levels. At 9hPEX, shRNA-GS1 versus paired shRNA-Scr muscles had greater

PDK4 and PGC1α abundance within each diet group. However, the magnitude of PDK4 or

PGC1α changes was similar in each diet group regardless of GS1 knockdown although gly-

cogen differed between paired muscles only in RF-rats. In summary, we established a novel

genetic approach to investigate the relationship between muscle glycogen and other exer-

cise effects. Our results suggest that exercise-effects on abundance of several metabolic

proteins did not uniformly correspond to differences in postexercise glycogen.

Introduction

One exercise session has multiple metabolic consequences in the recruited skeletal muscle [1–

5]. Some of these outcomes are influenced by the postexercise diet [4, 6–8]. It would be valu-

able to identify the underlying mechanisms for these postexercise diet effects. Skeletal muscle

glycogen concentration, which is highly responsive to exercise and postexercise carbohydrate

intake, is proposed to influence these outcomes [9]. Because altered skeletal muscle glycogen

concentration is only one of many consequences of exercise and diet, glycogen’s specific role is

challenging to discern.

Glycogen synthase 1 (GS1) is the rate-limiting enzyme for glycogen synthesis in skeletal

muscle [10, 11]. Therefore, altering skeletal muscle GS1 expression is a reasonable strategy to

alter muscle glycogen concentration. The primary aim was to test the feasibility of a novel

genetic approach to reduce GS1 protein abundance in rat skeletal muscle. To minimize the

confounding effect of glycogen manipulation methods using exercise and refeeding, one mus-

cle from the paired muscles of rats was injected with adeno-associated virus (AAV) small-hair-

pin RNA (shRNA) that targets GS1 (AAV-shRNA-GS1), and the contralateral muscle was

injected with AAV-shRNA-Scrambled (Scr) to serve as the control. A secondary aim was to

test if our genetic approach would successfully delay muscle glycogen resynthesis with postex-

ercise refeeding.

Pending validation of our novel genetic model, we planned to apply this approach to gain

new insights into the extent to which muscle glycogen concentration influences postexercise

effects on the abundance of key metabolic proteins in skeletal muscle with or without subse-

quent refeeding. Pilegaard et al. [2] compared the effects of consuming a high carbohydrate

versus a low carbohydrate diet at times ranging from 2 to 24 hours after an acute bout of exer-

cise on the mRNA expression of metabolic genes in human skeletal muscle. The expression of

several genes was greater during the postexercise period compared to pre-exercise, including

pyruvate dehydrogenase kinase 4 (PDK4), peroxisome proliferator-activated receptor γ coacti-

vator-1α (PGC1α), and hexokinase II (HKII). Consuming a low carbohydrate diet versus a

high carbohydrate diet during recovery resulted in longer lasting postexercise elevation of the

expression of PDK4 and PGC1α. Muscle glycogen was significantly resynthesized only in the

high carbohydrate diet trial. Muscle glycogen restoration during postexercise recovery has

been proposed to be a key determinant of postexercise changes in muscle gene expression.

Cluberton et al. [8] measured the expression of multiple metabolic genes in skeletal muscle of

men who performed an acute bout of cycling exercise on two occasions that differed only by

their consumption of either a carbohydrate-free placebo beverage or a carbohydrate beverage

during the 3 hours of the recovery phase. Muscle PDK4 expression was elevated above at rest

and 3 hours after exercise in the placebo trial, but not in the carbohydrate trial. Muscle PGC1α
measured at 3 hours postexercise was increased to a similar extent above resting values in both
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trials. Acute exercise increased the skeletal muscle glucose transporter type 4 (GLUT4) protein

abundance, and this effect was enhanced by postexercise carbohydrate supplementation [6].

Our third aim was to use our novel genetic model to analyze exercise and diet effects on several

functionally important proteins (PGC1α, GLUT4, HK II, and PDK4).

AMPK-activated protein kinase (AMPK) is an enzyme that regulates skeletal muscle

mRNA and protein expression [12]. AMPK influences multiple metabolic processes including

the expression and regulation of the transcriptional coactivator and regulator of energy metab-

olism PGC1α, expression of key mitochondrial proteins, glucose uptake, glycogen metabolism,

lipid metabolism, and protein synthesis [12, 13]. An acute bout of exercise can induce AMPK

phosphorylation and activity [13]. In addition, multiple studies have suggested that pre-exer-

cise or postexercise carbohydrate diets can attenuate the acute exercise-induced changes in

AMPK activity [14–16]. Our fourth aim was to evaluate the influence of our intervention on

the activation of AMPK.

In addition to GS1, skeletal muscle glycogen can be regulated by other enzymes. Glycogen

phosphorylase (PYGM), which catalyzes glycogen degradation by the lysis of a terminal α-1,

4-glycosidic bond and the release of glucose-1-phosphate from the glycogen polymer, is the

rate-limiting enzyme for muscle glycogenolysis [17, 18]. Glycogen is a branched polymer of

glucose that consists of multiple linear chains of glucose that are linked by α-1, 4-glycosidic

bonds. Glycogen has regular branch points (approximately every 12 glucose units) that are the

result of α-1,6-bonds created by the reaction catalyzed by the glycogen branching enzyme

(GBE1) [19]. The lysis of α-1,6-bonds of glycogen is catalyzed by glycogen debranching

enzyme (AGL) [20, 21]. Our final aim was to determine if reducing GS1 abundance influences

the abundance of these proteins that regulate glycogen metabolism (PYGM, AGL, and GBE1).

Materials and methods

Materials

Chemicals were obtained from Sigma-Aldrich (St. Louis, MO) or Fisher Scientific (Hanover

Park, IL) unless otherwise noted. The reagents and apparatus for SDS-PAGE and nonfat dry

milk (no. 170–6404) were from Bio-Rad (Hercules, CA). Pierce MemCode Reversible Protein

Stain Kit (#24585), bicinchoninic acid protein assay (#23225), Tissue Protein Extraction

Reagent (T-PER; #78510). Anti-glycogen synthase I (GS1; #3893), anti-hexokinase II (HKII;

#2867), Anti-phospho AMPKα Thr172 (pAMPKαThr172; #50081, which recognizes phosphory-

lation on both α1 and α2 isoforms), anti-AMPK-α (AMPKα; #5831, which recognizes both α1

and α2 isoforms), anti-acetyl CoA carboxylase (ACC; #3676), anti-phospho ACCSer79/212

(pACCSer79/212; #3661), anti-TBC1D1 (TBC1D1; #4629), and anti-rabbit IgG horseradish per-

oxidase (HRP) conjugate (#7074) were from Cell Signaling Technology (Danvers, MA). Anti-

glycogen branching enzyme 1(GBE1; #20313-1-AP), anti-glycogen debranching enzyme

(AGL; #16582-1-AP), and anti-pyruvate dehydrogenase kinase 4 (PDK4; #12949-1-AP) was

from Proteintech (Rosemont, IL). Anti-glucose transporter type 4 (GLUT4; #CBL243), anti-

phospho TBC1D1 Ser237 (pTBC1D1 Ser237; #07–2268), anti-peroxisome proliferator-activated

receptor co-activator-γ-1α (PGC1α; 516557), and enhanced chemiluminescence Luminata

Forte Western HRP Substrate (#WBLUF0100) were from EMD Millipore (Billerica, MA).

Anti-glycogen phosphorylase (PYGM; ab231963) was from Abcam (Boston, MA).

Animal treatment

Animal studies were conducted in accordance with the guidelines from the Guide for the Care

and Use of Laboratory Animals of the National Institutes of Health and with the approval of

the University of Michigan Committee on Use and Care of Animals. Male Wistar rats (Charles

PLOS ONE Novel genetic model reveals the relationship between muscle glycogen and metabolic protein abundance

PLOS ONE | https://doi.org/10.1371/journal.pone.0295964 January 30, 2024 3 / 17

https://doi.org/10.1371/journal.pone.0295964


River Laboratories, Wilmington, MA) were 9 to 10-week-old when muscle samples were

collected.

Preparation of AAV expressing short-hairpin RNAs

Potential target sequences (Glycogen synthase 1, GS1) were initially identified using prede-

signed shRNA database (MilliporeSigma). Candidate sequences were initially tested for effi-

cacy of knocking down endogenous GS1 protein level by immunoblot in L6 myocytes by

transient transfection of siRNA (S1 Fig). Briefly, L6 myocytes were seeded the day before trans-

fection. L6 myocytes were incubated for 48 hours with 10 nM candidate siRNA that mixed in

the OptiMEM with lipofectamine RNAiMax. The myocytes were harvested and analyzed for

GS1 expression. Based on the L6 myocyte results, the target sequence (5´-CCTGGACTTCAAC
CTAGACAA-3´) was selected and annealed to short-hairpin RNA (shRNA) oligo (5´-CCTGGA
CTTCAACCTAGACAActcgagTTGTCTAGGTTGAAGTCCAGGttttt-3´), shRNA sequence

finally was ligated to pCWB U6-CMV-eGFP, an adeno-associated virus (AAV) vector cis-plas-

mid, by XbaI and SalI sites. A scrambled shRNA sequence (5´-CGCGATAGCGCTAATAATT
TC-3´) was also cloned to the pCWB U6-CMV-eGFP AAV vector cis-plasmid to be used as a

control. The cis-plasmids were used in conventional triple plasmid transfection for the produc-

tion of the AAV9 serotype vector. AAV9 vectors were purified through two rounds of CsCl

ultracentrifugation and the titer was determined by quantitative PCR.

AAV administration

AAV was administered to the epitrochlearis muscle of 6 to 7-week-old rats as previously

described [22]. Briefly, the rats were anesthetized (2.5% isoflurane/100% oxygen), their fore-

limbs were shaved, and analgesic (5 mg/kg carprofen) was subcutaneously injected. A 5- to

7-mm skin incision was made, and the exposed epitrochlearis was rinsed with sterile phos-

phate buffered saline (PBS). One epitrochlearis muscle of each rat was injected with GS1-tar-

geting shRNA AAV (shRNA-GS1; 1.75X1011 vg/muscle). The contralateral muscle was

injected with scramble shRNA AAV (shRNA-Scr; 1.75X1011 vg/muscle). The incision was

sutured. Terminal experiments were performed at 3 to 4 weeks post-injection.

Rats were fed rodent chow (Laboratory Diet no. 5L0D; LabDiet, St. Louis, MO) until fasted

(1700 h the day before the experiment). The following day at ~0900, rats either swam or

remained sedentary. The exercise protocol was swimming in a barrel filled with water (35˚C,

45 cm depth, 6 rats swimming at a time) for four 30-min bouts with 5-min rest between bouts

[22]. Then exercised rats along with time-matched, sedentary controls were anesthetized with

an intraperitoneal injection of ketamine-xylazine cocktail (50 mg/kg ketamine and 5 mg/kg

xylazine). Three experiments were performed to evaluate the key outcomes at key timepoints:

immediately postexercise (IPEX), 5 hr postexercise (5hPEX), and 9 hr postexercise (9hPEX)

along with time-matched sedentary. The 5hPEX and 9hPEX groups along with time-matched

sedentary groups were either refed (RF) or not refed (NRF; provided ad libitum access to

rodent chow) postexercise. The experimental design for each timepoint is depicted in Fig 1A

(IPEX), 1B (5hPEX), and 1C (9hPEX). Both RF and NRF groups were also provided ad libitum

access to water. In total, there were 10 groups of rats (with either shRNA-GS1 or shRNA-scr

injected into the paired muscles from each rat, and thus 20 conditions): IPEX time-matched

Sed (0hSed), IPEX, 5hPEX with refeeding (5hPEX-RF), 5hPEX without refeeding

(5hPEX-NRF), 5hPEX time-matched Sed with refeeding (5hSed-RF), and without refeeding

(5hSed-NRF), 9hPEX with refeeding (9hPEX-RF), 9hPEX without refeeding (9hPEX-NRF),

9hPEX time-matched Sed with refeeding (9hSed-RF), without refeeding (9hSed-NRF).
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Muscle lysate preparation

Frozen muscles were bisected. One portion used for immunoblotting, and the other for glyco-

gen measurement. The muscle portions used for glycogen measurement were weighed and

then homogenized in ice-cold water with a glass pestle attached to a motorized homogenizer

(Caframo, Georgian Bluffs, ON, Canada). These homogenates were heated for 5 min at 95˚C

to inactivate enzymes, and then centrifuged (13,000 g for 5 min). The supernatants were trans-

ferred to microfuge tubes and used for subsequent glycogen analysis as described below.

The muscle portions used for immunoblotting were weighed and then homogenized with

the motorized homogenizer described above in ice-cold lysis buffer (T-PER supplemented

with 1 mM EDTA, 1 mM EGTA, 2.5mM sodium pyrophosphate, 1 mM sodium orthovana-

date, 1 mM β-glycerophosphate, 1 μg/ml leupeptin, and 1 mM phenylmethylsulfonyl fluoride).

Fig 1. The experimental design for each time point. (A) IPEX and time-matched sedentary. (B) 5hPEX and time-

matched sedentary with and without refeeding. (C) 9hPEX and time-matched sedentary with and without refeeding.

The figure was created with BioRender.com.

https://doi.org/10.1371/journal.pone.0295964.g001

PLOS ONE Novel genetic model reveals the relationship between muscle glycogen and metabolic protein abundance

PLOS ONE | https://doi.org/10.1371/journal.pone.0295964 January 30, 2024 5 / 17

http://BioRender.com
https://doi.org/10.1371/journal.pone.0295964.g001
https://doi.org/10.1371/journal.pone.0295964


These lysates were rotated for 1h at 4˚C before centrifugation (15,000 g for 15 min at 4˚C).

The supernatants were transferred to 1.5 ml microfuge tubes and used for subsequent immu-

noblotting as described below.

Muscle glycogen measurement

Muscle glycogen level was determined using a Glycogen Assay Kit (#MAK016, Sigma-Aldrich,

St. Louis, MO) according to the manufacturer’s protocol. Absorbance was measured at 570 nm

with a microplate reader [23].

Immunoblotting

For each sample, an equal amount of lysate protein was mixed with 6x Laemmli buffer. The

mixed samples were subjected to SDS-PAGE, and transferred to polyvinylidene difluoride

membranes. Equal loading was confirmed with the MemCode protein stain kit [23]. Mem-

branes were blocked with TBST (Tris-buffered saline pH 7.5 with 0.1% of Tween-20) that

was mixed with either 5% of nonfat milk or bovine serum albumin (BSA) for 1 hr at room

temperature. Membranes were then washed (3 X 5 min with TBST), and incubated in

appropriate primary antibodies (5% of nonfat milk or BSA, overnight at 4˚C). Incubated

membranes were washed (3 X 5 min with TBST), and incubated in secondary antibody (5%

of nonfat milk or BSA, 1 hr at room temperature). Before membranes were subjected to

enhanced chemiluminescence, they were washed (3 X 5 min with TBST, and 2 X 5 min with

Tris-buffered saline pH 7.5, TBS), and then quantified by densitometry (AlphaView; Pro-

teinSimple, San Jose, CA). Individual values were normalized to the mean value for all sam-

ples on the same membrane.

Statistics

Multilevel mixed-effects linear regression analysis was used to compare group means with

Stata/SE 17.0 statistical software (Stata Corporation). Multilevel mixed-effects linear regression

analysis was performed because the results derived for paired muscles (injected with either

shRNA-GS1 and shRNA-Scr) from the same rat are inherently correlated. A p-value� 0.05

was considered statistically significant.

Results

IPEX: Immunoblotting and muscle glycogen

GS1 protein abundance was significantly lower for shRNA-GS1 versus shRNA-Scr muscles

(Fig 2A). Among shRNA-Scr muscles, glycogen level was lower in IPEX versus 0hSed (Fig 2B).

Among the shRNA-GS1 muscles, glycogen level was lower in IPEX versus 0hSed (Fig 2B). In

0hSed rats, glycogen level was lower in shRNA-GS1 versus shRNA-Scr (Fig 2B). There were no

significant effects of IPEX or GS1 knockdown on HKII, GLUT4, and AGL (Fig 2C, 2D, and

2M). In 0hSed rats, PGC1α protein abundance was lower in shRNA-GS1 versus shRNA-Scr.

Among shRNA-Scr muscles, PGC1α abundance was lower in IPEX versus 0hSed (Fig 2E). In

IPEX rats, PDK4 abundance was greater in shRNA-GS1 versus shRNA-Scr (Fig 2F). The ratio

of pAMPKThr172/AMPK, pACCSer79/212/ACC1/2, and pTBC1D1Ser237/TBC1D1 was greater for

IPEX versus 0hSed regardless of GS1 knockdown (Fig 2H, 2I and 2J). In IPEX rats, PYGM

abundance was lower in shRNA-GS1 versus shRNA-Scr (Fig 2L). In 0hSed rats, GBE1 abun-

dance was greater in shRNA-GS1 versus shRNA-Scr (Fig 2N). Among shRNA-Scr muscles,

GBE1 abundance was greater in IPEX versus 0hSed (Fig 2N).
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5hPEX: Immunoblotting and muscle glycogen

In the 5hSed-NRF, 5hPEX-NRF, 5hSed-RF, and 5hPEX-RF rats, GS1 abundance was signifi-

cantly lower in shRNA-GS1 versus shRNA-Scr muscles (Fig 3A). In the 5h-NRF rats, glycogen

level was lower in 5hPEX versus 5hSed regardless of GS1 knockdown (Fig 3B). In the 5hSed-

NRF rats, glycogen level was lower in shRNA-GS1 versus shRNA-Scr muscles (Fig 3B). In the

5h-RF rats, glycogen level was lower in shRNA-GS1 versus shRNA-Scr regardless of exercise

status (Fig 3B). In the shRNA-Scr muscles, glycogen level was greater for 5hPEX-RF versus

5hSed-RF (Fig 3B). In the 5hPEX rats, glycogen level was greater for 5h-RF versus 5h-NRF

regardless of GS1 knockdown (Fig 3B). In the 5hSed rats, glycogen level in shRNA-Scr muscles

were greater for 5h-RF versus 5h-NRF (Fig 3B). HKII protein abundance was significantly

Fig 2. Protein abundance, glycogen concentration, and protein phosphorylation in skeletal muscle from

immediately postexercised rats or time-matched sedentary control rats. (A) Glycogen synthase abundance. (B)

Glycogen. (C) HKII abundance. (D) GLUT4 abundance. (E) PGC1α abundance. (F) PDK4 abundance. (G)

Representative immunoblots. (H) pAMPKThr172/AMPK ratio. (I) pACC1/2Ser79/212/ACC1/2 ratio. (J) pTBC1D1Ser237/

TBC1D1 ratio. (K) Representative immunoblots. (L) PYGM abundance. (M) AGL abundance. (N) GBE1 abundance.

(O) Representative immunoblots. shRNA-GS1 versus shRNA-Scr within the same exercise group (IPEX or Sedentary),
GP< 0.05; IPEX versus Sedentary within the same AAV group (shRNA-GS1 or shRNA-Scr), EP< 0.05. Comparisons

between the two groups were analyzed by a multilevel mixed-effects linear regression analysis. Values are means ± SD;

n = 6/group for all the immunoblots and glycogen.

https://doi.org/10.1371/journal.pone.0295964.g002
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greater in 5hPEX versus 5hSed groups regardless of refeeding status or GS1 knockdown (Fig

3C). There were no significant effects of 5hPEX, diet, or GS1 knockdown on GLUT4 (Fig 3D).

In the 5hSed-RF rats, the abundance of PGC1α was greater for shRNA-GS1 versus shRNA-Scr

(Fig 3E). PDK4 protein abundance was lower for 5hPEX-RF versus 5hPEX-NRF irrespective

of GS1 knockdown (Fig 3F). PDK4 abundance in shRNA-Scr muscles was greater for

5hPEX-NRF versus 5hSed-NRF (Fig 3F). In 5h-NRF rats, the pAMPKThr172/AMPK ratio in

shRNA-GS1 muscle was greater for 5hPEX versus 5hSed (Fig 3H). In 5hPEX-NRF rats, the

pAMPKThr172/AMPK ratio was greater for shRNA-GS1 versus shRNA-Scr (Fig 3H). In 5hSed

rats, the pAMPKThr172/AMPK ratio in shRNA-Scr muscle was greater for 5h-RF versus 5h-

Fig 3. Protein abundance, glycogen concentration, and protein phosphorylation determined in skeletal muscle

from 5-hour postexercised rats or time-matched sedentary control rats with or without refeeding. (A) Glycogen

synthase abundance. (B) Glycogen. (C) HKII abundance. (D) GLUT4 abundance. (E) PGC1α abundance. (F) PDK4

abundance. (G) Representative immunoblots. (H) pAMPKThr172/AMPK ratio. (I) pACC1/2Ser79/212/ACC1/2 ratio. (J)

pTBC1D1Ser237/ TBC1D1 ratio. (K) Representative immunoblots. (L) PYGM abundance. (M) AGL abundance. (N)

GBE1 abundance. (O) Representative immunoblots. shRNA-GS1 versus shRNA-Scr within the same exercise group

(5hPEX or 5hSed) and diet group (refed or not refed), GP< 0.05; 5hPEX versus 5hSed within the same AAV

(shRNA-GS1 or shRNA-Scr) and diet group (refed or not refed), EP< 0.05; 5h-RF versus 5h-NRF within the same

AAV (shRNA-GS1 or shRNA-Scr) and exercise group (5hPEX or 5hSed), DP< 0.05. Comparisons between the two

groups were analyzed by a multilevel mixed-effects linear regression analysis. Values are means ± SD; n = 6-12/group

for all the immunoblots and glycogen.

https://doi.org/10.1371/journal.pone.0295964.g003
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NRF (Fig 3H). In 5hPEX rats, the pAMPKThr172/AMPK ratio in shRNA-GS1 muscle was lower

for 5h-RF versus 5h-NRF (Fig 3H). In 5h-NRF rats, the ratio of pACC1/2Ser79/212/ACC1/2 was

greater for 5hPEX versus 5hSed regardless of GS1 knockdown (Fig 3I). In 5hSed rats, the ratio

of pACC1/2Ser79/212/ACC1/2 was lower for 5h-RF versus 5h-NRF groups regardless of GS1

knockdown (Fig 3I). In 5hPEX rats, the ratio of pACC1/2Ser79/212/ACC1/2 was lower for 5h-

RF versus 5h-NRF groups regardless of GS1 knockdown (Fig 3I). In 5h-RF rats, the pACC1/

2Ser79/212/ACC1/2 ratio in shRNA-GS1 muscle was greater for 5hPEX versus 5hSed (Fig 3I).

PYGM and GBE1 abundance were lower for 5hPEX-RF versus 5hPEX-NRF irrespective of

GS1 knockdown (Fig 3L and 3N). In the 5h-RF rats, the PYGM abundance in shRNA-Scr

muscle was greater for 5hPEX versus 5hSed (Fig 3L). In the 5hSed-NRF rats, the abundance of

AGL was lower for shRNA-GS1 versus shRNA-Scr (Fig 3M). In the 5hPEX rats, AGL abun-

dance was greater in 5h-RF versus 5h-NRF (Fig 3M). In the 5h-RF rats, AGL abundance was

greater in 5hPEX versus 5hSed (Fig 3M). In the 5h-RF rats, GBE1 abundance was lower in

5hPEX versus 5hSed (Fig 3N).

9hPEX: Immunoblotting and muscle glycogen

In the 9hSed-NRF, 9hPEX-NRF, 9hSed-RF, and 9hPEX-RF rats, GS1 abundance was signifi-

cantly lower in shRNA-GS1 versus shRNA-Scr muscles (Fig 4A). In the 9h-NRF rats, glycogen

level was lower in 9hPEX versus 9hSed regardless of GS1 knockdown (Fig 4B). In the 9hSed-

NRF rats, glycogen level was lower in shRNA-GS1 versus shRNA-Scr muscles (Fig 4B). In the

9h-RF rats, glycogen level was lower in shRNA-GS1 versus shRNA-Scr regardless of exercise

status (Fig 4B). In 9hSed rats, glycogen level was greater for 9h-RF versus 9h-NRF regardless of

GS1 knockdown (Fig 4B). In 9hPEX rats, glycogen level was greater for 9h-RF versus 9h-NRF

regardless of GS1 knockdown (Fig 4B). In the 9h-NRF rats, HKII abundance was greater for

9hPEX versus 9hSed regardless of GS1 knockdown (Fig 4C). In 9h-RF rats, HKII abundance

in shRNA-GS1 muscle was greater for 9hPEX versus 9hSed (Fig 4C). In 9hPEX-RF rats, the

abundance of HKII was greater for shRNA-GS1 versus shRNA-Scr (Fig 4C). In the 9hSed-

NRF rats, GLUT4 abundance was greater for shRNA-GS1 versus shRNA-Scr (Fig 4D). In the

9h-NRF rats, GLUT4 abundance in shRNA-Scr muscle was greater for 9hPEX versus 9hSed

(Fig 4D). In the 9hSed rats, GLUT4 abundance in shRNA-Scr muscle was greater for 9h-RF

versus 9h-NRF rats (Fig 4D). In 9h-NRF rats, PGC1α abundance in shRNA-Scr muscle was

lower for 9hPEX versus 9hSed (Fig 4E). In 9hSed-NRF rats, PGC1α abundance was lower for

shRNA-GS1 versus shRNA-Scr muscle (Fig 4E). In 9hPEX-NRF rats, PGC1α abundance was

greater for shRNA-GS1 versus shRNA-Scr muscle (Fig 4E). In 9hSed rats, PGC1α abundance

in shRNA-GS1 muscle was greater for 9h-RF versus 9h-NRF (Fig 4E). In 9hPEX rats, PGC1α
abundance in shRNA-GS1 muscle was greater for 9h-RF versus 9h-NRF (Fig 4E). In

9hPEX-RF rats, PGC1α abundance was greater for shRNA-GS1 versus shRNA-Scr (Fig 4E). In

9h-NRF rats, PDK4 abundance in shRNA-GS1 muscle was greater for 9hPEX versus 9hSed

(Fig 4F). In 9hPEX-NRF rats, PDK4 abundance was greater for shRNA-GS1 versus shRNA-Scr

(Fig 4F). In 9hPEX rats, PDK4 abundance in shRNA-GS1 muscle was lower for 9h-RF versus

9h-NRF (Fig 4F). In 9hPEX-RF rats, PDK4 abundance was greater for shRNA-GS1 versus

shRNA-Scr (Fig 4F). In 9h-NRF rats, the pAMPKThr172/AMPK ratio in shRNA-Scr muscle

was greater for 9hPEX versus 9hSed (Fig 4H). In 9hSed rats, the pAMPKThr172/AMPK ratio in

shRNA-GS1 muscle was lower for 9h-RF versus 9h-NRF (Fig 4H). In 9hPEX rats, the

pAMPKThr172/AMPK ratio was lower for 9h-RF versus 9h-NRF regardless of GS1 knockdown

(Fig 4H). The pACC1/2Ser79/212/ACC1/2 ratio was greater for 9hPEX versus 9hSed regardless

of GS1 knockdown (Fig 4I). In 9hPEX-NRF rats, the pACC1/2Ser79/212/ACC1/2 ratio was

greater for shRNA-GS1 versus shRNA-Scr muscle (Fig 4I). In 9hSed rats, the pACC1/2Ser79/
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212/ACC1/2 ratio in shRNA-GS1 muscle was lower for 9h-RF versus 9h-NRF (Fig 4I). In

9hPEX rats, the pACC1/2Ser79/212/ACC1/2 ratio was lower for 9h-RF versus 9h-NRF regardless

of GS1 knockdown (Fig 4I). In 9hPEX-RF rats, the pACC1/2Ser79/212/ACC1/2 ratio was greater

for shRNA-GS1 versus shRNA-Scr (Fig 4I). In 9h-NRF rats, the pTBC1D1Ser237/TBC1D1 ratio

was greater for 9hPEX versus 9hSed regardless of GS1 knockdown (Fig 4J). In the 9hSed-NRF

rats, PYGM and AGL abundance were lower in shRNA-GS1 versus shRNA-Scr (Fig 4L and

4M). In the 9h-NRF rats, PYGM and AGL abundance in shRNA-Scr muscles were lower for

9hPEX versus 9hSed (Fig 4L and 4M). In the 9h-Sed rats, PYGM abundance was lower for 9h-

RF versus 9h-NRF regardless of GS1 knockdown (Fig 4L). In the 9hPEX-RF rats, PYGM and

Fig 4. Protein abundance, glycogen concentration, and protein phosphorylation determined in skeletal muscle

from 9-hour postexercised rats or time-matched sedentary control rats with or without refeeding. (A) Glycogen

synthase abundance. (B) Glycogen. (C) HKII abundance. (D) GLUT4 abundance. (E) PGC1α abundance. (F) PDK4

abundance. (G) Representative immunoblots. (H) pAMPKThr172/AMPK ratio. (I) pACC1/2Ser79/212/ACC1/2 ratio. (J)

pTBC1D1Ser237/ TBC1D1 ratio. (K) Representative immunoblots. (L) PYGM abundance. (M) AGL abundance. (N)

GBE1 abundance. (O) Representative immunoblots. shRNA-GS1 versus shRNA-Scr within the same exercise group

(9hPEX or 9hSed) and diet group (refed or not refed, GP< 0.05; 9hPEX versus 9hSed within the same AAV

(shRNA-GS1 or shRNA-Scr) and diet group (refed or not refed), EP< 0.05; 9h-RF versus 9h-NRF within the same

AAV (shRNA-GS1 or shRNA-Scr) and exercise group (9hPEX or 9hSed), DP< 0.05. Comparisons between the two

groups were analyzed by a multilevel mixed-effects linear regression analysis. Values are means ± SD; n = 6/group for

all the immunoblots and glycogen.

https://doi.org/10.1371/journal.pone.0295964.g004
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AGL abundance were greater for shRNA-GS1 versus shRNA-Scr (Fig 4L and 4M). In the 9h-

RF rats, PYGM and AGL abundance in shRNA-GS1 muscle were greater for 9hPEX versus

9hSed (Fig 4L and 4M). In the 9hSed rats, AGL abundance in shRNA-Scr muscle was lower

for 9h-RF versus 9h-NRF (Fig 4M). In the 9hPEX rats, AGL abundance in shRNA-GS1 muscle

was greater for 9h-RF versus 9h-NRF (Fig 4M). There were no significant effects of 9hPEX,

diet, or GS1 knockdown on GBE1 (Fig 4N).

Discussion

The primary goal of this study was to create a novel genetic model that would induce a marked

decrease in the GS1 protein abundance of a rat skeletal muscle but not in the contralateral

muscle of the same rat. Our motivation was to enable unique comparisons between paired

muscles that differed with regard to postexercise muscle glycogen concentration. The model

successfully induced a substantial reduction in GS1 protein abundance. As anticipated, in rats

that were refed after exercise, glycogen accumulation was substantially reduced in muscles

with lower GS1 abundance compared to paired control muscles with normal GS1 abundance.

The results of this study provided novel insights into the putative role of muscle glycogen accu-

mulation in the effects of postexercise, carbohydrate ingestion on the abundance of important

metabolic proteins.

Several aspects of the experimental design are notable. Firstly, analysis of paired muscles

that differed for GS1 abundance was valuable because the contralateral muscles from each rat

were exposed to identical concentrations of potential systemic, regulatory factors. Secondly,

using partial GS1 knockdown, rather than the complete elimination of GS1 enabled more

physiologically relevant comparisons. Finally, the postexercise timepoints for muscle analysis

(IPEX, 5hPEX, and 9hPEX) were selected in the context of the results of earlier research. The

greatest decrements in muscle glycogen and increases in AMPK activation (which are com-

monly used as indicators of the extent of metabolic challenge in response to acute exercise) are

evident when evaluated IPEX [24–26]. Substantial muscle glycogen resynthesis can occur in

rats that ingest a high carbohydrate diet during the initial 3 to 5 hours postexercise [27–29].

Elevation in the abundance of multiple, metabolic proteins in rat skeletal muscle can be

detected at 5 to 10 hours postexercise [30–32].

The substantial decrement in GS1 protein abundance in shRNA-GS1-treated muscles

resulted in moderately lower glycogen in sedentary rats. Importantly, glycogen in paired mus-

cles from IPEX rats was reduced to similarly low concentrations, regardless of GS1 abundance.

Having a comparable glycogen level in the paired muscles at this crucial time point prior to

refeeding facilitated the interpretation of the comparison of the extent of glycogen accumula-

tion between paired muscles in the subsequent refeeding experiments.

No significant IPEX-related increases in the abundance of the key metabolic proteins evalu-

ated were detected with or without GS1 knockdown. Consistent with our finding of no IPEX-

increase in HKII protein abundance, earlier studies found no significant increase in maximal

hexokinase activity of muscle IPEX [33, 34]. It should also be noted that acute exercise can rap-

idly elevate HKII mRNA in rat muscle, with an increase detectable IPEX [35]. The absence of

an IPEX-increase in muscle GLUT4 protein corresponded with the results for rats reported in

previous research by Kuo et al. [36]. However, a subsequent study by the same researchers

detected greater GLUT4 protein in rat muscle immediately after the completion of 6 hours of

swim exercise [7]. Consistent with our results, several studies have reported no IPEX-effect on

PGC1α protein abundance [37–39], but increased PGC1α protein in muscle has also been

reported IPEX [40]. In contrast to the lack of an IPEX-effect on PDK4 abundance in the cur-

rent study, muscle PDK4 protein abundance increased in mice immediately after treadmill

PLOS ONE Novel genetic model reveals the relationship between muscle glycogen and metabolic protein abundance

PLOS ONE | https://doi.org/10.1371/journal.pone.0295964 January 30, 2024 11 / 17

https://doi.org/10.1371/journal.pone.0295964


exercise [30]. Taken together, the absence of IPEX-induced increases in PDK4, HKII, PGC1α,

and GLUT4 protein abundance in the current study aligns with the findings of a number of

prior studies, but elevated PDK4, PGC1α, or GLUT4 protein in muscle has also been previ-

ously observed IPEX by others.

Consistent with earlier research using the same exercise protocol [41–43], phosphorylation

of AMPK and phosphorylation of its substrates ACC and TBC1D1 were markedly elevated

IPEX. There was no evidence of a genetic difference between paired muscles for any of the

markers of AMPK stimulation. The similarity between GS1 knockdown (shRNA-GS1) and

control (shRNA-Scr) in IPEX values for muscle glycogen concentration and multiple markers

of AMPK activation confirms a robust and parallel metabolic challenge by the exercise proto-

col in each of the paired muscles.

As expected, the lower GS1 abundance in the shRNA-GS1-treated muscles substantially

reduced the refeeding-related increase in muscle glycogen at 5hPEX. Consistent with earlier

studies [44, 45], there was a significant increase in muscle HKII protein abundance after one

bout of acute exercise in control muscles. However, the magnitude of this exercise effect on

HKII was not altered by either diet or GS1 knockdown even though there were substantial dif-

ferences in muscle glycogen concentration among the 5hPEX groups. GLUT4 protein abun-

dance was not altered by prior exercise, consistent with results for muscles studied 3 to 4 hours

after the exercise protocol used in this study [41, 46]. PDK4 protein abundance in muscles

without refeeding was greater only for shRNA-Scr muscles from 5hPEX versus sedentary rats.

This result aligns with greater PDK4 protein abundance that was reported for human muscle

at 6 hours postexercise [30], but not with an earlier study that found no change in muscle

PDK4 protein abundance of mice at 3 hours after exercise [47]. There was no 5hPEX-related

increase in muscle AMPK phosphorylation in the control muscles, which corresponds with

earlier studies indicating a postexercise reversal of this outcome [42, 48]. However, AMPK

phosphorylation in the shRNA-GS1 muscles from 5hPEX rats exceeded values for muscles

from sedentary rats and for paired muscles with normal GS1 protein levels. ACC phosphoryla-

tion in rats that were not refed was greater in 5hPEX rats versus sedentary rats, regardless of

GS1 knockdown. A small, but significant exercise effect on ACC phosphorylation was found

only in the shRNA-GS1-treated muscles of refed rats. The results indicate that the largest

5hPEX effect on the abundance of the key proteins that were evaluated (greater HKII protein

abundance), was unrelated to differences in either GS1 protein abundance or diet, in spite of

markedly different glycogen levels between these conditions.

Several modest, but significant differences were detected between the paired muscles at

9hPEX. The muscles with lower GS1 abundance versus paired control muscles had a greater

abundance of PDK4 and PGC1α within each diet group at this time point. It was notable that

the magnitude of the GS1-related difference in abundance of either PDK4 or PGC1α was quite

similar in each diet group, even though muscle glycogen differed between paired muscles only

in the refed rats. These results argue against the differences between paired muscles for PDK4

and PGC1α at 9hPEX being the consequence of postexercise differences in muscle glycogen.

Muscle ACC phosphorylation, often used as a surrogate for elevated AMPK activity, was

greater in muscles with lower GS1 abundance at 9hPEX regardless of diet. In rats that were not

refed, HKII abundance at 9hPEX exceeded the values for time-matched sedentary rats, regard-

less of GS1 knockdown. In the 9hPEX rats that were refed, muscles with lower GS1 abundance

versus paired muscles had greater HKII abundance, lower glycogen concentration, and greater

ACC phosphorylation. It is possible that differences in muscle glycogen at 9hPEX played a role

in the greater HKII abundance in muscles with lower GS1 abundance at this time point. The

only exercise-induced increases in GLUT4 protein abundance or AMPK phosphorylation at

9hPEX were in the shRNA-Scr muscle from rats that were not refed. The exercise effect on
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GLUT4 protein in the control muscle was consistent with earlier studies reporting that muscle

GLUT4 protein can be increased at 5 to 16 h after acute exercise [6, 7, 49]. The effect on

GLUT4 abundance in the 9hPEX rats was absent from shRNA-GS1 muscle, even though gly-

cogen concentration was similarly low in the paired muscles from these rats. Taken together,

the results are inconsistent with the idea that lower muscle glycogen at 9hPEX played a pri-

mary role in the exercise-related effects on metabolic protein abundance.

Three key enzymes that regulate glycogen metabolism (PYGM, AGL, and GBE1) were ana-

lyzed to evaluate if substantially reducing GS1 abundance would induce a modification in

their expression in skeletal muscle. Without exception, in each of the exercise and diet condi-

tions, the abundance of GS1 was dramatically lower in shRNA-GS1 versus shRNA-Scr mus-

cles. In striking contrast, substantial and consistent differences between paired muscles were

not observed for PYGM, AGL, or GBE1. In addition, no marked or uniform patterns of diet-

or exercise-related changes in the abundance of these proteins were evident. The results for

PYGM, AGL, and GBE1 do not reveal major compensatory alterations in the expression of

these important, glycogen regulatory enzymes.

The most important outcome of this study was the development of a novel approach to

investigate the relationship between muscle glycogen and exercise effects on key metabolic

proteins. Another noteworthy finding was that although exercise-induced increases in the

abundance of several metabolic proteins were detected, it was striking that the observed differ-

ences in postexercise muscle glycogen concentration did not consistently correspond to the

enhanced protein abundance. Finally, this new genetic model has the potential to be useful in

research focused on other consequences of exercise. For example, a similar approach could

provide a unique perspective to explore the widely studied, but poorly understood relationship

between muscle glycogen and postexercise insulin-stimulated glucose uptake.

Supporting information

S1 Fig. Validation of GS1 silencing using L6 cell. The target sequence for GS1 knockdown

was identified through a predesigned shRNA database (MilliporeSigma). Either scrambled

siRNA as a control or siRNA that targets GS1 was transfected into L6 cells for 48 hours. The

abundance of GS1 and AKT was analyzed using a western blot. MemCode is an indicator of

total protein and served as a loading control. siRNA that targeted GS1 effectively decreased the

GS1 abundance in L6 cells without affecting Akt or total protein abundance.

(TIF)
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