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Abstract

Resistance to preemergence (PRE) soil-applied herbicides, such as inhibitors of very-long-

chain fatty acid (VLCFA) elongases, was documented in two waterhemp [Amaranthus

tuberculatus (Moq.) J.D. Sauer] populations (SIR and CHR) from Illinois, USA. To limit the

spread of resistant weed populations, rapid detection measures are necessary. Soil-based

resistance assays are limited by edaphic factors, application timing, variable seeding depth

and rainfall amount. Therefore, cost-effective techniques mitigating effects of edaphic fac-

tors that are appropriate for small- to large-scale assays are needed. Our research goal was

to identify and quantify resistance to the VLCFA-inhibiting herbicides, S-metolachlor and

pyroxasulfone, using a soilless greenhouse assay. Dose-response experiments were con-

ducted under greenhouse conditions with pre-germinated waterhemp seeds planted on the

vermiculite surface, which had been saturated with S-metolachlor (0.015–15 μM), pyroxa-

sulfone (0.0005–1.5 μM), or S-metolachlor plus the cytochrome P450 (P450) inhibitor, mala-

thion. Lethal dose estimates of 50% (LD50) and growth reduction of 50% (GR50) were

calculated for S-metolachlor and pyroxasulfone PRE and used to determine resistance indi-

ces (RI) for resistant populations (CHR and SIR) relative to sensitive populations, SEN and

ACR. RI values for S-metolachlor using LD50 values calculated relative to SEN and ACR

were 17.2 and 15.2 (CHR) or 11.5 and 10.1 (SIR), while RI values for pyroxasulfone using

LD50 values calculated relative to SEN and ACR were 3.8 and 3.1 (CHR) or 4.8 and 3.8

(SIR). Malathion decreased the GR50 of S-metolachlor to a greater degree in CHR com-

pared to ACR, consistent with P450 involvement in S-metolachlor resistance in CHR.

Results from these soilless assays are in accord with previous findings in soil-based sys-

tems that demonstrate CHR and SIR are resistant to S-metolachlor and pyroxasulfone. This

method provides an effective, reproducible alternative to soil-based systems for studying

suspected PRE herbicide-resistant populations and will potentially assist in identifying non-

target-site resistance mechanisms.

Introduction

Preemergence (PRE) soil-applied herbicides are an integral resource for residual weed control

[1–4]. Very-long-chain fatty acid (VLCFA)-inhibiting herbicides are effective for selective PRE
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control of annual grasses and small-seeded broadleaf weed species in corn (Zea mays L.) and

soybeans [Glycine max (L.) Merr] [5,6]. Since their development in the 1950s, an increased use

of VLCFA-inhibiting herbicides has resulted from reduced tillage practices [7], the growing

demand for soil-residual herbicides due to limited options for broadleaf weed control [8,9],

and integrated pest management strategies [10,11].

S-metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-methylethyl]

acetamide) and pyroxasulfone (3-{[5-(difluoromethoxy)-1-methyl-3-(trifluoromethyl)-1H-

pyrazol-4-yl]methanesulfonyl}-5,5-dimethyl-4,5-dihydro-1,2-oxazole) (Fig 1) are VLCFA-

inhibiting herbicides (Group 15) belonging to the chloroacetamide and pyrazole chemical

families, respectively [12,13]. S-metolachlor and pyroxasulfone control annual grass and

broadleaf weeds PRE, including waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer]

[3,4,8,14] and other weeds in the Amaranthaceae. VLCFA-inhibiting herbicides inhibit the

biosynthesis of nonsphingolipid VLCFAs (>18-carbon chain length) catalyzed by VLCFA

elongase enzymes localized in the endoplasmic reticulum [12,15]. Inhibition of VLCFA bio-

synthesis depletes sensitive plants of cell membrane components and cuticle waxes [16–19].

Although pyroxasulfone and S-metolachlor share the same site-of-action (SoA) [18,19], these

herbicides possess different chemistries, leading to differences in water solubility and vapor

pressure [20–22]. In terms of weed control, these differing chemical properties can potentially

produce varying levels of control of the same weed species [22].

Waterhemp is a highly competitive species capable of reducing maize and soybean yields by

36% and 43%, respectively [23,24]. Waterhemp is an annual dicot with C4 physiology and is a

prolific seed producer [25]; in addition, seeds can remain dormant in the soil for multiple

years [26]. Waterhemp also exhibits discontinuous germination throughout the growing sea-

son [27,28], which poses difficulty for control with PRE residual herbicides and might be mis-

taken as herbicide resistance. Waterhemp is dioecious and thus an obligate outcrosser [29,30],

with male and female plants capable of passing herbicide resistance alleles (among other traits)

to their offspring via pollen and seeds, respectively [31–35]. Obligate outcrossing contributes

to increased genetic variability, and in turn, widespread distribution of herbicide resistance

among waterhemp populations [36–38]. As an agronomically-important weed species, PRE

herbicide-resistant waterhemp populations require rapid identification and early control [39].

Identification and quantification of weed resistance to PRE herbicides can be challenging

because of inherent edaphic [40–42] and environmental factors. Edaphic factors such as soil

Fig 1. Preemergence soil-applied herbicides, S-metolachlor (A) and pyroxasulfone (B).

https://doi.org/10.1371/journal.pone.0295927.g001
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structure, organic matter content, moisture, temperature, pH, and salinity affect the adsorp-

tion of herbicides to the soil, which then determines the bioavailability of the herbicide for

weed control [43]. Moreover, herbicide application rate, active ingredient formulation, and

amount of rainfall also affect control of many target weeds. In addition, PRE herbicides can

display reduced efficacy from volatilization, UV light degradation on the soil surface, and

microbial degradation if not properly incorporated into the soil [41,44]. Proper incorporation

of Group 15 and many other soil-applied herbicides rely on accurate weather forecasts so

applications can ideally be synchronized with a significant rainfall event (>2.5 cm) to ensure

proper soil contact is made [14,43,45].

Due to increasing herbicide resistance cases in waterhemp populations [38] and the under-

lying challenges of soil-based and/or field testing, rapid and efficient diagnostic tests for early

screening of herbicide resistance is needed. Soilless or hydroponic assays designed to screen

plant species for herbicide sensitivity have been reported and reviewed [39,46–52]. However,

these methods (1) typically require a climate-controlled growth facility or chamber, which are

not readily available in every laboratory to accurately phenotype hundreds of plants, and/or

(2) have not been used to identify and quantify dicot weed resistance to VLCFA-inhibiting

herbicides. Pioneering soilless phenotyping assays were mainly developed for screening herbi-

cide tolerance in crops [46–49]. For example, a soilless hydroponic system was developed for

screening soybean cultivars after application of the soil-applied herbicide, metribuzin [46].

Another soilless assay used Petri dishes with media saturated in Murashige-Skoog salts to

investigate root growth in sunflower (Helianthus annuus L.) after treatment with the acetolac-

tate synthase (ALS)-inhibiting herbicide, imazapyr [48]. The “Resistance In-Season Quick”

(RISQ) test is an agar-based, soilless assay for herbicide resistance screening in weeds [50]. The

RISQ assay detected resistance to postemergence ALS- (Group 2) and acetyl-CoA carboxylase-

inhibiting herbicides (Group 1) in weedy Lolium spp. and later was successfully adapted for

identification of glyphosate resistance in Lolium populations, horseweed (Erigeron canadensis),
goosegrass (Eleusine indica), and waterhemp under greenhouse conditions [51]. More

recently, the RISQ assay was adapted for screening resistance of another weedy grass, Alope-
curus myosuroides, to the PRE herbicides flufenacet (Group 15; VLCFA elongase inhibitor)

and cinmethylin (Group 30; fatty-acid thioesterase inhibitor), which enabled identification of

specific herbicide concentrations for control of sensitive weeds [52]. Agar-based resistance

assays are adaptable for various herbicides and weed species; however, these methods require

initial microwave and refrigeration of agar media [50] and a growth facility maintained at

20˚C [52], which is not readily available across laboratories. As a result, additional or alterna-

tive rapid screening methods should be explored for dicot weeds.

Since VLCFA-inhibiting herbicides are often applied in combination with other active

ingredients in a tank mixture, detection of resistance to VLCFA inhibitors alone can be chal-

lenging. Moreover, continuous use of VLCFA-inhibiting herbicides in tank mixtures poses an

additional concern for managing rapidly evolving, multiple herbicide-resistant (MHR) weed

populations [53]. For example, resistance to S-metolachlor, pyroxasulfone and other VLCFA-

inhibiting herbicides was reported in two waterhemp populations previously characterized as

resistant to inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD), photosystem II (PS

II), protoporphyrinogen oxidase (PPO), ALS, as well as synthetic auxin herbicides [4,54]. Met-

abolic resistance to S-metolachlor was attributed to increased microsomal P450 activity, rapid

formation of the Phase I metabolite, O-demethylated S-metolachlor, in MHR waterhemp but

not in sensitive waterhemp or corn, as well as responses of these MHR populations to mala-

thion (a plant P450 inhibitor) plus S-metolachlor [55,56]. Therefore, our goal is to identify and

quantify resistance to the VLCFA-inhibiting herbicides, S-metolachlor and pyroxasulfone,

using a novel growth assay designed to limit effects of edaphic factors. This method is
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henceforth called ‘PRIM’ (Preemergence Resistance Identification Method). Specifically, our

research aims to: (i) develop a soilless dose-response assay for S-metolachlor and pyroxasul-

fone using exfoliated vermiculite in the greenhouse; (ii) conduct dose-response analyses of

VLCFA inhibitor-sensitive and MHR waterhemp populations to S-metolachlor and pyroxasul-

fone; and (iii) determine potential interactions between S-metolachlor and malathion in these

waterhemp populations.

Materials and methods

Plant materials

Two MHR and two VLCFA-inhibitor sensitive waterhemp populations were studied. The two

MHR populations are: Stanford, Illinois Resistant (SIR) [4,59,60] and Champaign County, Illinois

Resistant (CHR) [4,54]. SIR and CHR are resistant to VLCFA-inhibiting herbicides as well as her-

bicides from other SoA groups (inhibitors of HPPD, PPO, PSII and ALS as well as synthetic aux-

ins) [4,10,57]. The two populations sensitive to VLCFA-inhibiting herbicides are: standard

sensitive population (SEN) [55] and Adams County, Illinois Resistant (ACR population; ALS-

inhibitor-, PPO-inhibitor- and atrazine-resistant but VLCFA-inhibitor sensitive) [58,59]. Both

SEN and ACR were used to calculate resistant-to-sensitive ratios, or resistance indices (RI).

Seed preparation

Seeds from each of the four waterhemp populations were stratified to break dormancy using a

method previously described [60]. Stratified waterhemp seeds were pre-germinated on moist-

ened filter paper sealed in a 100 cm2 Petri plate (Fisher Scientific, Hanover Park, IL 60133)

with parafilm. Petri plates were then placed in a greenhouse with settings maintained at 28/

22˚C day/night under a 16 h photoperiod and incubated for 48–72 h or until most seedlings

displayed a radicle, confirming that only live seedlings were subjected to herbicide treatments.

Herbicides for dose-response analysis in vermiculite growing media (PRIM)

A soilless assay using exfoliated vermiculite was developed to determine the response of water-

hemp populations to varying concentrations of S-metolachlor and pyroxasulfone (Fig 2). Exfo-

liated vermiculite consists of soil fractions expanded into elongated and layered particles via

high temperature [61]. In our study, dry, medium-textured, exfoliated vermiculite (Thermo-

O-Rock East Inc., New Eagle, PA 15067 USA) was used as the growing medium (combined

with nutrient solution) due to its sterility, chemically neutrality, water insolubility, lack of elec-

trical conductivity, and capacity to imbibe liquids during an extended time period [61]. These

properties of exfoliated vermiculite prevent microbial infestation and binding of herbicides to

the medium (such as soil), as well as allow for plant uptake of herbicides in solution.

Vermiculite was weighed and placed into sealable 9.5-L plastic bags. Each bag containing

750 g of vermiculite was combined with 3L of herbicide solution and sealed, representing a 4:1

ratio of vermiculite-to-herbicide solution (Fig 2). Seven concentrations of formulated S-meto-

lachlor (Dual Magnum1, Syngenta Crop Protection, Greensboro, NC 27419 USA) and eight

concentrations of formulated pyroxasulfone (Zidua1, BASF Corporation Agricultural Prod-

ucts, Research Triangle Park, NC 27709 USA) were used for the experiment. Herbicide con-

centrations were spaced by a factor of 3.16 and diluted in reverse-osmosis water. S-

metolachlor concentrations were 0.015, 0.05, 0.15, 0.5, 1.5, 5 and 15 μM, whereas pyroxasul-

fone concentrations were 0.0005, 0.0015, 0.005, 0.15, 0.05, 0.15, 0.5 and 1.5 μM. Sealed bags

were gently rolled and massaged by hand to ensure a homogenous mixture of vermiculite and

herbicide. This herbicide-saturated vermiculite was then randomly placed into twelve-509 cm3
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cell pack inserts (31801 Deep Insert, BFG Supply Company, Janesville, WI 53546 USA) (three

inserts per population) and placed onto a 10 cm × 10 cm weigh boat. Herbicide solution was

collected in the weigh boat and then poured onto the vermiculite surface to further incorporate

the solution into the soilless medium. Pre-germinated waterhemp seeds from each of the previ-

ously described populations (CHR, SIR, ACR and SEN) were planted on the vermiculite sur-

face at a rate of 10 seeds per insert, covered with a layer of untreated vermiculite, and lightly

patted down by hand to ensure the added vermiculite absorbed the herbicide solution and pro-

vided optimum vermiculite-to-seed contact. Inserts were then arranged in the greenhouse in a

randomized complete block design using ‘rep’ as a blocking factor.

Greenhouse conditions were maintained at 28/22˚C day/night under a 16 h photoperiod.

Supplemental sunlight was provided using mercury halide lamps providing 800 μmol m-2 s-1

photon flux to the vermiculite surface. Once placed in the greenhouse, each insert was sub-irri-

gated with 150 mL one-third strength commercial hydroponic fertilizer solution (Peters

Hydroponic Special 5-11-26; ICL Specialty Fertilizers, Summerville, SC, USA) and supple-

mented with 0.15 g L−1 Ca(NO3)2 without chemical treatments the following day and then

every second day for the duration of the experiment. Total number of surviving plants per pot

was recorded 14 days after treatment (DAT), then plants were cut at the vermiculite surface,

bagged, and placed in a 65˚C oven. After approximately 48 h, dry weights were recorded and

compared to their respective untreated controls. The experiment was performed twice inde-

pendently (separated in time) and data were pooled for further statistical analysis.

S-metolachlor and malathion interaction study

Preparation of herbicide-malathion-vermiculite media for PRIM was carried out the same as

for S-metolachlor and pyroxasulfone alone, except the addition of malathion (Spectracide1

Fig 2. Preemergence resistance identification method (PRIM) uses basic greenhouse supplies, access to greenhouse space and small amounts of

chemicals.

https://doi.org/10.1371/journal.pone.0295927.g002
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Malathion Insect Spray Concentrate, Spectrum Group, Division of United Industries Corpora-

tion, St. Louis, MO 63114, USA) and only studying one VLCFA-inhibitor-resistant population

(CHR) and VLCFA-inhibitor-sensitive population (ACR) due to limited seed and space avail-

ability. S-metolachlor concentrations ranging from 0.015 to 15 μM, with and without 2.0 μM

malathion, were used for the experiment. This malathion concentration (2.0 μM) did not sig-

nificantly affect seedling survival or growth in preliminary experiments (S1 Fig) and hence was

deemed appropriate for the inhibitor assay. Control plants consisting of five biological repli-

cates (ten seedlings per replicate) of the CHR and ACR populations were treated with the same

nutrient solution described previously. After applying treatments, pots were moved to the

greenhouse and arranged in a completely randomized design for the duration of the experi-

ment. At 14 DAT, the total number of surviving plants per pot was recorded, then plants were

cut at the vermiculite surface, bagged, and placed in a 65˚C oven. After approximately 48 h,

dry weights were recorded and compared to their respective untreated controls. The experi-

ment was performed twice independently and data were pooled for further statistical analysis.

Statistical analysis

Dose-response experiments with S-metolachlor and pyroxasulfone alone were performed sep-

arately and each was conducted twice. Dose-response experiments for the S-metolachlor-mala-

thion interaction study were performed simultaneously and conducted twice. Biomass and

survival data per study were pooled since the O’Brien test for homogeneity of variance for

repeated experiments was not significant. Survival and biomass data were analyzed using a

three-parameter logistic regression model y ¼ d
1þexpfb½logðxÞ� logðeÞ�g [62], where d is the upper limit,

b is the slope of the curve, and e is the 50% reduction in seedling survival (LD50) or 50% reduc-

tion in seedling aboveground dry biomass (GR50), in the ‘Analysis of Dose-Response Curves’,

or drc package, in R (Version 3.4.3) and RStudio (Version 1.2.1335) [63]. Lethal dose estimates

of 50% (LD50) and growth reduction estimates of 50% (GR50) for each population were

obtained from each analysis, respectively. Finally, RI values for MHR waterhemp populations

(CHR and SIR) for S-metolachlor and pyroxasulfone dose-response experiments were calcu-

lated using the equation: RI = (LD50/GR50-resistant) / (LD50/GR50-sensitive), where LD50/GR50-sen-

sitive, is the concentration of herbicide causing 50% reduction in phenotypic response in the

SEN and ACR populations relative to untreated controls at 14 DAT. The RI for the S-metola-

chlor plus malathion interaction study was calculated similarly as the ratio between LD50 or

GR50 value of CHR relative to the LD50 or GR50 of ACR.

Results

Response of waterhemp populations to VLCFA-inhibiting herbicides

Dose-response experiments with S-metolachlor using PRIM demonstrated significant differ-

ences between the two MHR waterhemp populations (CHR and SIR) and two VLCFA-sensi-

tive populations (SEN and ACR) (Table 1; Figs 3–5). In response to S-metolachlor, RI values

calculated using LD50 values for CHR and SIR were 17.2 and 15.2, respectively, compared to

SEN, or 11.5 and 10.1 compared to ACR (Table 1). RIs calculated using GR50 values for CHR

and SIR were 14.5 and 14.4, respectively, compared to SEN, or 9.7 and 9.6 compared to ACR

(Table 1). In general, these RI values for CHR and SIR are relatively similar when measuring

different dose-response parameters relative to SEN or ACR.

Dose-response experiments with pyroxasulfone using PRIM also showed significant differ-

ences between the two MHR populations (CHR and SIR) and two VLCFA-inhibitor sensitive

populations (SEN and ACR) (Table 2; Figs 6–8). RIs calculated using LD50 values for CHR and
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SIR were 3.8 and 3.1, respectively, compared to SEN, or 4.8 and 3.8 compared to ACR

(Table 2). RIs calculated using GR50 values for CHR and SIR were 4.8 and 5.6, respectively,

compared to both SEN and ACR (Table 2). The RI values calculated for pyroxasulfone

(Table 2) are approximately 2- to 4-fold lower than RIs calculated for S-metolachlor using the

same parameters (Table 1). This finding is in accord with a higher level of resistance to S-meto-

lachlor than pyroxasuflone (and other VLCFA-inhibiting herbicides) determined in soil-based

greenhouse and field studies with SIR and CHR [4,64].

S-metolachlor-malathion interaction study

Addition of the plant P450 inhibitor, malathion, with S-metolachlor showed a trend of

increased sensitivity (survival and growth parameters) in MHR waterhemp (CHR) and the

VLCFA inhibitor-sensitive population, ACR (Tables 3 and 4; Figs 9 and 10). Survival (LD50)

values of the CHR and ACR populations to S-metolachlor were reduced approximately 30% by

adding malathion and, as a result, RI values for CHR remained similar (Table 3). However, a

greater effect of malathion plus S-metolachlor on seedling growth (GR50) of the CHR

Table 1. Mean lethal dose estimates of 50% (LD50) and growth reduction estimates of 50% (GR50) in waterhemp (Amaranthus tuberculatus) using S-metolachlor.

Population S-metolachlor responses

LD50 (μM)a GR50 (μM)a RI (LD50)b RI (GR50)b

CHR 2.41 (±0.21) 1.16 (±0.23) 17.2, 11.5 14.5, 9.7

SIR 2.13 (±0.21) 1.15 (±0.33) 15.2, 10.1 14.4, 9.6

ACR 0.21 (±0.02) 0.12 (±0.03) - -

SEN 0.14 (±0.01) 0.08 (±0.02) - -

a Estimated values are expressed as S-metolachlor concentrations (μM) followed by standard errors of the mean in parentheses.
b Resistance indices (RI) were calculated based on the sensitive populations, SEN and ACR, respectively.

https://doi.org/10.1371/journal.pone.0295927.t001

Fig 3. Responses of four waterhemp (Amaranthus tuberculatus) populations to S-metolachlor applied preemergence. S-metolachlor

concentrations ranged from 0.015 to 15 μM. Seedlings are shown at 14 days after treatment (DAT). Non-treated inserts appear on the left for each

population and treated inserts are arranged from left-to-right with increasing herbicide concentrations. Herbicide treatments using the PRIM assay

are described in Materials and methods.

https://doi.org/10.1371/journal.pone.0295927.g003
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population compared to the ACR population led to a decrease in RI from 14.5 to 8.8, which is

consistent with the greater degree of oxidative metabolism of S-metolachlor in MHR com-

pared to sensitive waterhemp [55].

Discussion

Identification of resistance in weeds is an important step in weed management [9], but screen-

ing for resistance to PRE herbicides can be a daunting task due to the presence of confounding

edaphic factors [52]. For instance, to achieve consistent efficacy, higher rates of pyroxasulfone

Fig 4. Quantitative survival analysis of CHR, SIR, ACR, and SEN populations in response to S-metolachlor. Dose-response analysis of four waterhemp (Amaranthus
tuberculatus) populations in herbicide-treated vermiculite using PRIM. Data were collected 14 days after treatment (DAT) by counting the number of surviving plants.

Results are presented as a percentage of the untreated control for each population. Dose-response curves were fitted using the equation y ¼ d
1þexpfb½logðxÞ� logðLD50Þ�g

and each

symbol’s error bar represents ±SE. CHR, solid line and solid triangle; SIR, solid line and solid inverted triangle; ACR, solid line and solid circle; SEN, solid line and solid

square.

https://doi.org/10.1371/journal.pone.0295927.g004
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are required to reach the same level of weed control when applied to soils with high percent

soil organic matter [65]. Development of soilless screening techniques for PRE herbicides

addresses limitations in soil-based methods without compromising accuracy [39,52]. In our

study, identification of resistance to S-metolachlor and pyroxasulfone was accomplished using

detailed dose-response analysis [66] and the PRIM in the greenhouse. Despite differences in

structures and properties, different concentrations of pyroxasulfone and S-metolachlor

completely controlled VLCFA-inhibitor sensitive populations (Figs 3–8). Compared to other

soilless assays developed for resistance screening, which require preparation of sterile agar

Fig 5. Quantitative growth reduction analysis of CHR, SIR, ACR, and SEN populations in response to S-metolachlor. Dose-response analysis of four waterhemp

(Amaranthus tuberculatus) populations in herbicide-treated vermiculite using PRIM. Plants were harvested 14 days after treatment (DAT), dried in an oven, and

aboveground dry biomass of surviving plants is expressed as a percentage of the untreated control. Dose-response curves were fitted using the equation y ¼
d� c

1þexpfb½logðxÞ� logðLD50Þ�g
and each symbol’s error bar represents ±SE. CHR, discontinuous line and solid circle; SIR, discontinuous line and solid triangle; ACR, solid line and

solid square; SEN, discontinuous line and solid diamond.

https://doi.org/10.1371/journal.pone.0295927.g005
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medium [50,51] and a temperature-regulated plant growth facility or chamber [52], PRIM

requires minimal preparation and has flexibility to adapt to any growth facility amenable for

screening different species. This method also represents an improvement on prior soilless

techniques, such as agar-based assays [39,52], in that PRIM is not limited by possible microbial

contamination. Using PRIM, a researcher could screen hundreds of weed seedlings suspected

of resistance to VLCFA-inhibiting or other PRE herbicides. For example, 3L of herbicide solu-

tion in this study effectively phenotyped c.a. 120–180 seedlings per suspected resistant popula-

tion (Fig 2). PRIM also preserves intact roots for further phenotyping or genotyping since

vermiculite can be easily washed away with water.

Dose-response assays using PRIM demonstrated 0.5 and 0.05 μM as effective concentra-

tions for discriminating resistant from sensitive waterhemp for S-metolachlor and pyroxasul-

fone, respectively. This magnitude of difference in effective concentrations is consistent with

field applications where pyroxasulfone is generally applied at c.a. one-tenth (150–250 g a.i. ha-

1) the rate of S-metolachlor (1–2 kg a.i. ha-1), indicating consistent availability of herbicide

Fig 6. Responses of four waterhemp (Amaranthus tuberculatus) populations to pyroxasulfone applied preemergence. Pyroxasulfone

concentrations ranged from 0.0005 to 1.5 μM. Seedlings are shown at 14 days after treatment (DAT). Non-treated inserts appear on the left for

each population and treated inserts are arranged from left-to-right with increasing herbicide concentrations. Herbicide treatments are

described in Materials and Methods.

https://doi.org/10.1371/journal.pone.0295927.g006

Table 2. Mean lethal dose estimates of 50% (LD50) and growth reduction estimates of 50% (GR50) in waterhemp (Amaranthus tuberculatus) using pyroxasulfone.

Population Pyroxasulfone responses

LD50 (μM)a GR50 (μM)a RI (LD50)b RI (GR50)b

CHR 0.10 (±0.01) 0.024 (±2.7x10-3) 3.8, 4.8 4.8, 4.8

SIR 0.08 (±0.009) 0.028 (±3.3x10-3) 3.1, 3.8 5.6, 5.6

ACR 0.021 (±0.002) 0.005 (±8.5x10-4) - -

SEN 0.026 (±0.003) 0.005 (±1.1x10-3) - -

avalues are expressed as the S-metolachlor concentrations (μM) followed by standard errors of the mean in parentheses.
b Resistance indices (RI) were calculated based on the sensitive populations, SEN and ACR, respectively.

https://doi.org/10.1371/journal.pone.0295927.t002
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uptake by seedlings [4]. Waterhemp plants developing aboveground biomass, as characterized

by a fully expanded second true leaf at discriminating pyroxasulfone and S-metolachlor con-

centrations, are characterized as resistant using PRIM (Figs 3 and 6). A researcher might

choose a higher and/or lower concentration in addition to the discriminating rate to account

for temperature or light intensity changes based on the time of year [67]. Additional foliar-

applied herbicides with different SoA that also possess PRE residual activity, such as ALS

inhibitors, PPO inhibitors, HPPD inhibitors or atrazine, may also have potential with the

PRIM assay to identify resistant weeds, but requires further research.

Fig 7. Quantitative survival analysis of CHR, SIR, ACR, and SEN populations in response to pyroxasulfone. Dose-response analysis of four waterhemp (Amaranthus
tuberculatus) populations in herbicide-treated vermiculite using PRIM. Data were collected 14 days after treatment (DAT) by counting the number of surviving plants.

Results are presented as a percentage of the untreated control for each population. Dose-response curves were fitted using the equation y ¼ d
1þexpfb½logðxÞ� logðLD50Þ�g

and each

symbol’s error bar represents ±SE. CHR, discontinuous line and solid circle; SIR, discontinuous line and solid triangle; ACR, solid line and solid square; SEN,

discontinuous line and solid diamond.

https://doi.org/10.1371/journal.pone.0295927.g007
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Fig 8. Quantitative growth reduction analysis of CHR, SIR, ACR, and SEN populations populations in response to pyroxasulfone. Dose-response analysis of four

waterhemp (Amaranthus tuberculatus) populations in herbicide-treated vermiculite using PRIM. Plants were harvested 14 days after treatment (DAT), dried in an oven,

and aboveground dry biomass of surviving plants is expressed as a percentage of the untreated control. Dose-response curves were fitted using the equation y ¼
d

1þexpfb½logðxÞ� logðGR50Þ�g
and each symbol’s error bar represents ±SE. CHR, discontinuous line and solid circle; SIR, discontinuous line and solid triangle; ACR, solid line and

solid square; SEN, discontinuous line and solid diamond.

https://doi.org/10.1371/journal.pone.0295927.g008

Table 3. Mean lethal dose estimates of 50% (LD50) of S-metolachlor or S-metolachlor plus malathion (2 μM) in waterhemp (Amaranthus tuberculatus).

Population S-metolachlor S-metolachlor + malathion

LD50 (μM)a RIb LD50 (μM)a RIb

CHR 1.12 (±0.12) 11.2 0.76 (±0.09) 10.9

ACR 0.10 (±0.01) - 0.07 (±0.01) -

a Estimated LD values are expressed as S-metolachlor concentrations (μM) followed by standard errors of the mean in parentheses.
b Resistance indices (RI) were calculated based on the LD50 of CHR relative to ACR in the S-metolachlor only treatments or S-metolachlor plus malathion treatments.

https://doi.org/10.1371/journal.pone.0295927.t003
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Table 4. Mean growth reduction estimates of 50% (GR50) of S-metolachlor or S-metolachlor plus malathion (2 μM) in waterhemp (Amaranthus tuberculatus).

Population S-metolachlor S-metolachlor + malathion

GR50 (μM)a RIb GR50 (μM)a RIb

CHR 0.87 (±0.12) 14.5 0.35 (±0.07)c 8.8

ACR 0.06 (±0.01) 0.04 (±0.004)

a Estimated GR values are expressed as S-metolachlor concentrations (μM) followed by standard errors of the mean in parentheses.
b Resistance indices (RI) were calculated based on the GR50 of CHR relative to ACR in the S-metolachlor only treatments or S-metolachlor plus malathion treatments.
c GR50 value is significantly lower than the GR50 in the S-metolachlor only treatment (p<0.05).

https://doi.org/10.1371/journal.pone.0295927.t004

Fig 9. Quantitative survival analysis of CHR and ACR populations in response to S-metolachlor versus S-metolachlor plus malathion. Dose-response analysis of two

waterhemp (Amaranthus tuberculatus) populations in S-metolachlor-treated and S-metolachlor plus malathion-treated vermiculite using PRIM. Data were collected 14

days after treatment (DAT) by counting the number of surviving plants. Results are presented as a percentage of the untreated control for each population. Dose-response

curves were fitted using the equation y ¼ d
1þexpfb½logðxÞ� logðLD50Þ�g

and each symbol’s error bar represents ±SE. CHR, solid line and solid square; CHR+M, discontinuous line

and hollow square; ACR, solid line and solid circle; ACR+M, discontinuous line and hollow circle. +M, treatment includes 2 μM malathion.

https://doi.org/10.1371/journal.pone.0295927.g009
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Incorporation of malathion into our dose-response experiment shows PRIM is adaptable

for investigating resistance mechanisms in the presence of metabolic inhibitors. Increased sen-

sitivity of CHR to S-metolachlor in the presence of malathion corroborates previous results

from a laboratory-based metabolic resistance assay [55] and supports previous findings on

P450 enzyme activity in metabolic detoxification of S-metolachlor via Phase I O-demethylation

[56]. The PRIM assay might also be used to investigate responses of CHR and SIR populations

to herbicides and chemical inhibitors of GST enzyme activities [68,69], which contribute to

metabolic detoxification of multiple herbicides in Alopecurus myosuroides [67,69] and MHR

Fig 10. Quantitative growth reduction analysis of CHR and ACR populations in response to S-metolachlor versus S-metolachlor plus malathion. Dose-response

analysis of two waterhemp (Amaranthus tuberculatus) populations in S-metolachlor-treated and S-metolachlor plus malathion-treated vermiculite using PRIM. Plants

were harvested 14 days after treatment (DAT), dried in an oven, and aboveground dry biomass of surviving plants is expressed as a percentage of the untreated control.

Dose-response curves were fitted using the equation y ¼ d
1þexpfb½logðxÞ� logðGR50Þ�g

and each symbol’s error bar represents ±SE. CHR, solid line and solid square; CHR+M,

discontinuous line and hollow square; ACR, solid line and solid circle; ACR+M, discontinuous line and hollow circle. +M, treatment includes 2 μM malathion.

https://doi.org/10.1371/journal.pone.0295927.g010
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waterhemp [58,59,70]. The ability to screen for and identify resistance, perform accurate dose-

response analysis, and utilize metabolic inhibitors or synergists to understand non-target-site

resistance make PRIM a robust phenotyping method.

Conclusions

Results from the PRIM assay support previous findings in soil-based systems without requiring

expensive research-grade cabinet sprayers, growth chambers, automated overhead misting sys-

tems, or rented land where MHR waterhemp populations are present. PRIM is thus a promis-

ing alternative to soil-based screening assays for studying PRE herbicide efficacy and

resistance in waterhemp and possibly other broadleaf weeds, such as Palmer amaranth [71,72],

as well as monocots. For researchers considering PRIM for resistance studies, we suggest col-

lecting both LD50 or GR50 data to generate RI values, if space and time allow, to identify and

precisely quantify resistance levels to PRE herbicides. However, if available resources allow for

just one parameter to be recorded for calculating RIs, we suggest collecting LD50 data since the

time required to obtain seedling dry weights can be omitted. With its potential of being scaled

up or down to meet greenhouse experimental designs and capability to incorporate PRE herbi-

cides and metabolic inhibitors, PRIM can be easily adapted by various researchers as an alter-

native to soil-based screening of herbicide resistance in weed populations.
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S1 Fig. Comparison of aboveground dry biomass of three waterhemp (Amaranthus tuber-
culatus) populations 14 days after treatment with 2.0 μM malathion relative to an

untreated control (CHK). Pooled data from two experimental runs were analyzed using

PROC GLIMMIX 9.4. The designation ‘ns’ indicates treatment means are not significantly dif-
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