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Abstract

Knowledge tracing models have gained prominence in educational data mining, with appli-

cations like the Self-Attention Knowledge Tracing model, which captures the exercise-

knowledge relationship. However, conventional knowledge tracing models focus solely on

static question-knowledge and knowledge-knowledge relationships, treating them with

equal significance. This simplistic approach often succumbs to subjective labeling bias and

lacks the depth to capture nuanced exercise-knowledge connections. In this study, we pro-

pose a novel knowledge tracing model called Knowledge Relation Rank Enhanced Hetero-

geneous Learning Interaction Modeling for Neural Graph Forgetting Knowledge Tracing.

Our model mitigates the impact of subjective labeling by fine-tuning the skill relation matrix

and Q-matrix. Additionally, we employ Graph Convolutional Networks (GCNs) to capture

intricate interactions between students, exercises, and skills. Specifically, the Knowledge

Relation Importance Rank Calibration method is employed to generate the skill relation

matrix and Q-matrix. These calibrated matrices, alongside heterogeneous interactions,

serve as input for the GCN to compute exercise and skill embeddings. Subsequently, exer-

cise embeddings, skill embeddings, item difficulty, and contingency tables collectively con-

tribute to an exercise relation matrix, which is then fed into an attention mechanism for

predictions. Experimental evaluations on two publicly available educational datasets dem-

onstrate the superiority of our proposed model over baseline models, evidenced by

enhanced performance across three evaluation metrics.

Introduction

In the age of rapid technological advancement, the ubiquity of networks has ushered in a

wealth of information and convenience. This surge in data, commonly referred to as big data,

plays a pivotal role in interconnecting diverse sectors such as education, healthcare, and trans-

portation. The fusion of education with information science is an inexorable trend, catalyzing

an expansive realm of research in online education technologies. Notably, the application of

artificial intelligence and related technologies to analyze substantial educational data yields

invaluable insights and enhances the educational landscape [1–4].
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Online educational platforms, like edX, Coursera, and Udacity, have gained widespread

adoption for tracking, reporting, and delivering online courses [3, 5, 6]. These platforms offer

students a spectrum of advantages, including diverse online courses and personalized learning

resources [6–8]. Moreover, they provide a valuable alternative to traditional classroom teach-

ing, circumventing geographical or weather-related limitations. Teachers leverage these plat-

forms to tailor remedial materials to suit individual student needs [4, 8–11].

Central to the effectiveness of online education is the task of tracking students’ perfor-

mance based on their past interactions [12, 13]. This task, known as Knowledge Tracing [14,

15], seeks to gauge students’ knowledge states by analyzing their responses to exercises.

Essentially, Knowledge Tracing (KT) assesses students’ mastery of knowledge. Given a set of

practice questions Xt = (x1, x2, . . ., xt) and response logs (e.g., correct or incorrect), KT pre-

dicts the likelihood of correctly anticipating students’ knowledge states in subsequent inter-

actions (p(rt+1 = 1|et+1, X)) based on past interactions and responses. Here, xt is presented as

the tuple (qt, at), where qt represents the student’s question and at denotes the corresponding

response. Refer to Fig 1 for a visual representation of the knowledge tracing model’s

framework.

Numerous knowledge tracing models have emerged to tackle the challenge of monitoring

students’ knowledge states, such as Deep Knowledge Tracing (DKT) [16], Dynamic Key-Value

Memory Network (DKVMN) [17], Graph-based Knowledge Tracing (GKT) [18], and Self-

Attentive Model for Knowledge Tracing (SAKT) [19]. These models exhibit improved predic-

tive performance across several educational datasets. DKT incorporates deep neural networks

to forecast student performance. However, it overlooks knowledge point information and stu-

dent abilities. DKVMN employs nonlinear transformations to learn representations and mas-

ter levels for each concept, but disregards the similarity between knowledge concepts (KCs)

when making predictions. SAKT delves into the KC-exercise relationship for mastery level

prediction but ignores the potential organizational structure of past interactions as a graph.

To address these limitations, we present the Knowledge Relation Rank Enhanced Heteroge-

neous Learning Interaction Modeling for Neural Graph Forgetting Knowledge Tracing

(NGFKT). This model rectifies the shortcomings of existing models when predicting student

performance from past interactions. The model encompasses four key steps: (1) Skill relation

matrix and Q-matrix calibration using the Knowledge Relation Importance Rank Calibration

method (KRIRC), which considers the students-exercise-KCs relationship; (2) Inputting the

calibrated matrices into a Graph Convolutional Network (GCN) to yield skill and exercise

embeddings; (3) Incorporating heterogeneous interactions, item difficulty, skill embeddings,

and exercise embeddings to generate an exercise relation matrix; (4) Applying the Position-

Relation-Forgetting attention mechanism, inspired by student forgetting behavior, to predict

student performance. We validate our model on two datasets, demonstrating its superiority

over traditional models.

The contributions of this paper encompass:

Fig 1. Illustration of the knowledge tracing model’s process.

https://doi.org/10.1371/journal.pone.0295808.g001
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1. Calibration Method for Enhanced Skill Relation Matrix and Q-Matrix: By considering

the intricate relationship between knowledge concepts (KCs) within heterogeneous interac-

tions—namely students, exercises, and KCs—the calibration method ensures a more accu-

rate representation. This calibrated skill relation matrix and Q-matrix, coupled with the

heterogeneous interactions, serve as inputs for a Graph Convolutional Network (GCN).

This integration facilitates the generation of comprehensive exercise embeddings and skill

embeddings, effectively capturing the intricate interplay between students, exercises, and

KCs.

2. Exercise Relation Modeling with Enhanced Forgetting Mechanism: In contrast to the

GKT model [18], our proposed approach goes beyond surface-level prediction by incorpo-

rating the nuanced forgetting behavior of students and relative distance representations.

This enhancement is realized through the utilization of the Position-Relation-Forgetting

attention mechanism. This attention mechanism is designed to predict student perfor-

mance, and its integration demonstrates the model’s ability to capture deeper insights into

learning dynamics.

3. Comprehensive Experimental Evaluation: Our evaluation strategy addresses three key

aspects. First, we measure the predictive efficacy of the NGFKT model against baseline

models using three established metrics. Second, we assess the effectiveness of the NGFKT

model even when dealing with limited records. Finally, we employ radar diagrams to visu-

ally depict and understand the knowledge tracing outcomes. This meticulous experimental

evaluation bolsters the robustness of our proposed model and showcases its superiority in

various scenarios.

The rest of this paper unfolds as follows: The next section, “Related Works,” delves into

knowledge tracing models, graph neural networks, relation modeling, and attention mecha-

nism. Subsequently, the “Methods” section provides a detailed exposition of NGFKT’s struc-

ture. The “Experiments” section presents implementation details and experimental outcomes.

Finally, we conclude and highlight avenues for future research in the “Conclusions and Future

Work” section.

Related works

Knowledge tracing

Knowledge Tracing (KT) aims to gauge students’ comprehension levels based on their histori-

cal interactions. The effectiveness of deep learning techniques in fields like speech processing

(e.g., [20–23]) and computer vision (e.g., [24–27]) has inspired the development of deep learn-

ing-based KT models. One pioneering model is the Deep Knowledge Tracing (DKT) [16],

which employs neural networks to capture intricate educational processes. The DKT+ model

[28] extends DKT by introducing regularization items. However, these approaches overlook

the influence of exercise embeddings. The Enhanced Knowledge Tracing (EKT) model [29]

utilizes exercise embedding modules for predicting students’ future performance. The Mem-

ory Augmented Neural Network (MANN) [30] employs Key and Value metrics to model exer-

cise embeddings and make predictions. Yet, these methods often neglect relation modeling to

predict students’ knowledge state. To address this gap, the Self-Attentive Knowledge Tracing

(SAKT) model [19] explores relationships between students, exercises, and skills in past inter-

actions. Additionally, knowledge tracing can be framed as a graph-based task. The Graph-

based Knowledge Tracing (GKT) model [18] formulates knowledge tracing as a time series

node-level classification problem within a graph. However, the GKT model does not take
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exercise relation modeling and the heterogeneous interactions into consideration. Therefore,

the our model is proposed to handle these limitations and further improve the prediction per-

formance of the knowledge tracing model.

Graph neural networks

Graph structures, which can represent connections and entities in the real world, are more

intricate than simple tree structures [31]. Graph Convolutional Networks (GCNs), a unique

type of neural network, operate directly on graph-structured data. A GCN updates node repre-

sentations by considering the nodes themselves and their neighbors [32]. By incorporating

multiple graph convolutional layers, GCNs ensure that updated nodes accurately capture both

higher-order neighbor features and neighboring node features.

Several knowledge tracing models explore the utility of knowledge graph structures. Chanaa

et al. [33] employ a dynamic graph structure in which nodes represent students and edges

evolve over time. However, this method overlooks the heterogeneous interactions among stu-

dents, exercises, and knowledge concepts (KCs). The Graph-Infused Knowledge Tracing

(GIKT) model [13] treats the exercise-skill relationship graph as a bipartite graph and utilizes

embedding propagation within GCNs to incorporate exercise-skill correlations. Nevertheless,

GIKT doesn’t fully account for student behavior. Our proposed Neural Graph Forgetting

Knowledge Tracing (NGFKT) model uses skill relation matrices and Q-matrices to model

exercise-KC relationships, employing an attention mechanism enhanced with a forgetting

layer to predict performance.

Relation modeling

Relation modeling, including exercise relation modeling, is crucial in knowledge tracing tasks

[34]. When two exercises are connected through shared knowledge concepts or students, their

relation becomes significant [35]. Additionally, the Q-matrix can reveal relationships between

exercises and skills, unveiling connections between exercise pairs [36]. Intuitively, if two prob-

lems share similar difficulty and past practice, they can be considered related [37, 38]. Building

on these concepts, NGFKT integrates item difficulty, exercise embedding, skill embedding,

and a contingency table to formulate a comprehensive exercise relation matrix.

Attention mechanism

The attention mechanism is a powerful tool for sequence modeling tasks [39–41]. It enhances

predictions by focusing on crucial input elements. The mechanism determines attention

weights for input vectors, enabling it to extract relevant words in machine translation tasks

[42–46]. In our model, we introduce a novel attention mechanism to predict student perfor-

mance. This mechanism incorporates exercise relation modeling along with a forgetting

behavior component, further enhancing prediction accuracy.

Motivation

This paper aims to provide an innovative knowledge tracing model: NGFKT to estimate the

student knowledge state based on the heterogeneous interactions between students, exercises,

and skills. Specifically, the first motivation is to design a calibration method to generate the Q

matrix and skill relation matrix. The second motivation is to develop an exercise relation

modeling method to obtain an exercise relation matrix. Finally, incorporating the attention

mechanism with the relation matrix predicts student performance.
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Preliminaries

In this section, on the one hand, we summarize the important mathematical notation covered

in this paper in Table 1, and on the other hand, we give important terminology and problem

definitions.

Terminologies

Heterogeneous interactions. There are numerous interactions between students, exer-

cises, and skills referring to the Fig 2. Heterogeneous interaction (H) is formed up of an object

set, V, and a link set, E. Students, exercises, and skills are all object types in V. E is a set of rela-

tional types of the type E = (rA,rC). The rA indicates the response of exercises and rCmeans the

relation it involved.

Knowledge tracing. Knowledge Tracing (KT) evaluates learners’ knowledge mastery. KT

predicts the likelihood of effectively estimating students’ knowledge states in coming meets

given a set of test questions and answer logs (e.g., correct or incorrect).

Student modeling. At the same time, based on the results of knowledge tracking, we

can model student groups and individual students. Specifically, if the input is a student

group, then the result of our knowledge tracking is the modeling of the student group. If the

input is an individual student, then the knowledge tracking is the modeling of a single

student.

Exercise modeling. In this paper, we model the exercises based on the exercise relation-

ship on the heterogeneous interaction graph. Specifically, we apply the graph neural network

to process the exercises and discuss the difficulty of the exercises to generate the final exercise

embedding.

Knowledge modeling. In order to comprehensively model the knowledge in this paper,

we apply the knowledge relation importance rank calibration method to model the knowledge

contained in the exercises and generate the skill relation matrix. Then this matrix is treated as

the input of GCN to generate the hidden embedding of exercises.

Table 1. Important notations.

Notations Description

KT The knowledge tracing model

KC Knowledge concepts

Q̂ The calibrated Q-matrix

Ŝ The calibrated skill reltion matrix

M The calibrated matrix

arank The knowledge relation importance rank of the element: “a”

brank The knowledge relation importance rank of the element: “b”

K The number of the knowledge concepts

N The number of the questions

σ The standard deviation

ê Skill-exercise embedding

q One question in the question set

s One student in the student set

ψs,q,t the cognitive difficulty of the question: q for the student: s

RE The exercise relation matrix

Ii The input element of the Position-Relation-Forgetting attention mechanism

https://doi.org/10.1371/journal.pone.0295808.t001
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Problem definition

The computerized system generates the student’s responding records given a question set of n

exercises (e.g., e0, e1, e2. . .en) for the student in the smart educational system from Timestamps

1 to t. Those interactions are designated as S = (s1, s2, s3. . .‥ sn), and each interaction si is pre-

sented as a tuple: si = (ei,ri,ti), where ei is the exercise that this student attempted, ri 2 {0, 1} is

the student’s answer, and ti is the time at which si happens. Our goal is to estimate the knowl-

edge state of students based on previous information. Specifically, we input the heterogeneous

interaction graph and previous student records: S, the output of the knowledge tracing model

is the knowledge state of students.

Methods

In this section, the NGFKT model is developed based on the exercise relation matrix and Posi-

tion-Relation-Forgetting attention mechanism to predict the performance of students. There

exist three steps including the skill relation matrix and Q-matrix modeling, the extraction of

the exercise relation matrix, and the predictions based on the Position-Relation-Forgetting

attention mechanism. First, the skill relation matrix(Ŝ) and the calibrated Q-matrix (Q̂) are

designed based on the KRIRC method and serve as the input of the model. Then, the skill rela-

tion matrix Ŝ, and the calibrated Q-matrix (Q̂) are treated as the inputs of the GCN to output

the embedding of exercises and skills in the heterogeneous interactions. The similarity of exer-

cises can be computed based on the exercise embedding, skill embedding, item difficulty, and

contingency table to generate the corresponding exercise relation matrix(RE). Finally, the exer-

cise relation matrix(RE) serves as the input of the Position-relation-Forgetting attention mech-

anism to track the student knowledge state. The overall structure can refer to Fig 3.

Fig 2. The heterogeneous interaction between student, exercise, and skills.

https://doi.org/10.1371/journal.pone.0295808.g002
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Skill relation matrix and Q matrix modeling

We design this part to extract the heterogeneous information between students, exercises, and

skills. The basic idea of this part is that the related skill can be considered as the skill that is cov-

ered by the same exercise. Considering the hierarchical knowledge levels of skill, the related

skill also can be defined as the parent nodes and child nodes of the skill. For instance, the

knowledge concept: the “Triangle” is viewed as the “Right Triangle”’s parent node, and the

“Pythagorean Theorem” is the child node of the “Right Triangle”. Therefore, the related skills

of the “Right Angle” are the concepts: “Triangle” and “Pythagorean Theorem”. Inspired by

these two ideas, the importance of the skills is ranked based on the following partial order, and

the calibrated method called the knowledge Relation Importance Rank Calibration method is

proposed(KRIRC). A pairwise Bayesian treatment is as follows. For convenience, we define a

partial order >þi as:

a >þi b >
þ
i > c >

þ
i d ð1Þ

where “a”, “b”, “c”, and “d” are the neighbors of the skill. Here, “a” implies the skill of the par-

ent node, knowledge level is 0, in the knowledge level graph. “b” denotes the skill of the child

node, knowledge level is 1, in the knowledge level graph. “c” can be interpreted in a similar

way. “d” is the skill that is covered by the same exercise. Along this line, neighbor: “a” is more

important than neighbor: “b” in extracting the neighbor of the skill. The rank of the skill: “a”,

“b”, “c”, and “d” are 0, 1, 2, and 3 respectively. Thereby, according to the Eq 1, the partial order

relationship set can be defined as DKRIRC ¼ fði; a; bÞja >þi b; i ¼ 1; 2; 3 . . .Kg where K is the

number of knowledge concepts. Based on the traditional Bayesian method, we assume the

Fig 3. The overall structure of the Neural Graph Forgetting Knowledge Tracing (NGFKT). Firstly, according to previous interactions, the past

interactions of students and knowledge levels can be extracted from the inputs. Then KRIRC method is designed to generate the calibrated skill relation

matrix and Q-matrix. The skill relation matrix, Q-matrix, and the cognitive difficulty of each student are treated as the inputs of the GCN to generate

the skill-exercise embedding: ê. Secondly, the ê, the item difficulty of each question, and the contingency table are combined to output the exercise

relation matrix. Finally, the Position-Relation-Forgetting attention mechanism is utilized to process the inputs to make predictions.

https://doi.org/10.1371/journal.pone.0295808.g003
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calibration matrix: M̂ such as Q̂ or Ŝ uniforms the Gaussian distribution with the standard

deviation of each dimension. To give the calibration matrix labels higher confidence, we define

pða >þi bjM̂Þ as follows:

pða >þi bjM̂Þ ¼
1

1þ elðarank � brankÞ
ð2Þ

where λ controls the discrimination of relevance values of different knowledge levels. And the

arank and brankmeans the importance of the element a or b. The log posterior over DKRIRC on

M̂ can be eventually computed as:

lnpðM̂jDKRIRCÞ ¼ ln
Y1

ði;a;bÞ2DKRIRC

pða >þi bjM̂iÞpðM̂iÞ

¼
XN

i¼1

XK

a¼1

XK

b¼1

Iða >þi bÞln
1

1þ elðarank� brankÞ
þ C �

XN

i¼1

XK

j¼1

M̂2
ij

2s2

ð3Þ

where I(*) is the judgment function when the function’s condition is met and the function out-

put 1. The σ is the standard deviation in Eq 2 and C, the constant variable, can be ignored to

train the matrix. Finally, a calibrated matrix M̂ estimated by the KRIRC can be calculated. The

Q-matrix and the skill relation matrix can apply the KRIRC method to obtain the calibrated

Q-matrix and the calibrated skill relation to reflect the hierarchical knowledge levels between

different knowledge points. The specific algorithm can be referenced as follows:

Algorithm 1: Knowledge Relation Importance Rank Calibration Method.
Input: Students’ historical response dataset: D = s1, s2, . . .sN, si =

(ei, si, ti);
The knowledge level graph G; The heterogeneous relation graph: τ;
Task-learning rate: α; Hyper-parameter λ;

Output: The calibrated Q matrix: Q̂; The calibrated skill relation
matrix: Ŝ.

1 initialization learning rate α and hyper-parameter λ randomly
2 while element in G and τ do
3 Extract hierarchical knowledge levels and related skills of each

element based on G and τ
4 Generate the corresponding knowledge rank using Eq 1
5 end
6 while not converged do
7 while element in Q̂ and Ŝ do
8 Evaluate calibrated skill element qij using Eq 2;
9 Replace the element in Q̂ and Ŝ with a calibrated element
10 end
11 Update parameters learning rate α and hyper-parameter λ
12 end

Exercise relation modeling

The exercise matrix modeling is designed based on two processes. Firstly, skill-exercise

embedding:ê is calculated by applying the GCN. Secondly, the item difficulty is modeled to

estimate the difficulty of each question. And ê, item difficulty, and the contingency table are

incorporated to generate the final exercise relation matrix:RE.
The basic idea of the GCN model is to extract the neighbor information to generate the tar-

get node embedding. For the GCN model, we apply it to process the relationship of exercises

and skills to generate the hidden exercise embedding. In this case, the heterogeneous
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information can be extracted from the skill relation matrix and the Q-matrix based on previ-

ous matrix modeling. Then, based on the knowledge tracing results, we can model the student

states to explore the student information in the heterogeneous interactions. These matrices are

served as the input of GCN. The GCN model consists of numerous convolutional layers, and

each layer can be updated by the states of itself and the neighbors of nodes. The ith node in the

graph donated as nodei indicating the skill state si or exercise state ei. The neighboring nodes

of nodei are denoted as the node set: Node(i). As a result, the ı th layer of the graph convolu-

tional network can be updated as follows:

nodeıi ¼ RELUð
X

j2i[NodeðiÞ

wıinode
ı� 1

j þ b
ı
iÞ ð4Þ

where wı and bı infer as the weighted matrix and bias of the GCN layer and the RELU() indi-

cates the activation function accepted in the GCN model. The output of the GCN model:ê is

used for estimating the implicit relations among questions by calculating the inner product of

questions:

simii;j ¼
êi � êj
jêi jjêj j

ð5Þ

Then, in order to evaluate the exercises’ similarity, we further incorporate the item difficulty

with the previous students’ performance to generate an exercise relation matrix: RE. The basic

idea is that we apply the student incorrect interactions to estimate the item difficulty and seven

metrics, which are used to measure the performance of different variables, to estimate the exer-

cises relation.

For the item difficulty modeling, the students’ incorrect interactions can intuitively repre-

sent the item difficulty of the exercises involved in the student interactions. Specifically, the

students repeat the same questions by utilizing their skills in different timestamps, which can

demonstrate the cognitive difficulty of these exercises. In order to model this situation, the

cognitive difficulty for the students: s can be defined as follows:

Cs;q;t ¼

jfRs¼¼0gj0:t
jQq j0:t

∗ 4
h i

if jQqj0:t � 5

5 otherwise

8
<

:
ð6Þ

whereCs,q,t indicates each student’s cognitive difficulty of the question set at timestamp t. The

cognitive difficulty is divided into 5 levels including very hard, hard, medium difficulty, rela-

tively easy, and easy. The number ranging from 0 to 5 is accepted to indicate the corresponding

levels. The |Q| denotes the set of questions containing the question q before timestamp t and

Rs refers to the student’s response to the same questions. A zero in the Rs indicates that the stu-

dent provides a wrong answer for a question. If a learner attempts to answer a question fewer

than five times, the cognitive difficulty of this question is directly quantified into 5. Then

according to the different learners’ cognitive difficulty of questions, the average cognitive diffi-

culty for different learners on the same question is defined as the item difficulty: φ(q) after pro-

cessing the cognitive difficulty for different learners.

φðqÞ ¼
1

jCs;q;tj

X

Cðsi ;q;tÞ2Cðs;q;tÞ

Cðsi; q; tÞ ð7Þ

Then, according to the item difficulty: φq, the similarity of question difficulty: diff can be
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modeled as follows:

diff ðqi; qjÞ ¼
1

1þ φðqiÞ � φðqjÞ
ð8Þ

In order to incorporate the previous interaction, the student’s performance on question pair qi
and qj is summarized in the contingency table. The students’ correct and incorrect responses

are interpreted as the mastery indicators of the questions referring to Table 2. When a question

pair appears more than once in the previous student interactions, the latest occurrence is

taken into consideration. According to the contingency table, seven evaluation metrics, mea-

suring the association between two variables, are developed to measure the relationship

between the question pair: ei and ej referring to Table 3. A threshold is imposed to control the

sparsity of relations of exercises. The output of the contingency table is denoted asWR, R 2
{SK, Kappa, Kappa0, Phi, Yule, Ochiai, Sokal, Jaccard.}.

WR
i;j ¼ maxðW

R
i;j;W

R
j;iÞ;W

R
j;i ¼ 0 WR

i;j �W
R
j;i

WR
j;i ¼ maxðW

R
j;i;W

R
i;jÞ;W

R
i;j ¼ 0 otherwise

8
<

:
ð9Þ

Finally, the relation of exercise: i with exercise: j is calculated as follows:

Ai;j ¼
m1simii;j þ m2diff ðqi; qjÞ þ m3WR

i;j if m1simii;j þ m2diff ðqi; qjÞ þ m3WR
i;j � Y

0 otherwise

(

ð10Þ

where Θ is a threshold to control the sparsity of the exercise relation matrix. Then Given the

past exercises: (e1, e2, . . .en−1) and the next exercise: en, the exercise relation matrix is defined

Table 2. The contingency table for exercise i and exercise j. The labels: “F” and “T” present the student answering the

exercise incorrectly or correctly.

exercise i

F T total

exercise j F a b a+b

T c d c+d

total a+c b+d a+b+c+d

https://doi.org/10.1371/journal.pone.0295808.t002

Table 3. Seven evaluation metrics. These metrics are designed to explore the association between two variables.

Metrics Formulation

Cohen’s Kappa WKappa
ei ;ej
¼ 2ðad � bcÞ=ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞ

Adjusted Kappa WKappa
0

ei ;ej
¼ 2ðad � bcÞ=ðaþ cÞðcþ dÞ

Phi coefficient WPhi
ei ;ej
¼ ðad � bcÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ bþ dð Þ aþ cð Þ cþ dð Þ

p

Yule coefficient WYule
ei ;ej
¼ ðad � bcÞ=ðadþ bcÞ

Ochiai coefficient WOchiai
ei ;ej
¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ aþ cð Þ

p

Sokal coefficient WSokal
ei ;ej
¼ ðaþ dÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ cþ dð Þ

p
¼ ðaþ dÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bþ cþ dÞ

p

Jaccard coefficient WJaccard
ei ;ej

¼ a=ðaþ bþ cÞ

https://doi.org/10.1371/journal.pone.0295808.t003
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as RE ¼ ½Aen;e1 , Aen ;e2 ; . . .Aen;en� 1
�. Finally, the exercise relation matrix is applied as the input of

the Position-Relation-Forgetting attention mechanism.

Position-Relation-Forgetting attention mechanism

The Position-Relation-Forgetting attention mechanism includes the relative position atten-

tion layer, the relation attention layer, and the forgetting layer. The basic idea of the relative

position attention aims to replace the positional encoding of input embedding with relative

distance embedding. Specifically, the maximum absolute value of k is used to clip the dis-

tance of words in the input embedding. The relative position attention accepts the relative

distance between input elements. Ii and Ij serve as the model inputs to track the student

state. And edge vectors between Ii and Ij are presented as avi;j; a
K
i;j to extract relative position

representations. The edge vectors are clipped to a maximum absolute value of k: clip(x,k) =

max(-k, min(k,x)). And corresponding relative position representations areWK ¼

ðWk
� k . . . :WK

k Þ andWV ¼ ðWV
� k . . . :WV

k Þ respectively. The outputs of the relative position

attention mechanism are new sequences Z. The process can refer to the following equa-

tions:

aKi;j ¼W
k
clipðj� i;kÞ aVi;j ¼W

V
clipðj� i;kÞ ð11Þ

ai;j ¼
expðmi;jÞ

Pn
i¼1
expðmi;kÞ

mi;j ¼
IiWQðIjWkÞ

T
þ IiWQðaKi;jÞ

T

ffiffiffiffi
dz

p ð12Þ

Zi ¼
Xn

j¼1

aijðIjW
VÞ ð13Þ

where WQ, WK, and WV are the query, key, and value matrices respectively and dz is the

dimension of the new sequence of Z. Then, the relation attention predicts student perfor-

mance on the next interaction by combining the outputs of the relative position attention

mechanism.

The relation attention layer incorporates the output of the formula (13) with the exercise

relation matrix to predict student performance on the next interaction. The basic idea of the

relation attention layer is to incorporate the relation matrix into the attention mechanism to

consider the relational information in data.

hi ¼
EenW

QðZjWKÞ
T

ffiffiffi
d
p ai ¼

expðhiÞ
Pn� 1

k¼0
expðhkÞ

ð14Þ

gi ¼ dai þ ð1 � dÞREi H ¼
Xn� 1

i¼1

giZiW
v ð15Þ

where WQ, WK, and WV represent the query, key, and value matrices of the attention mecha-

nism and Een means the embedding of exercises.

Then applying the output of the relation attention layer is treated as the input of the for-

getting layer based on learning theory in the educational field. The basic idea of part is to uti-

lize the time interval between past time and current time to estimate the student forgetting

curve. The relative time intervals between past and next interactions are compared as

4i = tn − ti. The final outputs of the Position-Relation-Forgetting attention mechanism
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incorporating forgetting behavior, RF, is computed as follows:

RF ¼ ½x1e� x241 ; x1e� x142 . . . x1e� x24n � O ¼ dFH þ ð1 � dFÞRF ð16Þ

where ξ1 and ξ2 are hyper-parameters.

Student performance prediction layer

The student performance prediction layer contains the pointwise Feed-Forward (FFN) and

probability prediction layer. The FFN can be computed as follows referring to(17).Wl andWs,
bl and bs are weighted matrices and bias vectors respectively.

F ¼ ReLUðOWl þ blÞWs þ bs ð17Þ

The probability prediction layer predicts the probability of the student’s performance by

accepting function: σ() on the basis of the FFN. P denotes as the probability that the students

provide correct answers in the next interaction. The W and b are trainable parameters.

p ¼ sðFW þ bÞ ð18Þ

Experiments

Implementation details

Framework setting. The model dimension of attention, the max sequence length, and the

training batch size are 200. The dropout rate of the NGFKT model is 1e-2. And the hyper-

parameters, including the λ, Θ, are 1 and 0.65 respectively. The parameters in the exercise rela-

tion modeling: μ1, μ2, and μ3 are 0.1, 0.2, and 0.7 respectively. The other parameters that are

not specified involved in the process of the training model are normally initialized as 0. The

details can refer to the following Table 4.

Evaluation metrics

There exist three metrics to measure the performance of our model including the Area Under

Curve(AUC), Accuracy(ACC), and Performance Stability(PS). The prediction task is evaluated

in a binary classification scenario, i.e., whether or not an exercise is performed correctly. As a

result, the AUC and ACC are accepted to measure the prediction performance of students.

AUC or ACC values of 0.5 usually indicate that the result was determined at random. The

greater the knowledge tracing performance, the higher the value of AUC or ACC. The cross-

entropy is accepted as the loss function of the NGFKT model.

Table 4. The framework setting for the Neural Graph Forgetting Knowledge Tracing model(NGFKT).

Parameters Setting

Max sequence length 200

Training batch size 200

Dropout rate 0.01

λ 1

Θ 0.65

μ1 0.1

μ2 0.2

μ3 0.7

https://doi.org/10.1371/journal.pone.0295808.t004
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The Performance Stability metric(PS) is used to specifically compare the performance of

the baseline models with the NGFKT model in the testing phase. The performance of the

model: M is stable when the M can consistently outperform other models in most testing

batches. Based on this idea, the PS is designed based on the performance rank. For instance, if

the NGFKT model outperforms the DKT model and DKT+ model in 96 testing batches. How-

ever, the performance of the NGFKT model is worse than the DKT+ model in 4 testing

batches. The performance rank of the NGFKT model is 1 in 94 testing batches and 2 in 4 test-

ing batches. Then the PS of the NGFKT model is 97.32% referring to the following formula-

tion. The NBatch and Nmodel are the number of the testing batches and models in this paper.

PSðMÞ ¼
XNBatch

i¼0

Nmodel � rankðM; iÞ þ 1

Nmodel
ð19Þ

Datasets

In order to demonstrate the performance of the NGFKT model in the small dataset and the

large dataset, two types of public educational datasets were accepted to verify the performance

of the NGFKT model in terms of AUC, ACC, and PS.

The statistical information of the datasets is provided in Table 5. There are two public edu-

cational datasets to validate the performance of the NGFKT model.

ASSISTments2012(ASSIST2012). The first dataset is the large dataset: ASSISTments2012

(ASSIST2012) (available at: https://sites.google.com/site/assistmentsdata/datasets/2012-

13-school-data-with-affect), which was gathered by the Assistemt Online Tutoring platforms.
The ASSIST2012 contains 4193K records of 39K students. Each student answers an average of

107 questions.

There are several datasets that are collected by Assistemt Online Tutoring platforms. The rea-

son for choosing ASSIST2012 is that the NGFKT model needs the timestamp feature in the

dataset to model the forgetting behavior of students. However, other datasets Assistemt Online
Tutoring platforms do not gather the timestamp feature to make predictions. Therefore,

ASSIST2012 is accepted as the training dataset to validate the performance of the NGFKT

model.

Eedi. The second dataset is the small dataset: the Eedi dataset (available at: https://eedi.

com/projects/neurips-education-challenge) collected by the NeuralIPS platform, which

includes 233K records and 2064 students. And an average of 113 exercises are provided for

each student. In this paper, tasks 3 and 4 in the NeuralIPS system are applied to track the

knowledge state of students.

Results and discussion

Student performance prediction. The experimental results are presented in Table 6. The

AUC, ACC, and PS are computed to compare the performance of different models. In order to

Table 5. The overview of ASSIST2012 and Eedi based on different intelligent tutoring systems.

Statistic ASSIST2012 Eedi

Number of records 4193631 233767

Number of students 39364 2064

Number of questions 59761 948

Avg exercise record/student 107 113

https://doi.org/10.1371/journal.pone.0295808.t005
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verify the prediction performance of student abilities, the training set and testing set are

divided into 80% records of the dataset and 20% records of the dataset respectively.

In two educational datasets, the NGFKT model is compared with five baseline models,

including the DKT model, the DKT+ model, the DKVMN model, the SAKT model, and the

GKT model. As Table 6 illustrated, the DKT+ model outperforms the DKT model on two

datasets due to the fact that two regularization terms are accepted by the DKT+ model to solve

the reconstruction problem and the consistency problem in the DKT model. However, knowl-

edge concept modeling is ignored in the DKT model and DKT+ model. Therefore, the

DKVMN model applies the nonlinear transformations and student master level on each KC to

make predictions and performs better than the DKT+ model and DKT model on the Eedi

dataset. However, the DKVMN model performs worse than the DKT model and DKT+ model

on the ASSIST2012 because the number of questions is so large on the ASSIST dataset that the

Knowledge concepts modeling is excessively complex. Compared with the DKVMN model,

the SAKT model further applies the attention mechanism to process the data and discovers the

relation between KCs to obtain better performance than the DKVMN model on the

ASSIST2012 dataset. However, the SAKT model possesses worse performance than the

DKVMN model on the Eedi dataset. The reason is that the number of KCs on the Eedi is less

than the ASSIST so the relation modeling of KCs in the SAKT model possesses less effect on

the prediction results. In addition, the GKT model does not perform as well as we thought

because considering the nodes of the graph established based on two datasets is relatively spar-

sity. Therefore, the performance of the GKT model is worse than most baseline models. These

baseline models do not consider the relation modeling of the exercises and forgetting behavior

of students. Therefore, the NGFKT model is proposed to solve these drawbacks. The NGFKT

model incorporates the exercise relation modeling with the novel attention mechanism: Posi-

tion-Relation-Forgetting attention mechanism to make predictions. The NGFKT model per-

forms consistently better than all baseline models in terms of three evaluation metrics.

Ablation experiments. This part aims to find out the key components of our model and

validate the performance of these key components. There exist two variants models of the

NGFKT model: the NGFKT-PE and the NGFKT-RM, which means that the NGFKT model

removes the relative position encoding(PE) or relation modeling(RM)respectively. Specifically,

the positional encoding and relation modeling are implemented by the position attention layer

and the relation attention layer with the forgetting attention layer. the According to Table 7,

some conclusions can be drawn.

Firstly, the individual components of the position attention layer and the relation attention

layer do not generate satisfactory outcomes when used alone. The performance of the model is

gradually better when more components are involved in the model. Secondly, removing the

Table 6. Comparison of results of baseline models with the Neural Graph Forgetting Knowledge Tracing model(NGFKT). The NGFKT outperforms all baseline mod-

els in terms of AUC, ACC, and PS.

ASSIST2012 Eedi

AUC ACC PS AUC ACC PS

DKT 0.712 0.679 0.142 0.489 0.489 0.179

DKT+ 0.722 0.685 0.232 0.584 0.566 0.501

DKVMN 0.701 0.686 0.392 0.701 0.640 0.829

SAKT 0.736 0.692 0.732 0.495 0.495 0.216

GKT 0.702 0.687 0.491 0.566 0.542 0.354

NGFKT 0.776 0.704 0.960 0.710 0.673 0.937

https://doi.org/10.1371/journal.pone.0295808.t006
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RM component leads to a significant drop, decreasing to 0.740 and 0.684 respectively com-

pared with removing the PE components. Therefore, the RM is a more crucial component for

the NGFKT model when the model makes predictions.

Cold start problem. The cold start issue also impacts knowledge tracing when the model

predicts the knowledge state of students. The results are examined in two cold start scenarios,

i.e., training with data from a small number of students and new students with abbreviated

exercise sequences [47].

1. The knowledge tracing model is trained using data from a limited number of students, and

it is then applied to completely new, untested samples.

2. When new students enroll in an online learning system, they often have short exercise

sequences since there aren’t enough exercise recordings to provide the knowledge tracing

model with enough information about them.

In scenario 1, student populations ranging from 10% to 20% of the training dataset are

tested to evaluate the prediction performance of NGFKT, DKT, and DKT+ referencing Fig 4.

Specifically, the NFGKT model outperforms the DKT model and DKT+ model on the Eedi

dataset because the NFGKT model considers the exercise relation modeling and applies the

attention mechanism to process the data. And the accuracy of the NGFKT model remains at

around 68%. In addition, the performance of the DKT model fluctuates relatively. Compared

with the DKT model, the DKT+ model solves the reconstruction problem and the consistency

problem to further improve the performance to predict the student knowledge state. The DKT

+ model’s performance is still at about 53%.

Table 7. The ablation experiments of the Neural Graph Forgetting Knowledge Tracing model(NGFKT).

ASSIST2012 Eedi

AUC ACC PS AUC ACC PS

NGFKT-RM 0.740 0.678 0.678 0.684 0.637 0.804

NGFKT-PE 0.753 0.689 0.860 0.691 0.641 0.679

NGFKT 0.776 0.704 0.960 0.710 0.673 0.937

https://doi.org/10.1371/journal.pone.0295808.t007

Fig 4. AUC on the Eedi dataset is compared when the number of the students is 10%, 12%, 14%, 16%, 18%, and

20% respectively. The Neural Graph Forgetting Knowledge Tracing Model outperforms the other two models.

https://doi.org/10.1371/journal.pone.0295808.g004
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In scenario 2, which contains new students who have short exercise sequences, the training

data are separated into six groups. Each group has a distinct range of exercise sequences, such

as (50, 75], (75, 100], (100, 125], (125, 150], (150, 175], and (175, 200]. The lengths of the exer-

cises from the original exercise sequence are sampled to generate each exercise sequence in the

training data. Given that students in the first group have the fewest exercise answering records,

it is clear that this situation is the most challenging for the student. In Fig 5, the effectiveness of

the various techniques is compared. On the Eedi datasets, the DKT+ model performs better

than the DKT model by accepting two regularization items to enhance the model performance.

However, the relation modeling part of the DKT+ model is ignored when the DKT+ model

predicts the performance of students. Therefore, the NGFKT model solves this problem and

shows better performance in this scenario than DKT and DKT+ by considering the relation

modeling of the exercises and forgetting behavior of students.

Knowledge state prediction visualization. Knowledge state prediction visualization is

regarded as an important application of knowledge tracing models for online educational sys-

tems. We will show that our proposed model: the NGFKT model can capture the student

knowledge state correctly compared with two standard knowledge tracing models: the DKT

model and the DKT+ model. Specifically, Fig 6 indicates the knowledge state traced by the

NGFKT model of the same student. The general knowledge evolving process of the knowledge

state is consistent with the student learning process. When the student first attempts the exer-

cise, the knowledge state reaches the minimum level. The student continues to learn skills:

“32”, “49”, and “71” and continuously deepens his proficiency in knowledge points. Finally,

the student knowledge state achieves the maximum, which is shown by the increased areas of

the radar diagram. During the latest attempt of the student, the knowledge proficiency of the

student presents some reduction considering the student forgetting behavior. However,

knowledge proficiency is still improved by continuously practicing the skills compared with

the first interaction with the student.

Referring to Fig 6, the NGFKT model also outperforms the DKT model and the DKT

+ model because the NGFKT model further incorporates the relation modeling that is gener-

ated by the GCN model. The DKT+ model achieves better results than the DKT model, which

Fig 5. AUC on the Eedi dataset is compared when students are provided with 50, 75, 100, 125, 150, 175 and 200

answer records respectively. The Neural Graph Forgetting Knowledge Tracing Model achieves better results than the

other two models.

https://doi.org/10.1371/journal.pone.0295808.g005
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indicates that adding two regularization terms can further improve the performance of tracing

the knowledge proficiency of the student.

Conclusions and future work

In this paper, we introduced a novel knowledge tracing model, NGFKT, designed to accurately

track students’ knowledge states by integrating relation modeling, skill relation matrices, Q-

matrices, and relative distance representations. The NGFKT model effectively predicts stu-

dents’ knowledge levels even with limited interaction data. Our approach employed the

KRIRC method to calibrate skill relation matrices and Q-matrices, serving as inputs to a

Graph Convolutional Network (GCN) for generating exercise and skill embeddings. By com-

bining skill-exercise embeddings, item difficulty, and the contingency table, we derived the

final exercise relation matrix. Employing the Position-Relation-Forgetting Attention mecha-

nism yielded accurate predictions. Our experiments on two public datasets demonstrated the

NGFKT model’s efficiency in tracking students’ knowledge states. The NGFKT model’s blend

of explanatory and predictive power holds promise for enhancing the design of Online Educa-

tional Systems.

In this paper, we properly model the student, exercises, and skills to design an effective

knowledge tracing model to estimate the knowledge state of students when considering the

heterogeneous graph between them and the exercise difficulty. However, this paper still has

two limitations of the knowledge tracing model. Firstly, the skill relation model should take

exercise content into consideration to make the prediction more accurate. Secondly, other stu-

dent behaviors such as guessing behavior or slipping behavior should be further discussed

when the student factor is modeled.

In the future, we envision incorporating exercise texts into the knowledge tracing model’s

design and integrating more nuanced student behaviors—such as the guessing and slipping

factors—to enhance performance prediction. Additionally, we plan to expand the knowledge

model’s scope to develop an innovative online intelligence system for recommending exercises

to students. This system aims to create a seamless and tailored learning experience that adapts

to individual student’s needs and preferences.

Fig 6. The radar diagram. The NGFKT model outperforms the DKT model and the DKT+ model in tracking the student

knowledge state. The “32”, “49”, and “71” are three skill ids and are presented with three different colors. The average prediction

accuracy of the NGFKT model is around 70.5%.

https://doi.org/10.1371/journal.pone.0295808.g006
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