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Abstract

In the application of driverless technology, current traffic sign recognition methods are sus-

ceptible to the influence of ambient light interference, target size changes and complex

backgrounds, resulting in reduced recognition accuracy. To address these challenges, this

study introduces an optimisation algorithm called ETSR-YOLO, which is based on the

YOLOv5s algorithm. First, this study improves the path aggregation network (PANet) of

YOLOv5s to enhance multi-scale feature fusion by generating an additional high-resolution

feature layer to improve the recognition of YOLOv5s for small-sized objects. Second, the

study introduces two improved C3 modules that aim to suppress background noise interfer-

ence and enhance the feature extraction capabilities of the network. Finally, the study uses

the Wise-IoU (WIoU) function in the post-processing stage to improve the learning ability

and robustness of the algorithm to different samples. The experimental results show that

ETSR-YOLO improves mAP@0.5 by 6.6% on the Tsinghua-Tencent 100K (TT100K) data-

set and by 1.9% on the CSUST Chinese Traffic Sign Detection Benchmark 2021

(CCTSDB2021) dataset. In the experiments conducted on the embedded computing plat-

form, ETSR-YOLO demonstrates a short average inference time, thereby affirming its capa-

bility to deliver dependable traffic sign detection for intelligent vehicles operating in real-

world traffic scenes. The source code and test results of the models used in this study are

available at https://github.com/cbrook16/ETSR-YOLO.

Introduction

In recent years, the rapid evolution of driverless technology has catalyzed the widespread inte-

gration of intelligent vehicles into our transportation systems. Among the various subsystems

that constitute intelligent vehicles, the ability to access real-time and dependable traffic infor-

mation is an imperative prerequisite for effective path planning and decision-making. Within

this framework, the traffic sign recognition (TSR) function holds particular importance as it

furnishes vehicles with instantaneous and precise road-related data, playing a pivotal role in

accident prevention and traffic congestion reduction. TSR systems predominantly rely on

optical sensors as their primary signal inputs, which encompass technologies like cameras and
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LiDAR. Notably, cameras, owing to their cost-effectiveness and capacity to capture richer

visual information, emerge as a more suitable choice for versatile traffic sign detection solu-

tions. Furthermore, in regions where smart city infrastructure is not yet extensively developed,

TSR systems hold immense potential for further advancements.

Traffic sign detection is the process of identifying the location, class, and size of signs within

an image sequence. It traditionally comprises two main phases: detection and classification.

During the detection phase, the goal is to pinpoint the signs in the image, while the classifica-

tion phase assigns the detected signs to their respective categories. Traditional methods have

historically relied on either shape-based [1] or color-based [2] techniques due to the distinct

color and shape characteristics of traffic signs. In recent years, the development of GPU-accel-

erated hardware and deep learning techniques has led to state-of-the-art results in object rec-

ognition challenges. Methods based on convolutional neural networks (CNN) [3] have

overcome the weaknesses of traditional approaches, such as poor robustness and limited appli-

cability. The general process involves extracting candidate regions from an image using a

region of interest (ROI) extraction method and then classifying them using a CNN classifier.

Common ROI-based algorithms include R-CNN [4], Fast R-CNN [5], Faster R-CNN [6], and

Mask R-CNN [7]. In general, the efficiency of these approaches is limited by the performance

of the ROI extraction algorithm. Instead of using ROI extraction to obtain candidate regions,

the Single Shot Multibox Detector (SSD) [8], RetinaNet [9] and You Only Look Once (YOLO)

series use a single neural network structure for simultaneous target localisation and classifica-

tion, with better real-time performance.

Detecting small objects has long posed a significant challenge in the field of computer vision.

Because traffic signs are mostly small targets that occupy a small portion of the image and lack

sufficient visual features, they are more difficult to distinguish in real traffic scenes. Moreover,

traffic sign detection is highly susceptible to interference from numerous factors, including

complex lighting conditions and noise, leading to a considerable reduction in detection accu-

racy. The emergence of deep learning technologies, especially CNN-based object detection algo-

rithms, has substantially improved the robustness of object recognition. However, the existing

methods still have more false detections and omissions when detecting small-sized traffic signs,

which cannot meet the reliability requirements in practical applications. Drawing inspiration

from the YOLO series of object detection algorithms, this study introduces an enhanced traffic

sign detection algorithm named ETSR-YOLO. Experimental results conducted on benchmark

datasets illustrate the significant enhancement in small traffic sign detection performance with

ETSR-YOLO. These improvements are accompanied by high real-time processing capabilities

and robustness, aligning the algorithm with the demands of real-world scenes.

The main contributions of this paper are as follows:

• The Coordinate Attention (CA) [10] mechanism is seamlessly integrated into the backbone

network of YOLOv5. This integration serves to effectively suppress noise interference and

facilitates the learning of features at critical locations, ultimately enhancing the feature

extraction capabilities of the network.

• In the network’s neck section, we have incorporated the ConvNeXt Block [11]. This addition

serves to significantly increase the network’s receptive field and minimize the loss of feature

information, enhancing the network’s capacity to capture correlations across various spatial

locations.

• The Path Aggregation Network (PANet) [12] in YOLOv5 has been augmented to facilitate

the extraction of more comprehensive contextual information, thus enhancing the algo-

rithm’s capacity to detect traffic signs of varying sizes.
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• To further enhance the algorithm’s performance, we employ the Wise-IoU [13] loss function

to refine the predicted bounding boxes in the post-processing stage. The Wise-IoU function

incorporates a sophisticated gradient gain allocation strategy and takes into account the

degree of outliers. This strategy helps balance bounding box samples of varying quality while

mitigating the adverse effects of harmful gradients.

Related work

Early CNN-based object recognition algorithms often stacked convolutional and fully con-

nected layers, leading to redundant parameters that increased the risk of model overfitting and

prolonged training time. To address these issues, Han et al. [14] enhanced the Faster R-CNN

for small traffic sign detection by incorporating dilated convolution and eliminating unneces-

sary network layers. Zhang et al. [15] introduced a cascaded R-CNN structure capable of cap-

turing multi-scale features, improving detection accuracy through cascaded networks and

weighted feature refinement. Manzari et al. [16] devised a pyramid transformer, applied to the

R-CNN, achieving a remarkable 77.8% mAP on the German Traffic Sign Detection Bench-

mark (GTSDB). Li et al. [17] addressed the loss of feature information by integrating

ResNet50-D and an attention-guided contextual feature pyramid network to enhance the fea-

ture extraction capability of Faster R-CNN.

With the introduction of network structures like Spatial Pyramid Pooling (SPP) [18] and

Feature Pyramid Network (FPN) [19], the field of multi-scale object detection has seen signifi-

cant development. Among these advancements, the YOLO series has gained prominence

owing to its lightweight architecture and scalability. Avramović et al. [20] improved detection

accuracy in automotive applications by combining ROI extraction with various YOLO archi-

tectures. Fan et al. [21] enhanced detection speed by adopting DenseNet as the backbone net-

work for YOLOv3. Gong et al. [22] modified YOLOv3’s network header to create 152 × 152

feature maps, improving the detection performance of small traffic signs. Song et al. [23] pro-

posed a Chinese traffic sign detection algorithm that enhances detection accuracy by optimiz-

ing the anchor boxes and SPP network of YOLOv4. Wang et al. [24] introduced the improved

feature pyramid model AF-FPN to YOLOv5, boosting the detection accuracy of traffic signs in

multi-scale scenarios. Shi et al. [25] developed a lightweight small traffic sign detection algo-

rithm to enhance the computational efficiency of YOLOv5. This was achieved by designing a

dense neck structure and improving the bounding box (Bbox) regression function. Jia et al.

[26] put forth a real-time traffic sign detection algorithm based on YOLOv7. They reduced

model complexity by refining the spatial pyramid pooling network and incorporating a

weighted attention module to emphasize salient feature regions.

The literature review highlights that much of the research primarily concentrates on

enhancing detection accuracy within individual datasets under normal weather conditions.

However, there’s a notable gap in comprehensive investigations regarding the impact of factors

like light interference and complex environments. The YOLO series comprises popular object

recognition algorithms characterized by ongoing and rapid updates. Generally, newer itera-

tions of these algorithms come with optimizations related to performance, speed, and accu-

racy. Nevertheless, it’s crucial to note that the applicability of various YOLO algorithm

versions varies significantly. While YOLOv7 or newer may offer superior real-time perfor-

mance compared to YOLOv5, it’s not consistently more effective than YOLOv5 in specific

application scenarios, particularly when it comes to detecting small objects. Consequently, in

selecting the foundational algorithm, this paper opts for the more mature YOLOv5s algorithm.
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Substantial enhancements focused on traffic sign detection have been applied to address the

issues related to the omission or misidentification of traffic signs.

The proposed method

The network structure of ETSR-YOLO

The overall structure of ETSR-YOLO is shown in Fig 1. The C3CA and CNeB modules with

enhanced feature extraction capabilities are used in the ETSR network. By integrating the

coordinate attention mechanism and the ConvNeXt Block, the C3CA and CNeB modules can

suppress noise interference, increase the receptive field of the network, and reduce the loss of

critical feature information. In the neck network, the adapted PANet can fuse four different

sizes of feature maps to capture richer contextual information, which helps improve the algo-

rithm’s ability to detect traffic signs of different sizes. Finally, the K-means algorithm is used to

recalculate the anchor boxes in the post-processing stage to improve the matching of anchor

boxes to small objects. Meanwhile, the Wise-IoU loss function is used to further improve the

localisation accuracy of the Bbox. Overall, the improved network has better detection capabil-

ity and robustness to traffic signs of different sizes.

Fig 1. Network structure of ETSR-YOLO.

https://doi.org/10.1371/journal.pone.0295807.g001
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Improvements to the C3 module

The C3 module of YOLOv5 is proficient at extracting object features. However, the simple

structure of the bottleneck layer within the C3 module results in YOLOv5’s weak detection of

small targets and requires more training data to ensure the model’s ability to generalise. To

address this, we extended the C3 module to incorporate CA mechanisms and the ConvNeXt

Block.

The attention mechanism effectively mitigates background noise interference by directing

its focus towards the salient feature regions of objects, resulting in the generation of higher-

quality feature maps. Conventional attention mechanisms, such as the Squeeze-and-Excitation

Network (SENet) [27] and the Convolutional Block Attention Module (CBAM) [28], excel at

extracting critical features from feature channels or spatial regions. However, these methods

can only capture local information about the object and cannot capture long-range dependen-

cies. In contrast, the CA mechanism introduces positional awareness by considering both fea-

ture channels and positional information. This enables the network to concentrate on a

broader pixel area, facilitating the more precise localization of sensitive regions. The structure

of CA is shown in Fig 2.

The CA structure comprises two main components: coordinate information embedding

and coordinate attention generation, aimed at establishing long-range dependencies within

the target. In contrast to the conventional approach of utilizing 2D global pooling for channel

attention generation, the coordinate attention mechanism divides the 2D global pooling pro-

cess into two distinct 1D encoding processes. These processes independently encode input fea-

tures along the horizontal and vertical directions, thereby acquiring X-axis and Y-axis

positional information. The equations for computing the coordinate information are pre-

sented in Eqs 1 and 2.

zhc ðhÞ ¼
1

W

X

0�i<W

Icðh; iÞ ð1Þ

zwc ðwÞ ¼
1

H

X

0�j<H

Icðj;wÞ ð2Þ

Fig 2. Structure of coordinate attention.

https://doi.org/10.1371/journal.pone.0295807.g002
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where zhc ðhÞ is a perceptual feature in the vertical direction and zwc ðwÞ is a perceptual feature in

the horizontal direction. W and H are the width and height of the feature map and Ic repre-

sents the input features.

Once the coordinate information is embedded, the coordinate attention graph can be con-

structed. Initially, the perceptual features in both directions are concatenated, followed by a

transformation via a 1×1 convolution operation to derive the relation map fc, as demonstrated

in Eq 3.

fc ¼ Conv1x1ðconcatðzhc ; z
w
c ÞÞ ð3Þ

Following the acquisition of the relation map, it undergoes slicing, transposition, convolu-

tion, and activation to yield a pair of location-sensitive attention weights denoted as ghc and gwc ,

as depicted in Eqs 4 and 5.

ghc ¼ sðConv
1x1ðf hc ÞÞ ð4Þ

gwc ¼ sðConv
1x1ðf wc ÞÞ ð5Þ

By applying these weights to the inputs Ic, we obtain the modified feature map Oc, as dem-

onstrated in Eq 6.

Ocði; jÞ ¼ Icði; jÞ � ghc ðiÞ � gwc ðjÞ ð6Þ

In recent years, computer vision research has witnessed the emergence of vision transform-

ers (ViT) [29] equipped with self-attention capabilities. Among these, the Swin-Transformer

[30] has gained popularity, boasting a hierarchically designed network architecture that

employs a sliding window approach to aggregate feature information across windows, thus

expanding its visual receptive field. In contrast to ViT’s structure, ConvNeXt is a CNN model

that incorporates Swin-Transformer’s optimization strategies to enhance both computational

efficiency and model accuracy. The network structure of ConvNeXt and ConvNeXt Block is

shown in Fig 3.

The ConvNeXt network is divided into four stages, each consisting of a downsampling layer

and a ConvNeXt Block. As the input features pass through, their receptive fields are continu-

ously expanded. The ConvNeXt Block incorporates various enhancement strategies, including

depthwise separable convolution (DSC) [31], an inverted bottleneck architecture, layer normal-

ization (LN) [32], and the utilization of Gaussian Error Linear Units (GELU) [33] as activation

functions. In the context of transformers, the residual link plays a vital role in constructing both

the encoder and decoder. The ConvNeXt Block also leverages the residual link but introduces

DSC in the initial step and enlarges the convolution kernel size from 3×3 to 7×7.

As depicted in Fig 4, the DSC structure comprises two components: depthwise convolution

and pointwise convolution. In DSC, individual convolution kernels are employed for each

channel of the feature map, followed by pointwise convolution on the merged feature map.

This design makes DSC computationally efficient, making it particularly suitable for embed-

ded platforms with constrained computing power.

To create the C3CA and CNeB modules, we integrate CA and ConvNeXt Block into the

outputs of the C3 module, as illustrated in Fig 5. This approach avoids the need to introduce

extra network layers and proves to be computationally efficient compared to inserting these

modules separately into the network.
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Improvement of the loss function

The regression loss function is an important component of object detection algorithms. It is

used to measure the difference between the predicted results and the ground truth annotation.

Numerous regression loss functions are rooted in Intersection over Union (IoU), including

well-known variants like GIoU [34], DIoU [35], and CIoU [35], each characterized by distinct

functional designs. However, recent research efforts have predominantly focused on enhanc-

ing the fitting of Bbox loss and emphasizing regression on low-quality examples. This

approach introduces redundant computations and impedes potential advancements in algo-

rithm performance.

In YOLOv5, the CIoU function is used for Bbox regression loss calculation. Although CIoU

takes into account the intersection area, centroid distance and the aspect ratio of the Bboxes, it

is computationally complex and some cases cannot be evaluated, which can adversely affect

the evaluation of the sample. EIoU [36] simplifies this by eliminating the need to calculate

aspect ratio, allowing direct application of the penalty factor to the prediction box. This

improves regression accuracy and convergence speed. Focal-EIOU [36] goes a step further to

address sample quality imbalance. However, it employs static focusing and may not fully

Fig 3. Network structure of ConvNeXt and ConvNeXt Block.

https://doi.org/10.1371/journal.pone.0295807.g003
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Fig 4. Composition of the depthwise separable convolution.

https://doi.org/10.1371/journal.pone.0295807.g004

Fig 5. Block designs for the original C3 module, the C3CA module, and the CNeB module. (a) is the structure of the

original C3. (b) is the structure of the C3CA. (c) is the structure of the CNeB.

https://doi.org/10.1371/journal.pone.0295807.g005
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exploit the potential of its non-monotonic focusing mechanism. When dealing with datasets

containing low-quality samples, over-focusing regression on these samples can degrade model

performance.

In this paper, we replace the default CIoU function with the more effective Wise-IoU

(WIoU) loss function. WIoU is a dynamic, non-monotonically focused loss function that

incorporates an outlier degree and an improved gradient gain allocation strategy for

Bbox regression. It balances attention across samples of varying quality, reduces the generation

of harmful gradients, and enhances overall detector performance. WIoU comes in three ver-

sions: WIoUv1, WIoUv2, and WIoUv3. WIoUv1, for example, constructs an attention-based

Bbox loss using distance metrics, aiding convergence, model generalization, and reducing

emphasis on centroid distance when prediction boxes overlap well with target boxes. The

equation for WIoUv1 is shown in Eqs 7 and 8.

LWIoUv1 ¼ RWIoULIoU ð7Þ

RWIoU ¼ exp
ðx � xgtÞ2 þ ðy � ygtÞ2

ððwcÞ
2
þ ðhcÞ

2
Þ
∗

 !

ð8Þ

where LIoU 2 [0, 1] and RWIoU 2 [1, e). RWIoU is the distance metric and Wc and Hc are the

width and height of the smallest enclosing box between the two Bboxes. To prevent RWIoU

from generating gradients that prevent convergence, Wc and Hc are separated from the

computational graph and are not needed for backpropagation of its gradients.

WIoUv2 introduces a Focal Loss-inspired monotonic focusing mechanism, which balances

the contribution of samples with varying difficulty to improve classification performance. The

equation for WIoUv2 is given in Eq 9.

LWIoUv2 ¼ Lg∗IoULWIoUv1; g > 0 ð9Þ

where Lg∗IoU is the monotonic focusing coefficient.

In WIoUv3, the quality of the Bbox is defined by the degree of outliers. It assigns small gra-

dient gains to high-quality Bboxes with minimal outliers and lower gradient gains to low-qual-

ity Bboxes with significant outliers. This reduction in harmful gradients from low-quality

examples enables WIoUv3 to adapt its gradient gain allocation strategy to the current situa-

tion. The equation for WIoUv3 is shown in Eqs (10–12).

LWIoUv3 ¼ rLWIoUv1 ð10Þ

r ¼
b

dab� d
ð11Þ

b ¼
L∗IoU
LIoU

2 0;þ1½ Þ ð12Þ

where r is the non-monotonic focusing coefficient, β is the degree of Bbox quality outlier and

LIoU is the moving average with momentum value m.

Enhanced multi-scale feature fusion

In YOLOv5, PANet is used to fuse feature maps of different sizes from the backbone network.

However, by default, this fusion process results in feature maps of sizes 80×80, 40×40, and

20×20. Smaller feature maps capture fewer details of objects, which isn’t ideal for detecting

PLOS ONE ETSR-YOLO: An improved multi-scale traffic sign detection algorithm based on YOLOv5

PLOS ONE | https://doi.org/10.1371/journal.pone.0295807 December 14, 2023 9 / 23

https://doi.org/10.1371/journal.pone.0295807


small objects like traffic signs. In our approach, we deepen the PANet network to generate

larger 160×160 feature maps. As illustrated in Fig 6, we incorporate an upsampling layer into

the neck network, creating 160×160 feature maps that are concatenated with feature maps of

the same size and channel count in the backbone network. Additionally, to maximize the utili-

zation of these larger feature maps, we downsample them once to enhance the expressiveness

of the smaller feature maps. This results in feature maps of four different sizes (160×160,

80×80, 40×40, and 20×20) for detecting traffic signs of various scales, from the smallest to the

largest. This approach significantly improves the detection of small traffic signs without sub-

stantially increasing computational complexity or compromising the accuracy of detecting

larger signs. With the introduction of these new detection layers, the default anchor boxes are

no longer suitable. Therefore, we utilize YOLOv5’s K-means clustering function to generate

anchor boxes tailored to our modified detection headers.

Experiments and discussions

Experimental environment

The hardware and software platforms used for model training are listed in Table 1.

Table 2 presents the hyperparameters used during model training. The neural network

undergoes multiple iterations on the dataset images to obtain the optimal weights.

This study utilized the TT100K (Tsinghua-Tencent 100K) dataset [37] and the

CCTSDB2021 (CSUST Chinese Traffic Sign Detection Benchmark 2021) dataset [38] for

model training and validation. TT100K is a Chinese traffic sign recognition benchmark dataset

with a resolution of 2048×2048 per image, encompassing 128 labelled traffic sign categories.

To improve training efficiency, 45 categories with more than 100 samples each were selected,

resulting in 8,293 images. Among these, 6,634 were designated for training, and 1,659 for test-

ing. The CCTSDB2021 dataset consists of 17,856 images captured on roads and highways in

various Chinese cities, featuring different lighting and weather conditions. It comprises three

common categories of traffic signs: warning, prohibitory, and mandatory. For this study,

14,285 images were used for training and 3,571 images for testing.

Fig 6. Enhanced path aggregation network.

https://doi.org/10.1371/journal.pone.0295807.g006

PLOS ONE ETSR-YOLO: An improved multi-scale traffic sign detection algorithm based on YOLOv5

PLOS ONE | https://doi.org/10.1371/journal.pone.0295807 December 14, 2023 10 / 23

https://doi.org/10.1371/journal.pone.0295807.g006
https://doi.org/10.1371/journal.pone.0295807


Fig 7 displays visualizations of different traffic sign categories, while Fig 8 presents statisti-

cal information regarding the two datasets. The analysis indicates that the TT100K dataset

exhibits a relatively balanced distribution of signs, primarily falling within medium (pixel

area between 322 and 962) and large sizes (pixel area > 962). In contrast, the CCTSDB2021

dataset contains more small signs (pixel area < 322) and shows greater variability in sign

sizes.

Evaluation index

Several common metrics are used to evaluate model performance, including precision (P),

recall (R), F1, mean average precision (mAP), number of parameters (Params), frames per sec-

ond (FPS), and model weight file size (Size). Precision (P) measures the algorithm’s accuracy

in detecting a single category, while mAP assesses multi-category object detection accuracy.

The number of parameters, model file size, and FPS gauge the model’s complexity and detec-

tion speed. The equations for P, R, F1, AP, and mAP are provided in Eqs (13–17).

P ¼
TP

TP þ FP
ð13Þ

Table 1. The hardware and software environment used for the experiment.

Item Version

CPU Intel(R) Core(TM) i7–10870H Processor

GPU NVIDIA RTX 2080Ti

Operating System Ubuntu 22.04

Python 3.8.15

PyTorch 1.8.2

CUDA 11.1

cuDNN 8.0.5

https://doi.org/10.1371/journal.pone.0295807.t001

Table 2. Model training parameters.

Attribute Value

Input Image Size [640, 640]

Initial Learning Rate 0.01

Batch Size 32

Epoch 200

Early Stopping 50

Weight Decay 0.0005

Momentum 0.937

Mosaic Enhancement True

Mixup True

Optimizer Stochastic Gradient Descent

https://doi.org/10.1371/journal.pone.0295807.t002
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R ¼
TP

TP þ FN
ð14Þ

F1 ¼ 2
PR

P þ R
ð15Þ

AP ¼
Z 1

0

PðRÞdðRÞ ð16Þ

mAP ¼

XN

i¼1

APi

N

ð17Þ

Analysis of experimental results on the TT100K dataset

Ablation experiments. In this section, we analyze the impact of various enhancement

methods on the performance of the YOLOv5s algorithm through ablation experiments using

the TT100K dataset. The results are summarized in Table 3.

Table 3 demonstrates the effectiveness of various enhancements, including the enhanced

feature fusion network, CA, CNeB, and WIoU, in improving the F1 and mAP of the model.

Notably, integrating the small object detection layer into the YOLOv5s model significantly

improved detection accuracy, resulting in a 5.1% increase in F1 and a 5.5% increase in

mAP@0.5. This enhancement particularly benefits the detection of small traffic signs, enhanc-

ing overall model performance without significantly increasing computational cost. The com-

bination of the enhanced feature fusion network and the coordinate attention mechanism

improved F1 by 0.5% and mAP@0.5 by 0.6%, emphasizing CA’s role in capturing object

details. Replacing the C3 module with the CNeB module at the neck showed a slight decrease

in precision and recall, a 1.3% decrease in F1, and a marginal increase in parameters. However,

mAP continued to increase by approximately 0.1%, indicating that CNeB can replace the bot-

tleneck layer for feature extraction. Additionally, we tested three versions of WIoU, with

WIoUv3 providing the most significant improvement, achieving an F1 of 86.1% and a mAP of

88.3%. This suggests that WIoUv3’s outlier degree and gradient gain allocation strategy

improves Bbox quality and reduces harmful gradients, making it more effective for traffic sign

detection. Despite these improvements slightly increasing model complexity and the number

of parameters, the model remains capable of real-time detection and is suitable for deployment

on mobile platforms.

Fig 9 shows the precision-recall curves for each improved model. The modifications made

to YOLOv5s had a positive impact on both precision and recall, resulting in a wider range of

curves. The integration of the enhanced feature fusion network significantly improves the

overall performance, while the addition of CA and CNeB leads to slight fluctuations in preci-

sion and recall. When comparing models incorporating three different versions of WIoU,

WIoUv3 outperforms the others. Consequently, we refer to the model using WIoUv3 as ETS-

R-YOLO. More detailed precision and recall data can be found in S1 Data.

Performance comparison with other models. We conducted training using several well-

known detection models for performance comparison on the TT100K dataset. These models
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include YOLOv3, YOLOX, YOLOv6, YOLOv7, DAMO-YOLO, and the classic two-stage algo-

rithm Faster R-CNN. A summary of the training results is presented in Table 4.

Table 4 demonstrates that ETSR-YOLO achieves the highest accuracy, excels in detecting

small targets, maintains a low parameter count, and exhibits a clear advantage in detection

speed. Notably, compared to models with more parameters, such as Faster R-CNN, YOLOv3,

Fig 7. Visualisation of different categories of traffic signs.

https://doi.org/10.1371/journal.pone.0295807.g007

Fig 8. Statistical visualisation of the TT100K and CCTSDB2021 datasets.

https://doi.org/10.1371/journal.pone.0295807.g008
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YOLOv5l, and YOLOX, ETSR-YOLO attains the highest mAP@0.5. To evaluate the model’s

performance across different-sized traffic signs, we computed mAP@0.5:0.95 for objects of

various sizes following the Microsoft COCO standard. For detecting small targets, the

improved model’s mAP@0.5:0.95 outperforms YOLOv3 by 8%, YOLOv5l by 2.9%, and

YOLOX by 1.1%. In comparison to newer models like YOLOv6, YOLOv7, and

DAMO-YOLO, which are more inclined towards medium and large targets, ETSR-YOLO dis-

plays a significant advantage in detecting small targets while also offering superior parameters

and detection speed. When compared to the pre-improved YOLOv5s model, ETSR-YOLO

enhances mAP@0.5:0.95 by 6.6% for small targets, 4.1% for medium targets, and 6.4% for large

targets. Despite the increased complexity, the improved model maintains a real-time detection

speed of 88 FPS, indicating that the enhancements in this paper do not significantly impact the

algorithm’s real-time performance.

We collected average precision data for YOLOv3, YOLOv5s, YOLOv5l, YOLOv6, YOLOv7,

and ETSR-YOLO on each category within the validation dataset. The visualisation of the data

is shown in Fig 10. Compared to YOLOv5s, ETSR-YOLO significantly improves the detection

accuracy for most categories of traffic signs. Furthermore, ETSR-YOLO demonstrates

Table 3. Ablation experiments.

No. Enhanced Feature Fusion Network CA CNeB WIoU P(%) R(%) F1(%) mAP@0.5(%) Params(M)

1 83.9 77.4 80.5 81.7 7.1

2 ✓ 89.0 (+5.1) 82.5 (+5.1) 85.6 (+5.1) 87.2 (+5.5) 7.3 (+0.2)

3 ✓ ✓ 89.7 (+5.8) 82.8 (+5.4) 86.1 (+5.6) 87.8 (+6.1) 7.3 (+0.2)

4 ✓ ✓ ✓ 87.4 (+3.5) 82.5 (+5.1) 84.8 (+4.3) 87.9 (+6.2) 7.5 (+0.4)

5 ✓ ✓ ✓ v1 86.0 (+2.1) 82.7 (+5.3) 84.3 (+3.8) 86.4 (+4.7) 7.5 (+0.4)

6 ✓ ✓ ✓ v2 88.0 (+4.1) 82.8 (+5.4) 85.3 (+4.8) 87.5 (+5.8) 7.5 (+0.4)

7 ✓ ✓ ✓ v3 88.9 (+5.0) 83.6 (+6.2) 86.1 (+5.6) 88.3 (+6.6) 7.5 (+0.4)

https://doi.org/10.1371/journal.pone.0295807.t003

Fig 9. Precision-recall curve for improved models.

https://doi.org/10.1371/journal.pone.0295807.g009
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comparable or even superior detection accuracy to more complex models, highlighting its

unique advantages.

The confusion matrix for each category in ETSR-YOLO is depicted in Fig 11. Notably, the

prediction results predominantly align with the diagonal of the confusion matrix, displaying

lighter colors elsewhere. This signifies ETSR-YOLO’s robust ability to distinguish among mul-

tiple categories, resulting in reliable classification accuracy.

To further assess our model’s performance, we provide a comparison with recently devel-

oped detection models. The performance results of various models are presented in Table 5.

The proposed model in this paper achieves high detection accuracy, outperforming many

state-of-the-art models. While there’s a 2.2% difference in mAP compared to SC-YOLO, our

model demonstrates excellent real-time performance on a 2080Ti GPU due to its higher FPS.

Overall, our model excels in accuracy and speed on the TT100K dataset.

Analysis of experimental results on the CCTSDB2021 dataset

Performance comparison with other models. We conducted experiments on the

CCTSDB2021 dataset using the same network model and training strategy, and the results are

summarized in Table 6.

Table 6 demonstrates that ETSR-YOLO performs admirably on the CCTSDB2021 dataset,

surpassing many popular models. Compared to the pre-improved YOLOv5s model,

Table 4. Performance comparison with popular detection models on the TT100K dataset.

Model Input(Pixels) mAP@0.5(%) mAP@0.5:0.95(%) Params(M) Speed(FPS)

Small Medium Large

Faster R-CNN [6] 600×600 55.1 21.7 46.4 59.3 41.6 15

YOLOv3 [39] 416×416 81.2 46.9 68.7 72.2 61.7 31

YOLOv5s 640×640 81.7 48.3 69.7 70.2 7.1 118

YOLOv5m 640×640 83.1 45.7 73.6 81.0 21.0 57

YOLOv5l 640×640 84.8 52.0 72.8 75.0 46.3 42

YOLOX [40] 640×640 87.1 53.8 73.4 75.7 54.2 28

YOLOv6 [41] 640×640 83.4 46.8 73.5 82.6 18.5 53

YOLOv7 [42] 640×640 85.3 44.7 73.3 75.2 37.4 44

YOLOv7-Tiny [42] 640×640 76.5 37.4 69.1 76.8 6.1 134

DAMO-YOLO [43] 640×640 84.8 42.5 76.7 84.3 15.9 36

ETSR-YOLO 640×640 88.3 54.9 73.8 76.6 7.5 88

https://doi.org/10.1371/journal.pone.0295807.t004

Fig 10. Average precision of YOLOv3, YOLOv5, YOLOv6, YOLOv7 and ETSR-YOLO in each category.

https://doi.org/10.1371/journal.pone.0295807.g010
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ETSR-YOLO enhances mAP@0.5 by 1.9%, with notable improvements of 9.8% for small tar-

gets, 8.0% for medium targets, and 1.7% for large targets. These results highlight the model’s

effectiveness in addressing misdetection or omission issues and its suitability for various traffic

sign sizes.

Table 7 lists some of the recent traffic sign detection studies to further validate the effective-

ness of ETSR-YOLO. ETSR-YOLO achieves a superior mAP compared to the current state-of-

the-art models on the CCTSDB2021 dataset. Nonetheless, there is potential for further

enhancements in ETSR-YOLO’s detection speed and model complexity.

Fig 11. Confusion matrix of ETSR-YOLO.

https://doi.org/10.1371/journal.pone.0295807.g011
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Performance comparison in different scenarios. We compared the test results of

YOLOv5s and ETSR-YOLO under various scenarios, as illustrated in Fig 12. These scenarios

included cloudy, nighttime, rainy, and Gaussian noise conditions, enabling us to analyze how

the models perform when traffic signs are disrupted. To visually analyze the thermal distribu-

tion of feature maps and critical areas, we employed Grad-CAM [53]. Heat maps were gener-

ated from the neck network’s output. We identified samples with the target, highlighted them

with a yellow border, and placed them in the test result image.

Table 5. Performance comparison of the improved network models on the TT100K dataset.

Model Input(Pixels) mAP@0.5(%) Params(M) Size(MB) Speed(FPS) GPU

SC-YOLO [25] 640×640 90.4 6.1 / 33.7 3080

Improved YOLOv4 [44] 416×416 87.3 / 16.0 70.5 1660Ti

GCM-YOLOv5 [45] 640×640 83.1 5.2 10.9 / 2060

YOLO-SG [46] 640×640 75.8 4.0 8.8 131.6 V100

AIE-YOLO [47] 640×640 84.8 7.9 / 100.7 3090

MSA-YOLOv3 [48] 544×544 86.3 / / 23.8 P100

ETSR-YOLO 640×640 88.2 7.5 15.3 88.0 2080Ti

https://doi.org/10.1371/journal.pone.0295807.t005

Table 6. Performance comparison with popular detection models on the CCTSDB2021 dataset.

Model Input(Pixels) mAP@0.5(%) mAP@0.5:0.95(%) Params(M) Speed(FPS)

Small Medium Large

Faster R-CNN [6] 600×600 74.6 25.4 61.2 74.4 41.6 21

YOLOv3 [39] 416×416 97.4 68.9 82.4 90.3 61.7 42

YOLOv5s 640×640 96.4 69.7 85.4 97.6 7.1 156

YOLOv5m 640×640 97.3 73.4 88.5 98.4 21.0 78

YOLOv5l 640×640 97.3 74.6 89.2 98.9 46.3 56

YOLOX [40] 640×640 95.2 50.4 74.0 90.5 54.2 39

YOLOv6 [41] 640×640 96.9 67.8 83.8 95.6 18.5 70

YOLOv7 [42] 640×640 93.0 60.5 78.9 92.8 37.4 58

YOLOv7-Tiny [42] 640×640 73.8 35.8 67.2 77.9 6.1 181

DAMO-YOLO [43] 640×640 97.1 71.1 85.7 95.9 15.9 45

ETSR-YOLO 640×640 98.3 79.5 93.4 99.3 7.5 108

https://doi.org/10.1371/journal.pone.0295807.t006

Table 7. Performance comparison of the improved network models on the CCTSDB2021 dataset.

Model Input(Pixels) mAP@0.5(%) Params(M) Size(MB) Speed(FPS) GPU

TSR-YOLO [23] 416×416 92.7 / 41.3 80.5 2060

SC-YOLO [25] 640×640 84.3 6.1 / / 3080

Improved YOLOv4 [44] 416×416 88.7 / 9.0 208.0 1660Ti

Improved YOLOv3 [49] 640×640 86.1 48.3 / 178.5 2080Ti

Improved YOLOv4 [50] 608×608 90.4 / / 25.3 3090

M-YOLO [51] 416×416 97.8 / / 84.0 2080Ti

T-YOLO [52] 608×608 97.3 / / 19.0 2080Ti

ETSR-YOLO 640×640 98.3 7.0 14.2 108.0 2080Ti

https://doi.org/10.1371/journal.pone.0295807.t007
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Fig 12. Sample test results using YOLOv5s and ETSR-YOLO in different scenarios. (a) is the test results of YOLOv5s. (b) is the test results of

ETSR-YOLO.

https://doi.org/10.1371/journal.pone.0295807.g012
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These images demonstrate the significant impact of lighting variations and noise on feature

quality. Notably, YOLOv5s exhibits lower performance in detecting small signs, resulting in

missed and false detections. The heatmap reveals that YOLOv5s shows a more scattered distri-

bution of hotspots, with some clustering in non-critical areas. In contrast, ETSR-YOLO

achieves higher scores, with hotspots concentrated in the target region, indicating less interfer-

ence over a larger pixel area. In summary, ETSR-YOLO effectively filters out invalid feature

regions and demonstrates superior feature extraction capabilities, making it better suited for

traffic sign detection.

Experiments in road scenes

To further validate the robustness of ETSR-YOLO under continuous driving conditions, we

captured real road scenes using external cameras and deployed the model and sample data in

an embedded mobile platform for validation. Fig 13 shows the controller unit used in this

experiment, which contains multiple NVIDIA Jetson AGX Xavier processing units to enable

mobile parallel computation of neural network models. To conduct the experiments, the sam-

ple scenes are manually collected by driving a collection vehicle that captures the city streets

through fixed cameras, and the collected samples are used to evaluate the detection perfor-

mance of the model offline.

For the computing unit, we used the same software environment as for the desktop plat-

form. To reduce the false positive rate, where the confidence threshold is set to 0.6, the NMS

IoU threshold is set to 0.45 and the rest of the parameters remain unchanged. Table 8 shows

the average inference speed on the platform for the models before and after the improvement.

The data shows that the inference speed of the model is not as good as the desktop platform in

environments with limited computing power. At the same time, the improved methods in this

paper generate additional computations that slightly increase the inference time.

Fig 14 shows the detection effect of ETSR-YOLO on sample sequences. It can be seen that

the improved model performs well.

Fig 13. External experimental platform.

https://doi.org/10.1371/journal.pone.0295807.g013

PLOS ONE ETSR-YOLO: An improved multi-scale traffic sign detection algorithm based on YOLOv5

PLOS ONE | https://doi.org/10.1371/journal.pone.0295807 December 14, 2023 19 / 23

https://doi.org/10.1371/journal.pone.0295807.g013
https://doi.org/10.1371/journal.pone.0295807


Discussion of the model

In this paper, the network structure of YOLOv5 is improved for the characteristics of traffic

signs in images. According to the experimental data, it can be seen that the improved method

proposed in this paper shows high accuracy in complex road scenes, but there are still some

shortcomings:

First, the improved model in this paper cannot effectively improve the accuracy of each

detection category. Experiments on the TT100K dataset show that the average accuracy of the

improved model is not good enough for some categories, such as ‘ph5’, ‘pm20’ and ‘wo’. This

indicates that the network constructed with the preset parameters still has difficulties in recog-

nising certain categories. In this respect, the network parameters can be appropriately

increased to improve the recognition accuracy of complex categories at the expense of some of

the network inference speed.

In addition, the model does not allow the detection of multi-scale targets to reach a bal-

anced state: although ETSR-YOLO can detect targets from four different scales, its detection

accuracy for small traffic signs is not good enough. The main reason for this situation is that

the pixel features of small targets are very weak and can easily interfere with other parts of the

image. Therefore, better solutions need to be explored to further improve the detection of

multi-scale targets.

Finally, the experiments carried out on the Jetson AGX Xavier platform highlight the prob-

lems with our model. The improved model is not able to achieve comparable real-time results

on the embedded platform as on the desktop platform. We also found that the model some-

times misidentified parts of the surrounding buildings as traffic signs. This type of misidentifi-

cation problem is more common in complex scenes. Future development plans will further

Table 8. Comparison of inference speed between YOLOv5s and ETSR-YOLO on the Jetson AGX Xavier platform.

Model Pre-Process Inference Non-Maximum Suppression

YOLOv5s 1.2ms 32.2ms 1.4ms

ETSR-YOLO 1.1ms 38.8ms 1.9ms

https://doi.org/10.1371/journal.pone.0295807.t008

Fig 14. Detection results on sample sequence using ETSR-YOLO.

https://doi.org/10.1371/journal.pone.0295807.g014
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optimise the real-time and robustness of the model on the embedded platform. More attention

will also be paid to the quality of the training dataset to improve the richness of the samples.

Conclusion

In real traffic scenes, deep learning-based traffic sign recognition algorithms must be opti-

mized to ensure real-time and reliable detection. This paper introduces ETSR-YOLO, a novel

algorithm designed to address traffic sign recognition challenges in road scenes.

In this paper, we propose several improvements to YOLOv5 for traffic sign detection. First,

we enhance the path aggregation network to capture richer contextual information, which in

turn improves the detection of traffic signs of different sizes. Second, we embed the coordinate

attention mechanism in the backbone network to adaptively enhance important features and

suppress noise. Third, we integrate the ConvNeXt block to expand the receptive field of the

network and reduce information loss during feature fusion. Finally, we use the WIoU function

in post-processing to improve the predictability and robustness of the model. Experimental

results demonstrate the effectiveness of our approach. On the TT100K dataset, our model

improves mAP@0.5 by 6.6% and achieves a recognition speed of 88 FPS. On the CCTSDB2021

dataset, mAP@0.5 improves by 1.9% with a recognition speed of 108 FPS, outperforming

other models. In experiments conducted on the Jetson AGX Xavier platform, ETSR-YOLO

exhibits a short average inference time, affirming its capability to deliver reliable real-time

detection. Future research will focus on optimising the model’s performance in complex road

environments and improving computational efficiency for more reliable traffic sign recogni-

tion on in-vehicle embedded platforms.
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