
RESEARCH ARTICLE

A comprehensive framework for advanced

protein classification and function prediction

using synergistic approaches: Integrating

bispectral analysis, machine learning, and

deep learning

Hiam Alquran, Amjed Al FahoumID*, Ala’a Zyout, Isam Abu Qasmieh

Hijjawi Faculty for Engineering Technology, Biomedical Systems and Informatics Engineering Department,

Yarmouk University, Irbid, Jordan

* afahoum@yu.edu.jo

Abstract

Proteins are fundamental components of diverse cellular systems and play crucial roles in a

variety of disease processes. Consequently, it is crucial to comprehend their structure, func-

tion, and intricate interconnections. Classifying proteins into families or groups with compa-

rable structural and functional characteristics is a crucial aspect of this comprehension. This

classification is crucial for evolutionary research, predicting protein function, and identifying

potential therapeutic targets. Sequence alignment and structure-based alignment are fre-

quently ineffective techniques for identifying protein families.This study addresses the need

for a more efficient and accurate technique for feature extraction and protein classification.

The research proposes a novel method that integrates bispectrum characteristics, deep

learning techniques, and machine learning algorithms to overcome the limitations of con-

ventional methods. The proposed method uses numbers to represent protein sequences,

utilizes bispectrum analysis, uses different topologies for convolutional neural networks to

pull out features, and chooses robust features to classify protein families. The goal is to out-

perform existing methods for identifying protein families, thereby enhancing classification

metrics. The materials consist of numerous protein datasets, whereas the methods incorpo-

rate bispectrum characteristics and deep learning strategies. The results of this study dem-

onstrate that the proposed method for identifying protein families is superior to conventional

approaches. Significantly enhanced quality metrics demonstrated the efficacy of the com-

bined bispectrum and deep learning approaches. These findings have the potential to

advance the field of protein biology and facilitate pharmaceutical innovation. In conclusion,

this study presents a novel method that employs bispectrum characteristics and deep learn-

ing techniques to improve the precision and efficiency of protein family identification. The

demonstrated advancements in classification metrics demonstrate this method’s applicabil-

ity to numerous scientific disciplines. This furthers our understanding of protein function and

its implications for disease and treatment.
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Section 1: Introduction

Nearly every cellular reaction and metabolic process in living organisms involves proteins.

Proteins play crucial roles in biological and disease processes, but only if their structure, func-

tion, and interrelationships are understood [1,2]. Identifying protein families, or groups of

proteins with similar structures and functions, is crucial to any protein investigation [3]. Rec-

ognizing protein families facilitates the comprehension of evolutionary relationships, the pre-

diction of protein function, and the discovery of potential therapeutic targets [4]. Throughout

the years, numerous classification methods for protein families have been developed. These

techniques predominantly belong to the categories of traditional and contemporary computa-

tional approaches [5]. In this introductory section, the current state of the art in protein family

identification, the limitations and challenges of the existing methods, and the need for a more

efficient and accurate method will be investigated.

Historically, scientists have discovered novel protein families through biochemical assays,

protein sequencing, and structural analysis. Analyzing vast protein collections was difficult,

time-consuming, and beyond their capacity [6]. Due to the development of high-throughput

technologies and the availability of large datasets of protein sequences, computational

approaches have become practical tools for identifying protein families. By comparing protein

sequences, sequence-based approaches identify commonalities and infer evolutionary relation-

ships [7]. Using sequence alignment, the most prevalent sequence-based method, conserved

regions, insertions, and deletions in protein sequences are identified. ClustalW (a multiple-

sequence alignment program) and the Basic Local Alignment Search Tool (BLAST) are the

most widely used alignment algorithms [8]. However, sequence-based methodologies have

limitations, including the inability to identify distantly related proteins due to sequence diver-

gence and the susceptibility to errors introduced by gaps and insertions. These techniques ana-

lyze the three-dimensional structure of proteins to identify similarities and common folding

patterns. Protein structures are compared by structural alignment algorithms, such as DALI

(Distance-matrix ALIgnment) and CE (Combinatorial Extension), based on the spatial

arrangement of secondary structure elements [9]. The availability of empirically determined

protein structures restricts the usefulness of structure-based methods for understanding pro-

tein function and evolution. Profile-based methods generate profiles or hidden Markov mod-

els (HMMs) from multiple sequence alignments of related proteins [10]. These profiles

capture position-specific amino acid patterns (PSAAP) and protein family-wide conservation.

HMMER (is a free and commonly used software package for sequence analysis) and Position-

Specific Iterative BLAST (PSI-BLAST) are more sensitive than straightforward sequence align-

ment methods and can detect distant homologs [11]. However, profile-based methods necessi-

tate a well-curated multiple-sequence alignment and can be computationally intensive.

Henceforth, identifying and classifying protein families is essential to understanding the

complexities of protein structure, function, and evolutionary paths. In contrast, conventional

approaches encounter challenges such as the necessity for enhanced computational speed,

stringent criteria for database integrity, and susceptibility to sequence divergence. The emerg-

ing field of computational approaches, particularly those based on machine learning (ML) and

deep learning (DL) paradigms, holds significant promise for overcoming these limitations.

Combining the distinctive characteristics inherent to bispectrum analysis with the potent fea-

ture extraction capabilities innate to deep learning methodologies is the optimal strategy for

enhancing the capacity for protein family identification. This combination could improve the

precision and effectiveness of machine learning algorithms in this field. This innovative tech-

nology has the potential to enhance scientists’ understanding of protein biology and expedite

the creation of novel treatment methods. This unique technology has the potential to enhance
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scientists’ understanding of protein biology and accelerate the development of new treatment

approaches. In Section 2, the pertinent literature review is presented. In Section 3 of this study,

methods for numerical encoding, bispectrum, and feature extraction using the most compe-

tent convolutional neural network (CNN) architectures, efficient feature selection methods,

and the ML classification algorithm are discussed in detail. The results section elaborates on

the algorithm’s execution and outputs and emphasizes inferences. Section 4 will discuss the

outcomes and potential applications of the proposed technique. The study’s conclusions will

explain the efficacy of the proposed method and identify areas that can be investigated further

to enhance the accuracy of predictions.

Section 2: Related works

An amino acid can be as a letter, a protein sequence as a library, and a motif as a paragraph.

Insight into the physical structure’s functional qualities can be gained by exploring the rela-

tionships between these sequences. Scientists in biomolecular research are always looking for

new ways to classify proteins based on their unique sets of amino acid residues. To this end,

researchers classify sets of proteins with similar roles as "protein families”. However, uncharac-

terized proteins in different bioinformatics domains need to be identified and classified. Scien-

tists typically represent groups of proteins with similar functions using a clustering motif.

However, there is still a need for improvement in many areas of bioinformatics, such as pro-

tein identification and categorization. Therefore, a primary goal of applied research is to

understand physicochemical processes [12].

Engineering-based techniques are needed to extract discrete or continuous features from

protein sequences for classification purposes. Although traditional methods have significantly

contributed to identifying protein families, they confront several challenges and limitations.

The efficacy of these methods depends heavily on the quality and completeness of available

protein sequence and structure databases. Inaccurate identification of protein families may

result from incomplete or biased databases. Sequence divergence and structural variation

make it difficult for conventional methodologies to identify distantly related proteins. This

limitation hinders the comprehension of the evolution and function of proteins. Traditional

methods are computationally intensive and may need to be more scalable to analyze the ever-

increasing protein sequence data generated by high-throughput technologies [13]. Due to sub-

jective parameter settings and assumptions made during the analysis, traditional methods may

introduce biases and errors. Clustering and labeling tasks are prominent applications of unsu-

pervised learning, a popular ML technique. Protein sequence pattern discovery is greatly aided

by matching genetic characteristics to protein sequences. However, this motif comparison

approach relies heavily on the knowledge of biological experts and subject-matter experts in

order to identify functional motifs [14]. Before tinkering with a protein’s coding in the cell, its

functionality in the body needs to be understood. One approach [15] for determining the total

number of variables is to use a generalized series of Gaussian process regression. The precision

and results of functional analysis can be improved through training on sequencing data from

many proteins [16]. Researchers [17] used the Resonant Recognition Model (RRM) on the

hormone Prolactin (PRL) to find resonant frequencies and predict "hot spots" in the protein

sequence that are functionally important. The bulk of researchers’ recommended amino acids

were compared to these findings. Initiating or altering biological processes, light wavelengths,

and electromagnetic radiation have roles. The RRM postulates that infrared and visible light

electromagnetic energy transmission is crucial to protein interactions. The RRM model applies

spectral and space-frequency analysis to linear data, such as the linear sequences of compo-

nents that make up proteins. When free electron energies interact with proteins, it regulates
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protein activity, and when molecules connect, it requires the transfer of electromagnetic

energy between them at very particular frequencies [18]. Another study [19] tackled the

sequence metric issue by performing multivariate statistical studies on numerous properties of

amino acids. The study used factor analysis to calculate meaningful and understandable amino

acid differences. This method makes it easier to analyze sequence data and produces ratings

that can be used in other research [20]. The RRM and the Informational Spectrum Method

(ISM) [21] were both detailed in the research. Two plasmodial peptides, P18 and P32, serve as

illustrative examples of these processes, and their involvement has been explored using

computational models [22]. Integer vectors can be fed into Support Vector Machine SVMs,

decision trees, and machine-learning methods. Protein sequences can be encoded into numer-

ical vectors with the "Protein Encoding" Matlab module [21], which was developed for bioin-

formatics research and features intuitive Matlab application programming interfaces (APIs).

Autocorrelation descriptors, defined by the position-specific score matrix (PSSM)of evolution-

ary data along the amino acid sequence [22], can be utilized in addition to more traditional

methods [12]. The PSSM, three autocorrelation descriptors, evolutionary and sequence-order

data, and the resulting feature vector total 560 dimensions, making the model extremely

detailed. The SVM classifier performs best when the 175 dominant features with the highest

variance and lowest reconstruction error are utilized. Principal component analysis (PCA) is

used to select features and minimize noise. The new model outperforms prior evolutionary

information-based approaches, notably for amino acid sequences with low similarity, as

shown by experimental findings from a Jackknife cross-validation test on three benchmark

datasets [22].

A study [23] shows that amino acid codons map onto a complex prime number representa-

tion (CPNR). There are as many codons as there are prime numbers. This finding dramatically

aids insight into the relationship between prime numbers and complex domain mapping.

Numbers in CPNR are typically independent, meaning they cannot be created by performing

arithmetic operations on a real number (such as adding, multiplying, or exponentiating) [24].

The study invistigated 520 protein sequences across seven different categories. Establishing a

mathematical link between molecular structures and the behaviors under study is essential for

constructing quantitative structure-activity relationships (QSARs) [25]. Molecular descriptors

can be categorized using both experimental and theoretical descriptors. In [25], the authors

provide an all-encompassing review of theoretical descriptors, molecular descriptor computa-

tion, and their numerous classifications and viewpoints. The research aimed to choose and

model each amino acid index based on features like hydrophobicity and alpha to locate

descriptors that yield more insightful protein modeling. Subsequently, [26] evaluated the pos-

sibility of physicochemical descriptors, the fast Fourier transform (FFT), and protein feature

classification to improve prediction findings. Based on the information utilized to construct

the code, encoding methods for amino acids are categorized into five groups: binary, physico-

chemical properties, evolution-based, structure-based, and machine learning. The research

describes the five categories of amino acid encoding, discusses the proposed methodologies,

and then examines sixteen approaches to encoding amino acids to ascertain protein shape and

secondary structure [27]. Primary sequences alone can classify protein families and can be

turned into mathematical representations of amino acid sequences [23]. Using the integer

representation of amino acid codes, the study offers a mapping technique using Fibonacci

numbers and a hashing table (FIBHASH). A Fibonacci number was ascribed to each numeric

representation of an amino acid. These 20-byte hash tables were utilized to retain the amino

acid codes fed into recurrent neural networks for grouping [28]. The classification of proteins

is essential to both medical diagnosis and treatment. This level of accuracy could not have

been attained with more conventional classification methods.
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The results were significantly improved when machine learning and deep learning tech-

niques were employed. All ML algorithms must convert protein sequences to numeric form,

and if this is done flawlessly, performance can be enhanced [23,28]. Multiple aspects of protein

sequences, including amino acid physiochemistry and three-dimensional structure, can be

represented. Using this method, it is difficult to identify the optimal numerical representation

for protein sequences. Researchers have studied two distinct encoding methodologies for map-

ping protein sequence-function relationships over the past decade. Using the conventional

encoding method ("one-hot encoding"), the binary representation of an amino acid sequence

is provided immediately. In a "learned encoding" scheme [29], millions of unlabeled protein

sequences are used to train an unsupervised ML algorithm. The trained encoding method per-

mits protein sequences encoding as numerical vector representations. To fulfill their biological

function, proteins must interact in a particular manner, and the learned encoding scheme

assumes that all protein sequences conform to the evolutionary principles or biophysical prop-

erties that govern these interactions [30]. The vector representations of the taught encoding

method illustrate how proteins are related in the sequence space that has been learned. Similar

vector representations can be expected for identical sequences when using downstream-super-

vised ML models, like the Gaussian process (GP) [31]. This model means that similar biologi-

cal functions can be assumed using models like the GP.

Using CNNs to predict the secondary structure of proteins is a relatively recent application

[32,33]. In [32], the prediction was based on the PSI-BLAST position-specific score matrix

profile. In [33], the amino acid sequence properties were mixed with 1D kernel motions. In

[34] they combined experimentally collected structural information of enzymes with deep

learning techniques to construct models that predict enzymatic function based on structure.

The article’s authors [23] developed a protein mapping technique to convert amino acid

sequences into numerical representations, which they then used to predict protein families.

A bispectral analysis is a cutting-edge data processing technique that accounts for phase

coupling (quadratic nonlinearities) between nonlinearly behaving signal components. Numer-

ous biological signals, such as the electrocardiogram (ECG) and heart sounds, are distinct due

to their interdependencies [35–38]. The additional data points these techniques provide may

improve the performance of the deep learning system. Recent research [39] employed a hybrid

bispectral deep neural network to classify ten families within the Globin-like superfamily. This

procedure improved the categorization problem significantly in comparison to the previous

ones. Despite these results, 16 families still required assistance [39]. Using numerically

encoded bispectrum images of protein sequences and a well-designed two-stage CNN model

classifier, [40] introduces a new method for identifying the 16 protein families that comprise

the Globin-like superfamily. Consequently, a more efficient and accurate method of protein

family identification is urgently required to resolve the limitations of existing approaches.

Recent advancements in machine learning and deep learning have enabled the development of

innovative computational methods. These methods allow more accurate identification of dis-

tant homologs and protein function prediction by utilizing large-scale protein sequence and

structural data. When sequence, structural, and functional annotations are merged, it is easier

to comprehend the relationships between protein families. Incorporating these revolutionary

methodologies into user-friendly tools and software programs could accelerate the advance-

ment of protein biology.

As such, the main obstacle in protein research pertains to the efficient identification of pro-

tein families to comprehensively understand their structural, functional, and evolutionary

attributes. Although traditional methods have proven helpful, they are also associated with cer-

tain limitations. These limitations include computational inefficiency, strict requirements for

database quality, and susceptibility to sequence divergence.
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In order to overcome these constraints, the present work proposes an innovative methodol-

ogy that leverages the capabilities of cutting-edge computational techniques, including

machine learning and deep learning. This study seeks to address the current challenges in pro-

tein family identification by combining bispectrum features and deep learning feature optimi-

zation approaches. The primary contributions of this study are as follows:

1. The present study presents a novel approach to enhance efficiency in identifying protein

families. This method enables expedited and comprehensive studies of protein datasets by

mitigating computational complexity.

2. Using bispectrum characteristics and deep learning approaches enables extracting resilient

and distinctive features from protein sequences, hence augmenting categorization

accuracy.

3. Enhanced Precision: By utilizing exact machine learning algorithms, this innovative meth-

odology can achieve improved outcomes in identifying protein families, thereby tran-

scending the constraints of current methodologies.

4. Enhanced Comprehension: The suggested methodology enables researchers to explore pro-

tein biology at a more profound level, facilitating a deeper understanding of protein struc-

ture, function, and evolution.

5. The method of accelerated therapeutic development utilizes improvements in protein fam-

ily identification to expedite the development of new medicines, hence providing signifi-

cant benefits to scientific research and medical innovation.

Section 3: Methodology

Fig 1 depicts the proposed method in this paper, as shown, the procedure from encoding pro-

tein sequences, passing to higher order spectral representation (Bispectrum), then utilizing the

pre-trained convolutional neural networks to extract the graphical features using the transfer

learning techniques. In this paper, various features engineering algorithms are employed to

enhance the performance of classification and obtain the best representative attributes among

all extracted ones.

For more illustration the corresponding pseudocode was employed to obtained the best

results

# Step 1: Extract Features from the Last Fully Connected Layer of CNN

Initialize CNN model

Load pre-trained weights

Modify the output layer to be compatible with 16 classes

Fig 1. The proposed method.

https://doi.org/10.1371/journal.pone.0295805.g001
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# Extract features from a dataset of images (Split the dataset into 70% training, 30% testing)

for each image in the dataset:

features = CNN.predict(image)

store features to featureMatrix_Training

Store the test features in featureMatrix_Testing

#Repeat the same process for five pre-trained CNNs

# Step 2: Apply Canonical Correlation Analysis (CCA) and Dimensionality Reduction

(DCA)

# Apply CCA to the feature_list
cca_features = apply_CCA(featureMatrix)

# Apply DCA to CCA Feature
dca_features = apply_DCA(cca_features)

Step3: Combined 16 features from CCA, and 16 Features from DCA

# Step 4: Build Bagging Tree Ensemble Classifier with 70% of combined reduced

features

Initialize empty ensemble_list

# Repeat for a specified number of iterations
for each iteration:

# Randomly sample training data with replacement for each iteration
sampled_training_features, sampled_training_labels = bootstrap_sample(training_fea-

tures, training_labels)

# Create and train a decision tree classifier on the sampled data
tree_classifier = create_and_train_decision_tree(sampled_training_features,

sampled_training_labels)

# Add the trained tree classifier to the ensemble
append tree_classifier to ensemble_list

# Step 5: Classification with the Ensemble

# Initialize an array for storing predictions

predictions = []

# For each data point in testing_features
# Initialize an array to store predictions from each tree in the ensemble

tree_predictions = []

# Make predictions using each tree in the ensemble
for each tree_classifier in ensemble_list:

tree_prediction = tree_classifier.predict(data_point)

append tree_prediction to tree_predictions

# Calculate the aggregation method for tree predictions

final_prediction = aggregate_predictions(tree_predictions)

# Append the final prediction to the predictions array

append final_prediction to predictions.

# Step 6: Evaluate the Ensemble Classifier

Calculate accuracy, precision, recall, F1-score, etc., for the predictions.

Database

The present study uses the superfamily data obtained from the InterPro website, which is cur-

rently the location of the Pfam database. InterPro is a comprehensive repository of protein

families, domains, and functional sites [41]. The comprehensive and unified nature of the

superfamily data on the InterPro website, which currently hosts the Pfam database, is the main
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driving force behind its selection. InterPro is a central repository incorporating and harmoniz-

ing data from multiple protein signature databases, such as Pfam, PRINTS, PROSITE, and

SMART. This integration presents several significant benefits: InterPro provides a more com-

prehensive view of protein superfamilies by incorporating data from multiple sources.

Researchers have access to a more extensive variety of protein families and domains in a single

location, eradicating the need to consult multiple databases independently. InterPro consoli-

dates and standardizes data, facilitating researchers’ ability to navigate and interpret the infor-

mation. This consistency expeditiously improves the dependability and comparability of

information across numerous protein families and domains. The platform permits the cross-

referencing and coupling of various protein families and domains. This interconnectedness

allows researchers to investigate relationships and functional associations between various pro-

tein superfamilies, thereby augmenting the depth of their analyses. InterPro routinely updates

and maintains its integrated databases, ensuring that researchers have access to the most cur-

rent and accurate information. This function is essential for maintaining protein data evolu-

tion. InterPro provides a user-friendly interface for searching, retrieving, and visualizing

information regarding protein superfamilies. Researchers have adequate access to the data

they need to conduct investigations. Finally, InterPro promotes global research collaboration

by encouraging participation and contributions from the community. This collaborative strat-

egy improves the quantity and quality of data that is currently accessible. Furthermore, It facili-

tates the examination of protein sequences by leveraging their distinctive signatures, which are

derived from prediction models like hidden Markov models. The capacity of InterPro to amal-

gamate the protein signatures originating from its constituent databases into a unified and

exploratory repository is a paramount attribute. Furthermore, it has the potential to leverage

the unique attributes of each database in order to construct a unified and resilient database

and diagnostic tool [40].

Encoding method

The precise encoding of amino acids plays a pivotal role in determining the overall efficacy of

categorization methodologies. In stark contrast to the encoding of protein sequences, the

encoding of amino acids employs a fusion of diverse methodologies to forecast the characteris-

tics of a protein, encompassing both the individual residues and the overall sequence. Encod-

ing methods are commonly classified into five distinct categories, determined by the origin of

the information and how it is extracted. These categories include binary encoding, physico-

chemical characteristics encoding, evolution-based encoding, structure-based encoding, and

machine-learning encoding. The article portrays amino acids within protein sequences as

binary numbers with multiple dimensions, specifically 0 and 1. As mentioned above, the pro-

cedure is commonly referred to as a binary encoding technique [27].

The commonly employed terminology for the digital representation of amino acids

includes feature extraction, amino acid encoding scheme, or residue encoding scheme [27].

One-hot encoding, also referred to as orthogonal encoding, is a widely utilized binary encod-

ing technique [42]. In the context of the one-hot encoding method, it is observed that a binary

vector with a dimensionality of twenty is utilized to represent each of the twenty standard

amino acids. The precise arrangement of the twenty standard amino acids is explicitly delin-

eated. The ith amino acid type is represented by employing a binary encoding scheme consist-

ing of twenty bits. In this encoding, the ith bit is assigned a value of "1," while the remaining

bits are assigned a value of "0." Every vector possesses a solitary binary digit, denoted by the

symbol "1". Henceforth, it is referred to as "one-hot." The arrangement of the twenty standard

amino acids is denoted as [A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y]. Each
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amino acid is assigned a one-hot code, wherein the one-hot code for A is 1000000000000000,

the one-hot code for C is 0100000000000000, and so forth. Given the presence of unidentified

amino acids within protein sequences, it is imperative to acknowledge that, under certain cir-

cumstances, an additional unit is necessary to denote the unidentified amino acid type [40].

Consequently, the binary vector’s length will extend to twenty-one, as stated in reference [27].

The classification accuracy of the utilized encoding method can be improved by normalizing

its outputs. This normalization process involves utilizing the mean value and standard devia-

tion of the encoded amino acid distribution within each family, as explained in [40].

Bispectrum

The bispectral analysis is a scientifically rigorous signal processing technique investigating the

intricate phase coupling between distinct signal components, explicitly focusing on the intri-

cate interplay of values encapsulated within proteins. After a short explanation of how bispec-

tral analysis works, CNN uses the insights gained from it to place proteins in their own

families [43]. Nonlinearities are deviations from a straight line in the process of encoding pro-

teins, and how nonstationarity is shown changes the connections between frequencies within

these families. The bispectral analysis is a sophisticated signal processing technique that quan-

tifies quadratic nonlinearities and deviations from linearity. It quantifies the interdependence

of signal constituents, such as the representation encoding proteins. Modifications to the bis-

pectrum can be quantifiably observed when there are alterations in the representation that

lead to different quadratic nonlinearities. More information about the utilization of bispec-

trum is available in [40,43].

Pre-trained models

Squeeze net. SqueezeNet is a deep neural network architecture created for efficient and

lightweight image classification. It was designed by investigators at Deep Scale, Inc. and

released in 2016. The primary purpose of SqueezeNet is to perform high accuracy on image

classification tasks by optimizing the model size and the computation.

The key notion behind SqueezeNet is to remarkably diminish the number of parameters in

the network by utilizing a variety of 1x1 convolutional filters, also known as "squeeze layers,"

and "expand layers." These layers help to reduce the computational burden while retaining

good accuracy.

The 1x1 filters are employed in the squeeze layers to reduce the depth dimension of the

input tensor, thus squeezing the information [44]. SqueezeNet has been achieved popularity in

various applications with computational resources are limited; such as mobile and embedded

devices. Its lightweight nature makes it appropriate for real-time image analysis on devices

with limited processing power [45].

Shuffle net. Shuffle Net is an extremely computation-efficient CNN architecture, which is

designed especially for mobile devices with very limited computing power (e.g., 10–150

MFLOPs). This architecture utilizes the pointwise group convolution and the channel shuffle

to greatly reduce computation cost while maintaining accuracy. Table 1 displays the total Shuf-

fleNet architecture. It consists of three stages made up of a stack of ShuffleNet units. The point-

wise convolutions’ connection sparsity is controlled by the group number. The output

channels can be computed and assessed simultaneously by assigning different values for g,

ensuring that the overall computational costs are roughly the same (140 MFLOPs) [46].

ResNet101. A residual learning framework makes it easier to train networks that are

much deeper than those that were previously used by reformulating the layers so that they

learn residual functions with reference to the layer inputs rather than learning unreferenced
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functions. It also provides extensive empirical evidence demonstrating that these residual net-

works are simpler to optimize and can gain accuracy from greatly increased depth [47].

Wu et al.’s [48] proposal of a residual network to improve feature transmission by incorpo-

rating shortcut connections into the convolutional neural network was made in response to

this issue. Every two layers of conventional convolution are followed by the addition of a

short-cut to create residual blocks. A residual network is created by connecting several residual

blocks. As seen in Figure below, x serves as the network’s input. The result of two convolution

layers is represented by the function F(x). The original output will be superimposed with the

mapping of quick connection F(x) + x before being sent to the following layer [49]. The struc-

ture of the layer is illustrated in Fig 2.

DarkNet-19. Darknet-19 is a new classification model used as the base of YOLOv2. The

model is based on earlier research on network architecture as well as prevailing wisdom in the

industry. We mostly employ 3 × 3 filters and increase the number of channels after each pool-

ing phase, much like the VGG models [50]. In line with the research on Network in Network,

predictions were made using global average pooling and the feature representation was com-

pressed using 1 × 1 filters between 3 × 3 convolutions [51]. Also, to stabilize training, speed up

convergence, and regularize the model used batch normalization [52]. The final model, called

Darknet-19 has 19 convolutional layers and 5 max pooling layers [53].

NasNet. The Google ML group created the NASNet model in 2017 while researching new

approaches to creating ConvNets. It is based on the Neural Architecture Search (NAS) method

that used to find the best architectures based on gradients [54]. A CNN’s "Child Network" has

a parent AI called a Recurrent Neural Network (RNN) namely "The Controller" that evaluates

the effectiveness of the child AI and modifies the design of the "Child Network". The opera-

tional building blocks that the controller RNN may utilize to construct the "Child Network"

are described in figure below. Adjustments are made to the number of layers, regularization

techniques, weights, and other factors to increase the effectiveness of the "Child Network."

[55]. NASNetLarge and NASNetMobile, are two distinct types of NASNet architectures, are

created by training the architecture with two different picture sizes. Due to the difference in

Table 1. The results for the first eight families: Number of true positive, true negative, false positive, false negative, precision, sensitivity, specificity, and F1-secore

for each class individually.

Evaluation Criteria TP FP FN TN Precision Sensitivity Specificity F1-Score

Family01 114 4 2 1736 97 98 100 97

Family02 101 22 14 1719 82 88 99 85

Family03 113 5 3 1735 96 97 100 97

Family04 107 12 7 1730 90 94 99 92

Family05 112 0 4 1740 100 97 100 98

Family06 98 18 18 1722 84 84 99 84

Family07 116 2 0 1738 98 100 100 99

Family08 108 10 8 1730 92 93 99 92

Family09 105 3 11 1737 97 91 100 94

Family10 101 11 15 1729 90 87 99 89

Family11 101 11 15 1729 90 87 99 89

Family12 113 1 3 1739 99 97 100 98

Family13 113 5 1 1735 96 99 100 97

Family14 115 4 1 1736 97 99 100 98

Family15 99 10 17 1730 91 85 99 88

Family16 108 2 8 1738 98 93 100 96

https://doi.org/10.1371/journal.pone.0295805.t001
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parameters between the two networks, NASNetmobile is significantly more dependable than

NASNetLarge [54]. Every NASNet type has a block as its smallest unit. A cell is made up of a

number of operational blocks, including those mentioned above, and it is made up of several

cells that make up the NASNet architecture. Because the controller RNN optimizes the cells

with blocks for a particular dataset, these cells are not fixed [55].

Fig 2. The structure of the residual block [49].

https://doi.org/10.1371/journal.pone.0295805.g002
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Feature fusion

In recent network architectures, feature fusion—the combining of features from many levels

or branches—is pervasive. It is frequently carried out by using straightforward operations like

addition and concatenation, although this may not be the best option [56]. However, the per-

formance of the created classifier may show the use of most representative features. Finding

the most important characteristics is thus a significant challenge for computer-aided diagnosis

systems [57]. This paper applies two types of fusion algorithms: CCA and DCA to classify pro-

tein families with highly accurate results.

Canonical correlation analysis

Canonical correlation analysis (CCA) is a technique for comparing linear relationships

between two variables with multiple dimensions. CCA can be thought of as using complicated

labels to direct feature selection in the direction of the underlying semantics, the representa-

tion of the semantics is extracted by CCA using two perspectives of the same semantic object

[58]. To extract cross-modal correlations, Deep CCA, based on the encoder-decoder network,

maximizes the significance of multimodal data. Furthermore, the canonical projective vectors

in the traditional CCA method comply with conjugated orthogonality criteria, making CCA a

crucial technique for the extraction and fusion of numerous features. Examples of real applica-

tions contain little class information, although class knowledge is useful for CCA [59].

As it can be viewed in the Fig 3, it shows sets of variables X, Y, and the number of indepen-

dent and dependent variables are p and q, respectively. All variables X and Y are lumped into

two different variables, shown as yellowish circles in the figure. CCA aims to find the relation-

ship between two lumped variables in a way that the correlation between these two is maxi-

mum. There are several linear combinations of variables, but the aim is to pick only those

linear functions which best express the correlations between the two variable sets. These linear

functions are called canonical variables, and the correlations between corresponding pairs of

canonical variables are called canonical correlations.

Fig 3. Components of a CCA function.

https://doi.org/10.1371/journal.pone.0295805.g003

PLOS ONE Leveraging bispectral analysis and deep learning for enhanced protein classification and function prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0295805 December 14, 2023 12 / 25

https://doi.org/10.1371/journal.pone.0295805.g003
https://doi.org/10.1371/journal.pone.0295805


Discriminant correlation analysis

In biometric recognition, multiple types of features provide richer and more complementary

information, making feature fusion an essential topic of research. Discriminant correlation

analysis (DCA) is a feature-level fusion technique that includes the class relationships in the

correlation analysis of the feature sets. By maximizing the pairwise correlations between the

two feature sets, removing the correlations across classes, and only allowing correlations

within the classes, DCA achieves an efficient feature fusion [60,61].

Machine learning classifier

Machine learning employs an important role in the detection and classification of various

applications in medical fields. In this paper, a bootstrap aggregating classifier is exploited to

discriminate between 16 types of protein families. Bootstrap aggregating is well known as a

bagging ensemble classifier, which is commonly used in decision tree algorithms. The boot-

strap depends mainly on the selection of samples from the training dataset randomly with

replacement, where, is the number of whole training samples. Each sample is used to build a

classifier model. All models are utilized to predict the test samples based on majority voting of

all aggregating models [62]. During training, decision trees learn multiple splits at each node.

Surrogate splits are the next-best splits that help estimate the behavior of the primary split for

those data points where the principal split isn’t appropriate [63].

In this paper, the number of learning cycles is 50 and surrogate splitting is utilized to split

the trees.

For each input x, Bagging combines the predictions from individual decision trees and

selects the class label with the highest aggregated count or probability. Soft averaging is per-

formed in this paper where each tree in the ensemble outputs class probabilities, and the final

prediction is determined by averaging the probabilities. The class with the highest average

probability is selected as the final prediction. Mathematically, it can be represented as [64]:

ŷ ¼ argmaxc
1

N

XN

i¼1

P hiðxÞ ¼ cð

 !

N is the number of trees in the ensemble, in our paper is equal to the number of training

data.

ðPðhiðxÞ ¼ cÞ represents the probability assigned by the i-th tree to class c for input x.

The final prediction ŷ is the class that has the highest average probability across all trees.

Section 4: Results & discussion

The Convolutional Neural Networks (CNNs) field includes a wide range of architectural

designs, each with its own configuration parameters, such as the number of layers, the size of

the filters, the length of the stride, and other hyperparameters. These architectural variances

inherently engender the extraction of a wide array of features. One can access a broader spec-

trum of features using multiple CNN models, which is potentially advantageous for the tar-

geted task at hand. Each CNN model possesses the capacity to excel in capturing specific

categories of features or discerning particular patterns within the data. To illustrate, specific

models may exhibit proficiency in discerning intricate, fine-grained details, whereas others

might specialize in capturing higher-level, semantically rich information. The amalgamation

of features derived from multiple CNN models allows for a more all-encompassing and holistic

data representation. Ensembling, which entails amalgamating predictions or features gener-

ated by multiple models, is a well-established technique for enhancing model performance.
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One can employ ensembling methods to produce a more resilient and precise data representa-

tion by extracting features from diverse CNN models. This approach mitigates the risk of over-

fitting and curtailing model variance, ultimately contributing to improved model robustness.

The resultant images for all protein sequence families are processed to the five pre-men-

tioned pre-trained deep learning structures ResNet-101, Shuffle Net, NasNet, DarkNet, and

SqueezeNet. Transfer learning is performed on the last fully connected layer to obtain the

same number of intended classes. The classification of sixteen families using deep learning

only was not efficient, the accuracy was very low. One of the pretrained model is illustrated in

Fig 4. The accuracy achieved using ResNet-101 did not exceed 60%.

To enhance the prediction results for protein sequence, transfer learning is performed by

replacing the last fully connected layer with a new one to obtain the same number of intended

classes while other layers are unchanged. The specifications that have been used in all pre-

trained models are the optimizer is RMSProp, the mini batch size is 128, the number of epochs

is 20 and the learning rate is 0.01.

Fig 4. ResNet-101 confusion matrix.

https://doi.org/10.1371/journal.pone.0295805.g004
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Beside to the data is divided into 70% training to train all models and extract and the train-

ing features and 30% for testing to extract the text features, as well.

Each network deserves 16 features, therefore, the total extracted features from five pre-

trained models is 80. Feature fusion algorithms are applied either using CCA or DCA. In each

stage, eighty features are passed, and the best sixteen features are selected. The resultant fea-

tures from each stage are merged to obtain the best 32 features from all pretrained models and

feature fusion techniques. One of the most popular machine learning classifiers; the bagging

tree is exploited to obtain the best results. The extracted features from both training and testing

sets were subjected to various experiments. The initial experiment concentrated on using deep

learning as a feature extractor, involving the utilization of features derived from either the test

cases or the training cases. These extracted features were then divided into 70% as training to

build the machine learning model and 30% for testing.

Another scenario involved splitting the available features into three parts: 70% for training,

10% for validation, and 20% for testing.

In the final scenario, the approach’s validity was ensured by using the training features

obtained from deep learning as attributes for constructing the machine learning classifier, and

the model was tested using the features extracted during the deep learning stage.

All the features employed in these scenarios underwent feature selection techniques before

being used. Fig 5 depicts the confusion matrix for testing the first scenario with 30% testing.

The evaluation metrics has been used in this paper are described by the corresponding

equation [59].

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN

Sensitivity ¼
TP

TP þ FN

Precision ¼
TP

TP þ FP

Specifcity ¼
TN

TN þ FP

F1 � score ¼
2� Precision� Sensitivity
Precisionþ Sensitivity

TP indicates to positive correctly classified cases for the class. TN represents the negative

correctly classified cases. FN describes to negative misclassified cases and FP refers to positive

misclassified cases.

The corresponding confusion matrix shown in Fig 5 clarifies the performance of the pro-

posed procedure. Sixteen families are recognized using the proposed hybrid approach. From

Fig 4, 144 sequences are distinguished from 114 in Family 1, with a sensitivity that does not

exceed 98.3% and a precision of 96.6%. Family 2 has a lower sensitivity of 87.1% for 101 cor-

rectly classified sequences out of 116. Their precision is 82.1%. However, Family 3 performs

the worst of all protein families, with only 113 of 116 sequences correctly separated, having a

precision of 95.8% and a sensitivity of 97.4%. Type 4 is the worst discriminated family, with a

sensitivity of 92.9% and a precision of 82.2%. In contrast, 112 of the 116 cases identified in

Family 5 are correctly classified. The sensitivity is 96.6%, and the best precision is 100%. The

hybrid model distinguishes Family 6 from all families. Its output is 98 correct cases out of 116,
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with a sensitivity of 84.5% and a precision of 84.5%. The proposed method attempts to distin-

guish Family 7 with 100% sensitivity and 98.3% precision. Family 8 performs better, with a

true positive rate of 93.1% and a positive predictive value of 91.5%. Family 9 has a sensitivity of

90.5% and 97.2% as precision. Whereas class 10 have almost identical results regarding preci-

sion. Almost 11 cases from family 6 are classified as class 11 with a positive predictive value of

90.52% and a true positive rate of 87.1%. On the other hand, only 1 sequence from family 8 is

classified as class 12 with a precision of 99.1%. However, 3 protein sequences from category 12

are misclassified as family 8. The sensitivity of family 13 is 99.1% and precision is 95.8%. The

recall is 99.1% for class 14 with 115 correctly classified from 116. For family 15 only 99 cases

are classified correctly from 116 with a recall value of 85.3% and a positive predictive value of

90.8%. For class 16, only 108 sequences are classified correctly from 116 with a recall of 93.1%

and precision of 98.2%. The test accuracy of the proposed system is 93%. Table 1 summarizes

the results obtained using the proposed method regarding the number of true positives, true

negatives, false positives, and false negatives, as well as precision, sensitivity, specificity, and

F1-score for each class individually.

The performance of the proposed method is evaluated utilizing the receiver operating char-

acteristic curve which describes the relation between the true positive rate on the y-axis versus

Fig 5. Confusion matrix for 30% testing.

https://doi.org/10.1371/journal.pone.0295805.g005
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the false positive rate on the x-axis. That leads to the area under the curve (AUC) for each class

separately. As the AUC is almost 1, that refers to the system being sensitive to positive cases.

Fig 6 implies the AUC for sixteen families. It depicts that the proposed approach reaches

almost one AUC for all classes. As clear from ROC curve the proposed approach achieved the

highest area under the curve for all protein family sequences, it is almost 1 in all cases. That

reveals the ability of the proposed model to classify the protein family using distinguished fea-

tures and without needing for further models.

Due to big dataset that has been used in this paper, holdout validation method is used by

utilizing 70% training, 10%validation and 20% for testing. The corresponding confusion

metrices represent the obtained results for both validation and testing confusion matrices in

Fig 7(A) and 7(B), respectively.

The validation accuracy is 91.1%, and the testing accuracy is 93.3%. That can be interpre-

tated as the bagging tree classifier depends mainly on creating multiple bootstrap samples

from the training data to train individual decision trees on these samples. Therefore, each tree

is slightly different due to the randomness in the bootstrapping method. By averaging the pre-

dictions of trees, the ensemble’s performance can be slightly better on the test set compared to

the validation case due to the explained randomness. The other reason may come from data

splitting, where the test set is more representative than the validation test, which causes the val-

idation accuracy be slightly less than the test accuracy, as in our case.

The explanation of both confusion matrices is appeared in Tables 2 and 3. The all entries

are, the number of true positive case, The number of false positive case, the number of false

Fig 6. The receiver operating characteristics (ROC) for each class.

https://doi.org/10.1371/journal.pone.0295805.g006
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negative case, and the number of true negative cases, as well. The evaluations criteria are calcu-

lated as precision, sensitivity, specificity, and F1-score.

The ROC curve is depicted in Fig 8 for test cases. The AUC is almost 1 for all classes. The

proposed system performs well in distinguish various protein sequences.

The third scenario is performed by keeping the reduced training features for building a bag-

ging tree classifier and testing the model with the reduced test features. The training accuracy

reached 98.6% for 16 classes and the test accuracy reached 80% with an overall accuracy of

94.6%. That indicates that the approach is valid and can be improved by using more

Fig 7. Confusion matrices results for second scenario (a) Validation Confusion matrix, (b)Testing Confusion matrix.

https://doi.org/10.1371/journal.pone.0295805.g007

Table 2. Validation results.

Evaluation Criteria TP FP FN TN Precision Sensitivity Specificity F1-Score

Family01 29 2 2 461 94 94 100 94

Family02 27 4 4 459 87 87 99 87

Family03 29 2 2 461 94 94 100 94

Family04 27 6 4 457 82 87 99 84

Family05 31 0 0 463 100 100 100 100

Family06 25 3 6 460 89 81 99 85

Family07 30 1 1 462 97 97 100 97

Family08 26 6 5 457 81 84 99 83

Family09 30 1 1 462 97 97 100 97

Family10 26 3 4 461 90 87 99 88

Family11 28 0 3 463 100 90 100 95

Family12 29 0 2 463 100 94 100 97

Family13 31 2 0 461 94 100 100 97

Family14 30 0 0 464 100 100 100 100

Family15 26 3 5 460 90 84 99 87

Family16 26 4 5 459 87 84 99 85

https://doi.org/10.1371/journal.pone.0295805.t002
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represented methods for protein sequences, the confusion matrices are illustrated in Fig 9.

That will be the future work.

The research examined the identification of protein families within the superfamily and its

implications for advancing protein research. It highlighted the prospective impact of this

Table 3. Test results.

Evaluation Criteria TP FP FN TN Precision Sensitivity Specificity F1-Score

Family01 72 5 5 1153 94 94 100 94

Family02 71 7 7 1150 91 91 99 91

Family03 73 2 4 1156 97 95 100 96

Family04 70 19 7 1139 79 91 98 84

Family05 74 2 3 1156 97 96 100 97

Family06 68 10 9 1148 87 88 99 88

Family07 75 1 4 1155 99 95 100 97

Family08 72 8 5 1150 90 94 99 92

Family09 71 1 6 1157 99 92 100 95

Family10 69 9 8 1149 88 90 99 89

Family11 67 7 10 1151 91 87 99 89

Family12 74 1 3 1157 99 96 100 97

Family13 76 0 2 1157 100 97 100 99

Family14 76 0 1 1158 100 99 100 99

Family15 69 5 1 1160 93 99 100 96

Family16 75 6 3 1151 93 96 99 94

https://doi.org/10.1371/journal.pone.0295805.t003

Fig 8. The ROC curve for the second scenario.

https://doi.org/10.1371/journal.pone.0295805.g008
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discovery on drug discovery, disease treatment, and biotechnology. By correctly identifying

protein families, researchers can obtain a deeper understanding of protein structure, function,

and evolution, thereby facilitating the development of new drugs, targeted therapies, and

advances in biotechnology. The study recommended combining bispectrum analysis with

deep learning techniques to extract and select optimal features. It is proposed that the accuracy

of protein family identification can be improved by employing a convolutional neural network

(CNN) architecture and efficient feature selection methods. The research also indicated that

support vector machine (Bagging Tree) classification is an efficient machine-learning

technique.

The research highlighted the importance of evaluating the scalability of the proposed

method on massive protein databases. As the quantity of protein sequence data generated by

high-throughput technologies increases, this evaluation will assist in determining its effective-

ness and efficiency in managing these data. Integration of multi-modal data, such as sequence,

structure, and functional annotations, was also suggested to better comprehend protein fami-

lies and their connections. In addition, the study highlighted the importance of user-friendly

software tools and applications for implementing the suggested strategies. Such resources

would expedite the discovery of protein biology and facilitate the efficient exploration of pro-

tein families. In order to test its efficacy and discover its distinctive contributions to protein

family identification, the study suggests evaluating and comparing the suggested method to

other state-of-the-art methodologies.

In the future, other approaches may be utilized as shown in [65]. An optimization problem

with conflicting fault tolerance (FT) and communication delay objectives is created. Optimiza-

tion is solved using an adapted non-dominated sorting-based genetic algorithm (A-NSGA).

A-NSGA includes chromosome representation, FT and delays computation, crossover and

mutation, and non-dominance-based sorting. Comparisons of performance were made using

analytical and simulation methods. For further statistical analysis, [66], a multi-objective dif-

ferential evolution variation with an improved mutation method solves the fundamental prob-

lem. The devised technique converges faster than others for many benchmark tasks. Finally,

this algorithm finds the ideal temperature trajectories and OOC that counter heater

malfunction.

The significance of identifying protein families within the superfamily and their potential

implications for drug development, disease treatment, and biotechnology was investigated. It

was suggested to increase precision by employing bispectrum analysis, deep learning methods,

Fig 9. The confusion matrices for the third scenario (a) training, (b) test, (c) overall.

https://doi.org/10.1371/journal.pone.0295805.g009
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and compelling feature selection strategies. Future proposals for research and development

should emphasize scalability, multi-modal data integration, the construction of user-friendly

software tools, and comparative analyses of alternative methodologies.

Section 5: Conclusions and future work

This research presents a comprehensive framework for advanced Protein classification and

function prediction through the synergistic integration of bispectral analysis, machine learn-

ing, and deep learning. Protein classification and function prediction are essential steps in

comprehending protein structure, function, and evolution, necessitating the assignment of

proteins to their respective families. While conventional methods have made substantial prog-

ress in this regard, there remains a need for precision, scalability, and resistance to sequence

divergence enhancements.

The proposed method, which leverages bispectral characteristics and deep learning tech-

niques, enhances the identification of protein families. This work establishes a robust frame-

work for classifying protein families through the amalgamation of numerical encoding,

bispectrum analysis, convolutional neural network architectures, and feature selection tech-

niques. The results affirm the viability of this strategy for applications in protein biology stud-

ies and drug discovery.

Future directions in protein family identification research should address several critical

facets. First, the scalability of the proposed method warrants evaluation on large-scale protein

datasets to gauge its efficacy and efficiency, a crucial consideration given the burgeoning vol-

ume of protein sequence data generated by high-throughput technologies. Second, incorporat-

ing multi-modal data encompassing sequence, structure, and functional annotations promises

a more comprehensive understanding of protein families and their interrelations, augmenting

the precision and depth of protein family identification. Additionally, the development of

user-friendly software tools and products is imperative to facilitate the scientific community’s

widespread adoption of advanced computational methods. Such tools will empower research-

ers to explore the realm of protein families more effectively, expediting discoveries in protein

biology. In conclusion, rigorous evaluation and comparative analysis of our proposed method

against contemporary techniques will further validate its efficacy and underscore its distinctive

contributions to protein family identification. Research in these domains will propel our com-

prehension of protein biology, laying the foundation for innovative therapeutic interventions

and drug discovery breakthroughs.
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