
RESEARCH ARTICLE

Early Neolithic pastoral land use at Alsónyék-
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Abstract

The earliest introduction of livestock (cattle, goats, sheep, pigs) into the Carpathian Basin was

an important step towards farming expansion into continental Europe. This spread beyond the

environments of the southern Balkans was accompanied by a reduction in the spectrum of cul-

tivated crops, changes in the relative representation of different domestic animals, and, most

likely, adaptations of husbandry practices. How the earliest farmers in the Carpathian Basin

kept their domestic stock is still understudied. We explored early animal management and

land use strategies at the Starčevo settlement at Alsónyék-Bátaszék, Hungary (Early Neo-

lithic, ca. 5800–5600 cal BC). Settled at the intersection of wide alluvial plains, waterlogged

meadows and marshes to the east, and forested hills to the west, early farmers at Alsónyék

had a wide variety of options for nourishing their livestock. We performed stable isotope ratio

analysis of bone collagen (n = 99; δ13C, δ15N) and tooth enamel (nteeth = 28, sequentially sam-

pled for δ13C and δ18O) from wild and domestic animals to locate them in the landscape and

investigate herding practices on a seasonal scale. The bone collagen isotope ratios mostly

indicate feeding in open environments. However, results from the sequential analysis of cattle

and sheep enamel suggest diverse dietary strategies for winters, including consumption of for-

est resources, consumption of summer hay and grazing in an open environment. Most pigs

appear to have had herbivorous diets, but several individuals likely supplemented their diet

with animal protein. Stable isotope ratio results from the Lengyel phase at Alsónyék (ca.

4800–4300 cal BC) suggest more access to animal protein for pigs, and feeding in more open

areas by wild boar, red deer and cattle compared to the Starčevo phase. This study’s results

demonstrate considerable variability in early animal husbandry practices at Alsónyék.
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Introduction

Domesticated animals and plants, initially originating from Southwest Asia and domesticated

in the 10th-9th millennium BC [1], were introduced by Neolithic farmers to Thessaly and

Aegean Macedonia in the early 7th millennium BC. The spread of agriculture to inland Europe

took a decisive step at the turn of the 7th to the 6th millennium BC when settlers from the Starč-
evo-Çris-Körös cultural complex pioneered the northern Balkans and the Southern Carpa-

thian Basin (modern northern Bulgaria, Serbia, Romania and Hungary; [2–4]). This

northward diffusion of farming was accompanied by significant changes in the spectrum of

plants cultivated and the species composition of animals kept [5–8]. In the sub-Mediterranean

southern Balkans (modern-day Northern Greece and southern Bulgaria), a broad spectrum of

crops was cultivated [8], which appears to have been the result of a strategy of diversification.

Correlated with differences in environments and climatic conditions, expansion into the

northern Balkans and the Great Hungarian Plain was generally accompanied by a reduction in

the spectrum of crops cultivated, and the proportion of sheep, goats, and pigs diminished

while cattle became dominant in many faunal assemblages (reviewed in [9]). Early Neolithic

farmers in the Great Hungarian Plain settled preferentially on flat surfaces on hydromorphic

meadow soils near freshwater [10]. Living in an environment of marshland islets and forested

hills likely encouraged a large degree of adaptation by these early farmers [11]. Further investi-

gations are needed to describe in more detail how these farming systems have adapted to the

advantages and constraints of the landscape, including in terms of the respective–and not nec-

essarily exclusive–spatial locations of crops and livestock at the site scale, as well as on a sea-

sonal scale.

This study focuses on animal husbandry at Alsónyék-Bátaszék in southern Hungary (Fig 1;

Lat. 46˚ 12’ N, Long. 18˚ 42’ E), which is particularly suited to such investigations of the place

of animals in the landscape due to being located at an intersection of different ecosystems.

Using stable isotope ratios (δ13C, δ18O, δ15N) of animal teeth and bones, the aim of this study

is to research in what environments cattle and sheep (the dominant species) were herded and

how pigs–rare but present–were kept in the Early Neolithic, to understand how herders uti-

lised Alsónyék’s wider surrounding environment. Analysis of sequential tooth enamel samples

also allows investigations of diets on a seasonal scale, through which it is possible to examine

the use of woodlands and wetlands as potential seasonal food sources, as well as the proximity

of pigs to dwellings. To construct a framework for the range of possibilities in animal hus-

bandry practices, references are also made to ethnographic and historical accounts from Hun-

gary from the 18th to 20th centuries. This work contributes to more wide-ranging research on

understanding the environmental, biological and socio-cultural factors in the initial dispersal

and adaptation of farming systems across Europe.

Alsónyék: Description of the site, environment, and subsistence practices

Alsónyék subsite 5603/1 (see Fig 38 in [12]), where most of the Starčevo features at Alsónyék

were found, was occupied by people from the Starčevo cultural complex in the first half of the

6th millennium cal BC (beginning ca. 5800–5730 cal BC, and ending 5575–5505 cal BC, both

95% probability [13]). It appears as a substantial, clustered settlement [14]. Later occupation of

the site included Neolithic communities from the Linearbandkeramik (LBK), Sopot and Len-

gyel cultures (Table 1). The village lies in the Carpathian Basin in the southwestern part of

Tolna Sárköz in Southeast Transdanubia (see Fig 1) at the transition of hilly margins to marshy

lowlands [15].

The Danube is 16 km to the east of Alsónyék-Bátaszék (hereafter: Alsónyék) today, and,

together with its tributary Sárvı́z, it shaped the landscape considerably [15]. Former Danube
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channels left behind oxbow lakes and wide alluvial floodplains, dominated by (seasonally)

waterlogged meadows and marshes, likely frequently inundated, and island-like plateaus

above the floodplain [16, 17]. Gallery woods were likely present along rivers and oxbow lakes,

and groves may have grown in the floodplains [18]. The settlement site of Alsónyék itself

appears to have been outside the extensive flooding area [16], but compared to later groups,

the Starčevo community at Alsónyék occupied the lower and wetter parts of the area [19].

Although crop cultivation to the east of the site was likely possible on the elevated islets dotted

Fig 1. Map showing the location of Alsónyék and other sites mentioned in this article. Map data: Natural Earth II from www.NaturalEarthData.com

(public domain).

https://doi.org/10.1371/journal.pone.0295769.g001
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throughout the landscape, it would have been at high risk of harvest-loss due to flooding, likely

making the cultivation of arable land to the west of the site more favourable [16].

To the west of Alsónyék, the Danubian floodplains are supplanted by skeletal soils and for-

ested hills (Szekszárd Hills, 273 m; [14, 16]), which also provided arable land on the hilltops

[16]. An open oak woodland would likely have been present which may have also included

pine, elm, hazel, lime, beech and hornbeam [20]. Wild fauna during the Starčevo phase

includes animal species consistent with both forested and open wetland environments, e.g.

wildcats (Felis silvestris), beavers (Castor fiber) and multiple duck species (Anatinae) [21–23].

The faunal assemblage from the Starčevo phase at subsite 5603/1 in the southeastern part of

Alsónyék is dominated by domestic animals (88%), with caprines (sheep and goats; for scien-

tific names see Tables 2 and 3) and cattle being predominant, and only minor amounts of pigs

(3%) and dogs (Table 2; data given as number of identifiable specimens (NISP) from [23]).

Most cattle have been slaughtered as juveniles and adults, consistent with a focus on dairying,

while pigs were mostly slaughtered as juveniles [23]. Hunting was not a dominant subsistence

activity, with only ca. 12% of the identifiable mammal faunal assemblage being wild animals,

mostly red deer and wild boar [23]. Freshwater fish remains were also present at the site (1.4%

of NISPfaunal remains), including wels catfish, northern pike and carp [20, 21].

The recovered crops from the Starčevo phase at Alsónyék (einkorn, emmer and barley [24])

indicate that at this time a mixed farming economy was likely present, and people were some-

what locally bound due to the requirements of crop cultivation. Livestock herding could have

taken place in the forested hills to the west of the site, in the wetlands and waterlogged humid

meadows in the east along the river Sárvı́z (pigs in particular; [16]), or on cropland after

harvest.

Table 1. Sites mentioned in the text with their associated cultural groups and phases as relevant to this study.

Site name Cultural group Chronological phase Dating cal BC Reference

Alsónyék Starčevo Early Neolithic ca. 5800–5600 this study

LBK Middle Neolithic ca. 5500–5000 [25]

Sopot Middle/Late Neolithic ca. 5100–4800 [25]

Lengyel Late Neolithic ca. 4800–4300 [25]

Balatonszárszó Early LBK Middle Neolithic ca. 5450–5250 [26]

Vinča-Belo Brdo Vinča-Pločnik II Late Neolithic ca. 4850–4600 [27]

Borduşani-Popină Gumelniţa A2 Late Chalcolithic ca. 4500–4250 [28]

Ecsegfalva Körös Early Neolithic ca. 5800–5600 [29]

Endrőd 119 Körös Early Neolithic ca. 5800–5630 [30]

Füzesabony ALP Middle Neolithic ca. 5550–5000 [26]

Halai - Early Neolithic ca. 6400–5800 [31]

Hârşova-tell Gumelniţa A2 Chalcolithic ca. 4350–4000 [28]

Kouphovouno - Middle Neolithic ca. 5800–5400 [31]

Lánycsók-Égettmalom Starčevo Early Neolithic ca. 5800–5600 [32]

Măgura—Boldul lui Moş Ivčnus Starčevo-Criş I Early Neolithic ca. 6000–5800 [33]

Makriyalos II - Late Neolithic II ca. 4950–4500 [31]

Stubline Vinča-Pločnik II Late Neolithic ca. 4850–4600 [27]

Vităneşti-Măgurice Gumelniţa A2 Chalcolithic ca. 4450–4150 [28]

Zemunica Impressed Pottery Early Neolithic ca. 6000–5800 [34]

References are to relevant studies on faunal stable isotope ratios (δ13C and δ15N). ALP = Alföld Linear Pottery, LBK = Linearbandkeramik.

https://doi.org/10.1371/journal.pone.0295769.t001
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PLOS ONE | https://doi.org/10.1371/journal.pone.0295769 December 12, 2023 4 / 25

https://doi.org/10.1371/journal.pone.0295769.t001
https://doi.org/10.1371/journal.pone.0295769


Stable isotope ratios for palaeodietary reconstruction

Bone collagen. Bone collagen stable carbon (δ13C) and nitrogen (δ15N) isotope ratios

reflect those of consumed dietary protein (and other dietary components to a lesser extent) in

the last years of an individual’s life with a systematic diet-collagen offset (ca. 5–6‰ for δ13C,

and ca. 3–5‰ for δ15N; [35–40]). Therefore, bone collagen δ13C and δ15N values can be used

to determine what food groups were commonly consumed. Consumer δ15N values are fre-

quently used as indicators of trophic level and can be used to infer e.g. whether pig diets were

likely supplemented with animal protein [28, 41–43], or consisted of fertilised crops [44], both

elevating δ15N values. In younger individuals, milk consumption puts the offspring at a higher

trophic level than the mother leading to higher δ15N values. However, when growth rates are

high (e.g. in adolescence), δ15N values tend to be lower [45]. This introduces some uncertain-

ties in interpretations of δ15N values of young animals.

Hungary’s terrestrial vegetation is dominated by C3-plants, with only minor amounts of C4

plants being present in dry grasslands following recent colonisations [46], so that C4 plants

Table 2. Mammal faunal spectrum at Alsónyék subsite 5603/1 from the Starčevo phase (identifiable mammals only).

Species Common name NISP % of NISPidentifiable mammal

Ovis aries/Capra hircus* sheep/goat* 4688 42.5

Bos taurus cattle 4633 42.0

Sus domesticus pig 331 3.0

Canis familiaris dog 46 0.4

Cervus elaphus red deer 565 5.1

Sus scrofa wild boar 525 4.8

Capreolus capreolus roe deer 160 1.5

other (identifiable) 78 0.7

Total 11026 100

*Around six sheep per goat; data from [23].

https://doi.org/10.1371/journal.pone.0295769.t002

Table 3. Bone collagen δ13C and δ15N stable isotope ratios from the Starčevo phase at Alsónyék, subsite 5603/1.

Species common name n δ13C (‰) δ15N (‰)

Min. Median Max. Min. Median Max.

Bos taurus cattle 10 −21.55 −20.71 −19.44 4.96 5.41 7.07

Ovis aries sheep 18 −21.62 −20.76 −19.95 4.41 6.82 7.45

Sus domesticus pig 13 −22.36 −20.43 −19.13 6.05 6.89 9.16

Sus scrofa wild boar 19 −22.11 −21.08 −19.89 3.95 6.99 8.59

Canis familiaris dog 6 −22.54 −21.27 −20.72 6.05 8.82 9.43

Cervus elaphus red deer 10 −22.55 −21.46 −19.79 4.27 6.63 7.76

Capreolus capreolus roe deer 10 −23.72 −21.20 −20.14 5.47 6.36 7.14

Vulpes vulpes fox 2 −20.35 −19.64 −18.93 7.70 7.79 7.87

Abramis brama bream 2 −24.37 −23.69 −23.01 8.00 8.63 9.25

Cyprinus carpio carp 3 −27.18 −27.15 −25.97 6.86 8.37 8.64

Esox lucius northern pike 2 −22.11 −21.41 −20.70 9.97 9.98 9.98

Sander lucioperca zander 3 −21.77 −20.15 −19.13 9.47 9.81 10.18

Silurus glanis wels catfish 1 −20.64 −20.64 −20.64 8.24 8.24 8.24

For additional information see Table A in S1 File; sample numbers exclude samples that failed the quality criteria.

https://doi.org/10.1371/journal.pone.0295769.t003
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were likely not contributing to Early Neolithic diets at Alsónyék to a significant extent. Forest

grazing/browsing tends to lead to lower consumer δ13C values due to the canopy effect [47,

48]. Ground-level undergrowth was found to be depleted by 2–5‰ in dense forest compared

to plants and trees in open environments [47, 49]. Bone collagen δ13C values from modern for-

est-dwelling red and roe deer from dense deciduous forests in Dourdan (France) and Biało-

wieża (Poland) were on average −23.7‰, with all except one below −22.5‰ (n = 29; corrected

for the fossil fuel effect; [48]). Values approaching these thresholds are therefore considered to

likely reflect a significant dietary contribution of forest resources (particularly ground-level

undergrowth), especially in the case of herbivores. However, not all animals occupying forests

necessarily have low δ13C values, possibly in part due to feeding outside of the forest [50] and

feeding on fruits (e.g. acorns) which are higher in δ13C, and can lead to higher δ13C values

than expected for forest-dwelling animals, particularly in the case of suids [51]. Conversely,

low δ13C values in suids may also occur due to consumption of freshwater fish [28].

Since water stress has been shown to elevate δ13C values [52], and heavy watering leads to

around 1‰ lower δ13C values [53–55], it has been argued that freshwater wetlands may be

expected to have lower δ13C values than C3 vegetation from drier areas [49, 56], lowering con-

sumer δ13C values. However, compared to e.g. the canopy effect, this is likely only a minor

effect.

Since δ13C and δ15N values differ due to a large variety of different factors, it is important to

establish site-specific baselines for different diets. To gain comparative references of the typical

δ13C and δ15N values for the diets of the domesticated animals under study (cattle, pig, sheep),

bones of wild fauna like wild boar, red and roe deer (primarily forest-dwelling), freshwater fish

(potentially consumed by pigs), as well as dogs (consumers of higher trophic level foods) exca-

vated from the same site and phase are also analysed.

Sequential analysis of tooth enamel

Sequential analysis of stable carbon and oxygen isotope ratios in tooth enamel gives access to

dietary information on a seasonal scale. Bioapatite precipitates in oxygen isotopic equilibrium

with body water [57], linked, through the ingestion of surface water, to local annual precipita-

tion [58, 59], whose δ18O values vary seasonally with air temperature in continental Europe

[60]. Additionally, animal behavior and physiology in response to seasonal changes in temper-

ature and air humidity also affect body water oxygen isotope composition [61]. All factors

combine to create a seasonal signal in tooth enamel δ18O values. Sequential sampling permits

the retrieval of a one-year record from the third molar of sheep and cattle [62], or by combin-

ing measurements from the first and second incisors in suids [51], while the canines of male

suids may provide a pluriannual record [51].

The stable carbon isotope ratios in bioapatite reflect those of the entire diet [35] as opposed

to collagen, whose primary carbon source is proteins [39, 63]. A 14.1‰ isotope enrichment

(ε) has been shown between diet and enamel bioapatite δ13C values in a variety of large rumi-

nant mammals [64], while this enrichment is 13.3‰ in experimental pigs fed C3 diets [65].

Most C3 plants have δ13C values varying from −29‰ to −25‰ around an average value of

−27‰ in open areas [66], or −25.5‰ in preindustrial times after correction for the fossil fuel

effect [67]. This should lead to an average value of −11.8‰ in sheep and cattle enamel bioapa-

tite, or −12.5‰ in pig enamel bioapatite–although a significant fruit component in suid diets

[68, 69] would also elevate this value; the δ13C values measured in predominantly open areas

and under continental climate are globally comprised between −13‰ and −9‰ in cattle and

sheep tooth enamel [33, 70]. By contrast, animals dwelling in closed forests have lower bone

collagen δ13C values (below −22.5‰, [48]), so that enamel bioapatite δ13C values should tend
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towards –13,8‰ in large ruminants (applying a 5% spacing between collagen and diet [39]

and a 14.1‰ isotope enrichment between diet and enamel bioapatite [64]), or towards

−14.6‰ in pigs (applying a 13.3‰ isotope enrichment between diet and enamel bioapatite

[65]) although a significant contribution of forest fruits would elevate this value. We consider

values approaching these thresholds as reflecting a significant contribution of forest resources

to animal diet.

Seasonal variations are expected in plant δ13C values, in response to seasonal changes in the

environmental factors affecting the stomatal aperture and therefore the carbon isotope dis-

crimination during photosynthesis, and also possibly due to changes in plant physiology dur-

ing the growing season. The highest δ13C values are expected in the summer when the air

temperature is the highest and air humidity and ground water are the lowest [71–73]. Conse-

quently, δ18O and δ13C values are expected to follow the same pattern of seasonal variation.

Indeed, in modern sheep grazing on the same pasture throughout the year, the δ18O and δ13C

sequences in enamel were shown to vary in phase or very close to it [74] with amplitudes of

variation of 1 to 3‰ in δ13C [75]. Deviations from this pattern may result from the contribu-

tion of different food sources during the year due to foddering or mobility between areas

where environmental factors affect plants differently.

Materials and methods

Bone collagen stable isotope ratio analysis

All bone and tooth samples in this study were excavated from Alsónyék subsite 5603/1, and

date to the Early Neolithic, Starčevo phase (ca. 5800–5600 cal BC; [13]; stored at the Wosinsky

Mór County Museum, Szekszárd). Around 2 g cortical bone samples of long bones were taken

from domestic and wild terrestrial and aquatic fauna (n = 107; Table 3). Differentiation

between wild boar and domestic pig was done according to size, following [76]. In the case of

the mammals, the same part of the bone from the same side of the body (within each species

group) was preferentially sampled, to prevent sampling the same individual twice. To enable

this sampling strategy, in some cases, juvenile and subadult individuals were also sampled (see

Table A in S1 File). This needs to be taken into account when interpreting the results as it

introduces uncertainty when comparing between animals of differing ages, e.g. due to different

nitrogen balances (see above). In the case of pigs, most samples were from younger individuals

because pigs tend to be slaughtered as juveniles/subadults and few adult pig bones were avail-

able to sample. Previous studies have argued for including younger livestock in stable isotope

ratio analyses (e.g. [77]) since this enables a more complete insight into husbandry practices

without a bias toward adults.

Bone samples were cleaned by abrading the outer surface using a tungsten carbide drill bit.

Collagen was extracted from 200–230 mg ground bone using 1 M HCl, followed by 0.125 M

NaOH, following a modified Longin (1971) method [78] described in [79], but with the gelati-

nisation step at 70 ˚C instead of 100 ˚C. In the case of fish bones, the NaOH step was shortened

to initially 15 minutes. If the solution coloured during this time, it was exchanged for fresh

0.125 M NaOH solution for another 15-minute immersion (following [80]).

Using an elemental analyser (EA; Thermo Flash 2000) interfaced with an isotope ratio mass

spectrometer (IRMS, Thermo DeltaVAdvantage), coupled δ13C and δ15N measurements of

320-380 µg bone collagen were conducted. Within each run, multiple replicates of a secondary

alanine standard were included (calibrated to primary standards IAEA-600 for δ13C, and

IAEA-USGS25, IAEA-N-1 and IAEA-N-2 for δ15N). The alanine standards gave mean values

of −21.47±0.09‰ for δ13C (mean±σ; expected value: −22.16‰ with reference to VPDB) and

0.70±0.13% for δ15N (expected value: +0.59‰ with reference to AIR), and 40.07±1.46% for C

PLOS ONE Early Neolithic pastoral land use at Alsónyék-Bátaszék, Hungary
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content (expected value: 40.44%) and 15.56±0.09% for N content (expected value: 15.72%)

over the course of all measurements (n = 23), and were used to correct the measured data.

Quality criteria to ensure data robustness were chosen such that results were rejected if the

bone collagen yield was less than 1%, or if the collagen had a C/N (molar) ratio outside of 2.9–

3.45, or if the C content was less than 13%, or the N content less than 4.8% (following sugges-

tions in [81–83]).

Isotopic niche spaces were modelled as Bayesian ellipses with the R package SIBER [84].

Tooth enamel sequential stable isotope ratio analysis

The study material includes teeth from cattle (11 upper third molars-M3), sheep (9 lower M3),

pig (1 lower M3), red deer (2 lower M3) and wild boar (1 upper canine, 1 upper M3, 1 lower

M3, 2 lower incisors from the same individual; Table C in S2 File). The enamel surface was

cleaned with a tungsten carbide drill bit. Teeth were sequentially sampled using a diamond-

coated drill bit on the lingual side of the anterior lobe for the cattle M3; on the vestibular side

of the middle lobe for the sheep and red deer M3; on the lingual side of the anterior cusp for

the suid molars, and on the labial side for the suid incisors and the maxillary canine. The sam-

pling procedure for the suid teeth was illustrated in [51]. These enamel powders were pre-

treated to eliminate diagenetic carbonates (0.1 M acetic acid for 4 h at room temperature, 0.1

ml/mg). Pre-treated enamel samples weighing ~600 µg were reacted with 100% phosphoric

acid at 70˚C in individual vessels in an automated cryogenic distillation system (Kiel IV

device), interfaced with a DeltaVAdvantage isotope ratio mass spectrometer. The analytical

precision for each run, estimated from 5 to 8 analyses of our laboratory carbonate standard

(Marbre LM, calibrated to the NBS-19 international standard) was always less than or equal to

0.05‰ for δ13C values and 0.04‰ for δ18O values (both with reference to VPDB). For each

run, the Marbre LM gave a mean δ13C value comprised between 2.09‰ and 2.20‰ (expected

value 2.13‰) and a mean δ18O value comprised between −2.02‰ and −1.96‰ (expected

value −1.83‰). The δ18O values for sheep and cattle tooth enamel were previously published

in [85, 86] respectively. In the sheep and cattle molars and in the wild boar canine, showing

full annual cycles, the phase shift between the δ18O and δ13C sequences was determined using

a sinusoidal model approach after [74]; see also Table H in S2 File.

Results

Bone collagen stable isotope ratios

During collagen extraction, four fish bone samples dissolved completely and could not be ana-

lysed, and the measured results from one sheep and four fish were excluded because they did

not meet the quality criteria (see Table A in S1 File, where the complete set of data is also

listed). Table 3 and Figs 2 and 3 show the δ13C and δ15N results for the samples that passed the

quality criteria.

The results for most species overlap to a large extent (Figs 2 and 3). A one-way analysis of

variance (ANOVA) was conducted to compare δ13C values between pigs, wild boar, dogs, red

deer, roe deer, cattle and sheep (F(6,79) = 2.53, p = 0.027). It revealed differences in the mean

δ13C values between species, but a post-hoc Tukey test showed no significant differences. A

second one-way ANOVA (F(6,79) = 5.81, p = 0.00005) followed by a Tukey test indicated dif-

ferences in mean δ15N values between pigs and cattle, and between dogs and wild boar, red

deer, roe deer, cattle and sheep. Domestic pigs had a smaller range of δ15N values than wild

boar (3.1‰ compared to 4.6‰; Fig 3, right). There was no statistically significant difference in

δ15N or δ13C between juvenile (n = 6) and subadult pigs (n = 6), and no other age-based differ-

ences were identified.
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Red deer and roe deer yielded on average the lowest δ13C values among terrestrial mammals

(Fig 3), the lowest collagen δ13C value being measured in a roe deer (−23.7‰, ALSCap9), fol-

lowed by three red deer with δ13C values between −23.0‰ and −22.0‰, which are close to

and below the threshold value suggesting a significant contribution of forest resources to the

animals’ diets. The sampled freshwater fish exhibited a wide breadth of δ15N and δ13C values,

Fig 2. Stable carbon (δ13C) and nitrogen (δ15N) isotope ratio results for bone collagen from the Starčevo phase at Alsónyék, subsite 5603/1. The

90% prediction ellipses were modelled excluding an outlier dog and two pig datapoints (see S3 File).

https://doi.org/10.1371/journal.pone.0295769.g002

Fig 3. Stable carbon (δ13C) and nitrogen (δ15N) isotope ratio results for mammal bone collagen from the Starčevo phase at Alsónyék, subsite

5603/1. This figure shows the same data as in Fig 2, but visualised as boxplots. The line in the boxplot indicates the median, and the cross the mean.

Whisker boundaries were chosen as 1.5 × interquartile range. Fish and foxes were excluded due to low sample numbers.

https://doi.org/10.1371/journal.pone.0295769.g003
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with differences visible between dietary groups: benthic omnivores like carp and bream had

the lowest δ13C values (−27.2‰ to −23.0‰) of all measured samples, whereas piscivorous fish

(northern pike, wels catfish and zander) had the highest δ15N values (8.2‰ to 10.2‰).

Tooth enamel sequential stable isotope ratios

The results from the sequential analysis of tooth enamel are shown in Figs 4 and 5, Table 4,

and Tables D-H in the S2 File (including phase shift modeling). Sheep enamel bioapatite δ13C

values vary overall between −13.8‰ and −10.0‰. All sheep have recorded seasonal changes in

their diet δ13C values (Fig 4). The amplitude of intra-tooth variation varies between 1.5‰

(ALS Ovis4) and 3.5‰ (ALS Ovis6). Different patterns of variations are observed. Most sheep

show a sinusoidal variation in δ13C values in phase with the seasonal changes in δ18O values

(phase shift comprised between 331 and 368˚, Table H in S2 File; Patterns A and B in Fig 4).

Among those, three sheep (ALS Ovis2, Ovis6 and Ovis9) have lower winter δ13C values

(−13.8‰ to −13.6‰) tending towards the threshold indicating significant consumption of for-

est resources (Figs 4 and 5, Pattern B). ALS Ovis3 and ALS Ovis5 deviate from the sinusoidal

pattern of variation and have a reduced amplitude of variation between δ13C values recorded

in winter and the consecutive summer (0.1‰ and 0.5‰ respectively; Pattern C, Fig 4).

Cattle enamel bioapatite δ13C values vary between −14.0‰ and −9.7‰. All cattle have

recorded seasonal variations in their diet δ13C values (Fig 4) with amplitudes of intra-tooth

variation of 1.0‰ to 2.2‰. As with sheep, most cattle follow Pattern A (ALS Bos4, Bos5, Bos8,

Bos9, Bos10 and Bos11) or Pattern B (ALS Bos2 with a winter δ13C value of −14.0‰) with

phase shifts between the δ18O and δ13C sequences varying from 310˚ to 358˚; Table H in S2

File). ALS Bos1, Bos6 and Bos7 do not show a sinusoidal pattern of variation in δ13C values

(Pattern C) but rather have stable values over the summer and the preceding or consecutive

winter recorded in the M3 (Fig 4).

The suid teeth have recorded seasonal variations in enamel bioapatite δ18O values (Fig 5).

Over a year is recorded in the wild boar canine (ALS Sus18 C) and a complete year may be

reconstructed when combining the wild boar first and second incisors (ALS Sus20 I1 and I2)

whose formations overlap in time [51]. The sequences recorded in the wild boar and pig M3s

do not reflect complete annual cycles. Overall, the δ13C values recorded in the suids teeth vary

between −15.0‰ and −11.1‰. In the wild boar canine (ALS Sus18 C), the δ13C values vary in

phase with the δ18O sequence (phase shift = 355˚) with an amplitude of variation of 2.3‰. The

pattern of variation in ALS Sus20 I1&I2 also shows a trend for lower δ13C values in winter

(−15‰) and higher in the summer (−13.1‰). The short δ18O sequences recorded in the three

suid third molars are centered on the summer; in these teeth, the δ13C values vary little around

−14‰ and −13‰ in the wild boar M3s (ALS Sus19 and Sus21), although a steep gradient

towards higher values (−11.1‰) is measured in the part of the tooth that was formed last, and

corresponding to late summer, in ALS Sus21M3 (Fig 5). In the only pig’s molar (ALS Sus22

M3), δ13C values vary between −11.5‰ and −11‰.

The δ18O sequences measured in the two red deer third molars show a steep decreasing

trend suggesting a record over a summer-autumn-winter sequence. Over this period, these

deer have recorded decreasing δ13C values comprised between −12.5‰ and −12.9‰ in ALS

Cervus1 and between −13.4‰ and −14.3‰ in ALS Cervus2. Fig 6 compares the range of varia-

tion in δ13C values in all teeth. The wild fauna (red deer and wild boar) shows the lowest δ13C

values, in contrast to higher δ13C values in domestic animals (pig, sheep, and cattle), although

in some of the cattle and sheep teeth, lower δ13C values are observed on a seasonal basis.
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Discussion

Wild fauna: Setting Alsónyék’s surrounding landscape

The bone collagen δ13C values of benthic fish were lower and the bone collagen δ15N values of

the piscivorous fish were more elevated compared to nearly all terrestrial bone collagen sam-

ples (Fig 2), revealing a clear separation in stable isotope ratios between animals occupying the

terrestrial and aquatic domains. Freshwater fish consumption would therefore lead to higher

bone collagen δ15N values, as well as lower δ13C values, if benthic fish were consumed.

Feeding in forested areas likely explains the lower δ13C values in some of the terrestrial ani-

mals, with e.g. roe deer ALS Cap9 having the lowest measured δ13Ccollagen value of −23.7‰.

Some of the δ13Cenamel values are similarly low (around −13.1‰ in ALS Cervus1 and as low as

−14.3‰ in Cervus2). These low δ13C values are consistent with year-round grazing/browsing

in a forested area with plants subject to the canopy effect, possibly located on the hills to the

west of the site. However, around two thirds of the 19 deer had δ13Ccollagen values between

−21.5‰ and −19.8‰, likely reflecting feeding in predominantly open areas.

Fig 4. Results from the sequential analysis of stable carbon (δ13C) and oxygen (δ18O) isotope ratios in cattle (Bos) and sheep (Ovis) third molars

from the Starčevo phase at Alsónyék (ALS). The figure shows some typical results for the different observed patterns. Patterns A, B and C: see main

text. W = winter; S = summer.

https://doi.org/10.1371/journal.pone.0295769.g004

PLOS ONE Early Neolithic pastoral land use at Alsónyék-Bátaszék, Hungary
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Measured wild boar collagen δ13C values between −21.1‰ and−19.9‰ suggest none of the

wild boar sampled for bone collagen fed exclusively on undergrowth of dense forests, and may

have moved frequently between forests and more open areas, possibly occupying similar habi-

tats to wild and domestic herbivores. The sequential enamel samples give a more detailed pic-

ture: The low δ13Cenamel values from the four sampled wild boar (Fig 6) indicate feeding in

predominantly closed areas, with higher δ13Cenamel values recorded in late summer/autumn in

ALS Sus18C and ALS Sus21M3 (Figs 5 and 6) likely reflecting a greater contribution of forest

fruits (e.g. acorns) at this time of the year for these individuals [51, 87].

The wild boar collagen δ15N values showed very wide variability, from 4.0‰ to 8.6‰ (cf. a

biological variability of ca. 1.5‰ for domestic pigs of differing ages and sex when consuming

the identical diets; [45]). This suggests large differences in trophic levels between different wild

boar individuals. Two individuals had similar δ15N values to dogs (> 8‰: ALSSuss6, ALS-

Suss12), suggesting a large degree of animal protein consumption, possibly partly by feeding

on wetland fish naturally trapped after flooding [88]. In the case of wild boars with low δ13C

and high δ15N values, mushroom consumption may also have elevated the δ15N values [89].

This large variability in the wild boar baseline δ15N values complicates the interpretation of

domestic pig diets.

Cattle and sheep husbandry

The cattle and sheep collagen δ13C values suggest grazing in predominantly open areas, possi-

bly also including wetlands. Ethnographic evidence from the Carpathian basin describes wet-

lands being used as pastures [90–92], although mainly for cattle and pigs. Historical accounts

Fig 5. Results from the sequential analysis of stable carbon (δ13C) and oxygen (δ18O) isotope ratios in tooth enamel. Samples were wild boar

(Sus18, 19, 20 and 21), pig (Sus22) and red deer (Cervus1 and 2) from the Starčevo phase at Alsónyék.

https://doi.org/10.1371/journal.pone.0295769.g005
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from Hungary from the 18th to 20th centuries describe wetlands being seen as dangerous for

sheep because they were liable to catch parasites (liver fluke), from which they could not be

cured [93]. Floodplains and marsh edges were also described as having a predominance of

unappealing, less nutritious grasses, which were still used as reserve pastures, particularly in

dry years [93, 94]. Keeping sheep in the flat wetlands despite the disadvantageous environmen-

tal conditions has been suggested from lesions found on sheep remains from Körös settlements

in eastern Hungary [95–97]. Nevertheless, caprine remains rather than pig remains are domi-

nant in the faunal assemblages [96]. Cultivated fields could also have been used for grazing on

a seasonal basis. In five of the twenty analysed sheep and cattle molars, the sequential enamel

δ13C values deviate from the expected sinusoidal pattern of variation with a reduced amplitude

of variation between δ13C values recorded in winter and the consecutive or preceding summer

(Pattern C, Fig 4 and S2 File). In sheep (ALS Ovis3, Ovis5), this reduced amplitude appears to

be due to a rise in the winter δ13C values, possibly caused by summer hay being provided in

Table 4. Tooth enamel carbon and oxygen stable isotope ratios from the Starčevo phase at Alsónyék.

Specimen common name Species δ13C (‰) δ18O(‰)

Min Max M Δ Min Max M Δ

ALS Cervus1 M3 red deer Cervus elaphus -12.9 -12.5 -12.7 0.4 -8.8 -4.6 -6.7 4.2

ALS Cervus2 M3 red deer Cervus elaphus -14.3 -13.1 -13.7 1.2 -8.7 -4.9 -6.8 3.9

ALS Sus20 I1 wild boar Sus scrofa -15.0 -13.1 -14.0 1.9 -8.8 -5.8 -7.3 3.0

ALS Sus20 I2 wild boar Sus scrofa -15.0 -13.8 -14.4 1.1 -8.4 -6.4 -7.4 2.0

ALS Sus18 C wild boar Sus scrofa -13.9 -11.6 -12.7 2.3 -8.6 -5.6 -7.1 3.0

ALS Sus19 M3 wild boar Sus scrofa -14.2 -13.6 -13.9 0.6 -9.3 -7.6 -8.4 1.7

ALS Sus21 M3 wild boar Sus scrofa -13.6 -12.4 -13.0 1.2 -7.4 -6.2 -6.8 1.2

ALS Sus22 M3 dom. pig Sus domesticus -11.5 -11.0 -11.2 0.5 -6.7 -5.7 -6.2 1.0

ALS Ovis1 M3 sheep Ovis aries -12.4 -10.7 -11.5 1.6 -7.8 -2.9 -5.3 4.9

ALS Ovis2 M3 sheep Ovis aries -13.8 -11.4 -12.6 2.5 -9.6 -2.4 -6.0 7.3

ALS Ovis3 M3 sheep Ovis aries -12.6 -10.1 -11.4 2.6 -8.4 -0.6 -4.5 7.8

ALS Ovis4 M3 sheep Ovis aries -12.2 -10.7 -11.5 1.5 -6.8 -2.1 -4.4 4.7

ALS Ovis5 M3 sheep Ovis aries -11.5 -9.7 -10.6 1.8 -7.5 -0.8 -4.1 6.7

ALS Ovis6 M3 sheep Ovis aries -13.7 -10.6 -12.1 3.0 -7.6 -1.4 -4.5 6.2

ALS Ovis7M3 sheep Ovis aries -13.2 -10.8 -12.0 2.4 -9.6 -3.7 -6.7 5.9

ALS Ovis8 M3 sheep Ovis aries -12.9 -11.5 -12.2 1.4 -8.9 -3.5 -6.2 5.4

ALS Ovis9 M3 sheep Ovis aries -13.6 -11.6 -12.6 2.0 -7.7 -1.7 -4.7 5.9

ALS Bos1 M3 cattle Bos taurus -11.0 -9.7 -10.3 1.4 -7.0 -2.9 -4.9 4.1

ALS Bos2 M3 cattle Bos taurus -14.0 -11.8 -12.9 2.2 -7.3 -2.8 -5.0 4.6

ALS Bos3 M3 cattle Bos taurus -12.6 -10.4 -11.5 2.2 -8.2 -4.1 -6.1 4.1

ALS Bos4 M3 cattle Bos taurus -11.2 -10.1 -10.6 1.2 -9.1 -1.5 -5.3 7.6

ALS Bos5 M3 cattle Bos taurus -11.8 -10.2 -11.0 1.6 -8.7 -5.4 -7.1 3.2

ALS Bos6 M3 cattle Bos taurus -12.0 -10.6 -11.3 1.4 -8.5 -5.6 -7.0 2.9

ALS Bos7 M3 cattle Bos taurus -11.9 -10.9 -11.4 1.0 -7.8 -3.8 -5.8 4.1

ALS Bos8 M3 cattle Bos taurus -12.0 -10.0 -11.0 2.0 -6.8 -4.0 -5.4 2.9

ALS Bos9 M3 cattle Bos taurus -12.6 -10.8 -11.7 1.8 -6.2 -3.7 -5.0 2.5

ALS Bos10 M3 cattle Bos taurus -13.3 -11.8 -12.5 1.5 -7.0 -3.2 -5.1 3.8

ALS Bos11 M3 cattle Bos taurus -12.0 -9.9 -11.0 2.1 -7.6 -3.8 -5.7 3.8

For additional information see S2 File. Intra-tooth minimum (Min) and maximum (Max) value;

M = (Min+Max)/2; Δ = Max−Min. Sheep and cattle δ18O data were published in [85, 86], respectively.

https://doi.org/10.1371/journal.pone.0295769.t004
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winter. Such hay could have consisted of crop wastes and grass (including wetland grasses; [93,

94]). In some cattle, the reduced amplitude of variation might rather be due to a lowering in

summer δ13C (ALS Bos 1 and Bos6), possibly caused by forest leaves provided in the summer.

Ethnographic accounts report that tree-fodder can be particularly important for cattle and

sheep in dry summers [93, 98, 99].

Forest resources also seem to have been used to supplement cattle and sheep diets during

winter, as evidenced in four of the twenty analysed sheep and cattle molars showing signifi-

cantly lower δ13C values in winter (Pattern B, Figs 4 and 6). The phase shift between δ13C and

δ18O sequences does not deviate from what is observed in other specimens, meaning that this

contribution occurs mainly when temperatures are the lowest in winter. In the Alsónyék area

of Hungary in the 20th century, snow cover in winter lasted an average of 35–40 days [100],

reaching up to 25 cm [18]. Similar conditions appear to have prevailed in the past (within 1 ˚C

of modern values; [101]), limiting the animals’ foraging activities in winter. Ethnographic evi-

dence from Central Europe in the 18th to 20th century indicates that domesticated animals

were frequently kept in deciduous forests from spring until heavy snowfall in winter. Historical

accounts from Hungary describe winter fodder being prepared by collecting and drying leaf-

bearing twigs and branches, mistletoe, as well as acorns and beechnuts [93]. Most other sheep

and four cattle had winter δ13Cenamel values between −12‰ and −13‰, indicating that these

individuals could also have consumed forest resources with low δ13C values, but to a lower

extent (or possibly in combination with larger amounts of acorns, which are higher in δ13C),

or may have relied on freshwater wetland grasses.

There is little indication of forest resource use in the bone collagen δ13C values, apparently

contrasting with the enamel results. This discrepancy is likely due to the averaging effects in

bone, whereby the effects of short-term consumption of foods with different δ13C values are

attenuated [102].

Fig 6. Range of variation of tooth enamel δ13C values in the red deer (Cervus), wild boar (Sus18, 19, 20 and 21), cattle (Bos), sheep (Ovis) and pig

(Sus22) from the Starčevo phase at Alsónyék. Patterns A, B and C: see main text.

https://doi.org/10.1371/journal.pone.0295769.g006
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Pig husbandry

Historic sources from the 18th to 20th centuries show that pigs frequently had very varied diets,

for example feeding in wetlands, where they were able to eat the vegetation, bird eggs and fish

[93], and were frequently freely ranging in oak forests in autumn until they could not find

acorns any more in winter and returned to where they were fed by humans [93].

The wide range of measured bone collagen δ15N and δ13C values shows large variability in

pig diets. Eleven of the sampled pigs from Alsónyék had low δ15N values, between 6.1‰ and

7.7‰, similar to most of the sampled wild boar, with δ13C values mostly above −21.5‰ sug-

gesting primarily herbivorous feeding in a predominantly open environment. However, the

consumption of acorns (elevated δ13C values) may mask feeding on forest undergrowth [51].

The high enamel δ13C values (−11.5‰ to −11.0‰) for the sampled pig molar suggest feeding

in an open environment for this individual. Since current ecological studies have shown wild

boar diets to generally consist of around 86–96% plant matter (reviewed in [68]), and because

the δ15N values of wild and domesticated herbivores overlap with those of pigs, a highly plant-

based diet can be inferred from these results for most of these domestic pigs.

Suids likely thrived in the environment surrounding Alsónyék, where acorn-bearing forests

met with wet, marshy areas (cf. [23, 93]), so it is notable that pigs only made up 3% (NISPidenti-

fiable mammal) of the mammal assemblage recovered from the Starčevo phase at Alsónyék [23].

This is comparable to the Starčevo site Lánycsók-Égettmalom and the Körös/Criş sites Ecseg-

falva 23 and Endrőd 119, all in Hungary (Fig 1), where similarly wet conditions likely condu-

cive to pig-keeping were present, but only low numbers of pigs were recovered (0.6% to 3% of

animal remains by NISPtotal; [95, 103–105]). This scarcity of pigs is also visible in the scarcity

of non-ruminant adipose fats revealed by residue analysis of pottery sherds from both Alsó-

nyék and Ecsegfalva 23 [106]. The near absence of pigs in favour of caprines and cattle has

been suggested to be due to culturally driven motivations, possibly related to emotional rea-

sons or taste preferences at other early Neolithic sites in eastern Hungary [94, 95].

Two of the 13 analysed pigs (ALS Susd5 and Susd8) had elevated δ15N values of 9.0‰ and

9.2‰, similar to dogs and the lower end of the spectrum of human δ15N values (Fig 7A; [25]),

indicating consumption of fertilised crops or higher trophic level foods. Historical evidence

from Hungary suggests these could have been, for example, meat, freshwater fish (stable iso-

tope ratios suggest pike, catfish and zander in the case of dogs and ALS Susd5), whey, excess

milk and leftover human food [93].

Ethnographic evidence from Greece shows that household pigs (i.e. 1–2 pigs stall-fed by

one or more households) tended to be given dairying by-products, kitchen scraps and surplus

products, whereas larger herds were taken to forage in fields and woods, and fed cereals in dry

summers, or to encourage their return [107]. The bone collagen data from the Starčevo phase

Alsónyék therefore suggest that a small number of pigs may have been kept as household pigs,

intensely fed, whereas most pigs were kept extensively, grazing and foraging for themselves,

with occasional dietary supplementation by humans.

Comparison to other phases at Alsónyék

As part of earlier work, faunal and human remains from Starčevo, Linearbandkeramik (LBK),

Sopot and Lengyel phases (see Table 1; [14]) at Alsónyék were analysed for bone collagen δ13C

and δ15N [25]. Comparison to this study indicates cattle, red deer and wild boar δ13C values

becoming higher in later phases at Alsónyék (Fig 8). This suggests feeding in more open areas

and less reliance on forest resources after the Starčevo phase. As this trend appears not only for

cattle (domesticated animals), but also for wild boar and red deer (wild animals), this suggests
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deforestation from the Starčevo phase towards the Lengyel phase, likely as a result of increased

grazing pressure, cutting down trees for wood, and/or intentional forest clearing.

Pigs from the Lengyel phase at Alsónyék had ca. 2–3 ‰ higher δ15N values than wild boar,

cattle and sheep (Fig 7B), suggesting better access to animal protein (or fertilised crops). Pig

remains were around three times as common (as a proportion of domestic animals) at

Fig 7. Stable carbon (δ13C) and nitrogen (δ15N) isotope ratio results for bone collagen from Alsónyék. (A) Starčevo phase, data from this study and

[25]. (B): Lengyel phase, data from [25].

https://doi.org/10.1371/journal.pone.0295769.g007
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Alsónyék during the Lengyel period compared to the Starčevo period [22], which, coupled

with the difference in pig diets, could indicate a higher importance placed on pig keeping by

the Lengyel than by Starčevo people at Alsónyék.

Comparison to other sites

To place the above results into a broader context, the literature was reviewed to identify

numerically published faunal bone collagen δ13C and δ15N datasets with nfaunal�25 and

npigs�5 from Hungary, Greece, Croatia, Serbia and Romania from the Early Neolithic to the

Chalcolithic (Fig 1). Where data from multiple Neolithic phases was available, the earliest

phase was compared to (cf. Table 1).

Fig 8. Stable carbon (δ13C) isotope ratio results for red deer, wild boar and cattle bone collagen from the Starčevo, LBK, Sopot and Lengyel

phases at Alsónyék, shown as boxplots. The line in the boxplot indicates the median, and the cross the mean. Whisker boundaries were chosen as

1.5 × interquartile range. Data from this study and [25].

https://doi.org/10.1371/journal.pone.0295769.g008
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Analysis of remains from LBK phases at Füzesabony, Hungary, and from the Vinča phase

at Stubline, Serbia, showed a large overlap between herbivore and pig δ13C and δ15N values

[26, 27], suggesting pigs had little or no access to animal protein (e.g. whey, slaughter waste).

(This trend is also consistent with data from Măgura—Boldul lui Moş Ivčnus, but only two

domestic pigs have been analysed from this site so far [33]). By comparison, Early Neolithic

remains from Zemunica, Croatia, show several pigs had low δ13C and δ15N values compared

to cattle and sheep/goats [34], suggesting these pigs were kept primarily on forest resources,

while cattle and sheep were less reliant on forest resources. At Zemunica, one analysed outlier

individual had higher δ15N values, and may have been a stall-fed pig [34].

Remains from Vinča-Belo Brdo (see Table 1 and Fig 1; [27]), Halai [31], Kouphovouno

[108], Makriyalos [31, 109] and Balatonszárszó-Kis-erdei-dűlő [26] all showed an overlap

between pig, cattle and sheep δ13C and δ15N values. However, at these sites, there was a ten-

dency for pig δ15N values to be on average slightly elevated compared to sheep and cattle,

while pigs with δ15N values toward the lower end of the spectrum displayed by cattle and

sheep are missing. This suggests some (limited) availability of animal protein to pigs. Addi-

tionally, several outlier pigs at these sites had elevated δ15N values, similar to the results seen

for the Starčevo phase at Alsónyék, which appear to have had more access to animal protein

(or fertilised crops), possibly as a result of being more intensely kept household pigs. From

these data, a picture seems to be emerging, whereby pig husbandry strategies employed in

Southeast Europe (cf. Fig 1) during the Early and Middle Neolithic mostly involved extensive

pig herding (with occasional dietary supplementation) for the majority of individuals, while a

few pigs were more intensively kept, possibly stall-fed in villages for at least part of their lives.

Future data will confirm or deny this apparent trend.

In contrast, results from the late Chalcolithic (second half of 5th millennium BC) sites Vită-
neşti-Măgurice, Hârşova-tell and Borduşani-Popină, all in southeastern Romania, show only

little overlap in δ15N values between pigs and herbivores, suggesting pig diets at these sites to

have comprised significantly larger amounts of animal protein [28]. Therefore, there appear to

be clear spatial and temporal trends in pig keeping, the underlying affecting factors for which

(whether environmental, cultural or other) remain to be discovered.

Conclusion

The results of this study showed a large extent of overlap in bone collagen δ13C and δ15N

values for pigs, wild boar, domesticated and wild herbivores from the Starčevo phase at

Alsónyék, suggesting that these animals may well have shared the same grazing/browsing

areas for at least parts of the year. The spread of the data demonstrates variability between

individuals of the same species, indicating that on an individual basis, different foods and

habitats were used to different extents. Dense woodland or open environment “specialists”

were the exception, and most of the studied animals from the Starčevo phase appear to have

made use of the variability of diverse resources provided by the environment surrounding

Alsónyék. The differences between individual cattle, sheep and pig diets could be due to

metabolic variation, interannual variability in weather conditions, differing animal hus-

bandry practices between households, and specific individuals being chosen to receive spe-

cial treatment.

The collagen and enamel δ13C data from the Starčevo phase at Alsónyék indicate that sheep

and cattle tend to have fed in more open areas dominated by C3 plants (possibly including

grazing stubbles on croplands) compared to some of the roe deer and red deer. Sequential

enamel analyses showed seasonal variability in the diets of sheep and cattle, whereby winter

diets consisted of either grazing in open environments, consumption of forest resources,
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provision with summer hay, or a combination thereof. This variability in winter diets of

domesticated herbivores suggests multiple strategies for coping with the challenges of wintery

conditions, made feasible by the diverse environment around Alsónyék.

Most pigs appear to have mainly consumed plant matter, which, combined with the low

numbers of pig remains at Alsónyék during the Starčevo phase, suggests pig husbandry at only

very low intensity. Only a few pigs appear to have received greater amounts of dietary supple-

mentation with animal protein or fertilised crops, emphasising the non-intensive character of

most pig husbandry at Alsónyék during the Early Neolithic Starčevo phase.

Comparisons of the data in this study with published datasets from Neolithic sites in

Greece, Serbia, Croatia and Hungary suggests that the large extent of overlap in bone collagen

δ13C and δ15N values for pigs, wild boar, domesticated and wild herbivores observed in this

study was not uncommon in this period. Sharing of the same grazing/browsing areas by differ-

ent wild and domestic species may have been widely practiced during the 6th and 5th millen-

nium in Southeast Europe.

The comparison of our data with those from later assemblages at the same site indicates a

trend to higher δ13C values for cattle, red deer and wild boar during the later phases at Alsó-

nyék (Fig 8). This suggests a shift to less reliance on forest resources after the Starčevo phase,

likely due to increased deforestation. These observations reinforce the importance of using

animals from the same period as baselines for studies of human diets. Thus, in addition to elu-

cidating past dietary management of domestic stock at Alsónyék, this study also provides base-

line δ13C and δ15N values for future animal and human isotope ratio studies of Early Neolithic

people in the Carpathian Basin.
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ments of the site Alsónyék-Bátaszék (South-western Hungary). Mater şi Cercet Arheol (Serie nouă).

2021; 1(1):467–86.
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p. 187–220.
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91. Biró M, Molnár Z, Babai D, Dénes A, Fehér A, Barta S, et al. Reviewing historical traditional knowledge

for innovative conservation management: A re-evaluation of wetland grazing. Sci Total Environ. 2019;

666:1114–25. https://doi.org/10.1016/j.scitotenv.2019.02.292 PMID: 30970477
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