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Abstract

Microbial inoculants can increase the yield of cultivated crops and are successful in indepen-

dent trials; however, efficacy drops in large-scale applications due to insufficient consider-

ation of microbial community dynamics. The structure of microbiomes, in addition to the

impact of individual taxa, is an important factor to consider when designing growth-promot-

ing inoculants. Here, we investigate the microbial network and community assembly pat-

terns of Macrocystis pyrifera gametophyte germplasm cultures (collectively referred to as a

“seedbank”) used to cultivate an offshore farm in Santa Barbara, California, and identify net-

work features associated with increased biomass of mature sporophytes. We found that [1]

several network features, such as clustering coefficient and edge ratios, significantly vary

with biomass outcomes; [2] gametophytes that become low- or high-biomass sporophytes

have different hub taxa; and [3] microbial community assembly of gametophyte germplasm

cultures is niche-driven. Overall, this study describes microbial community dynamics in M.

pyrifera germplasm cultures and ultimately supports the development of early life stage

inoculants that can be used on seaweed cultivars to increase biomass yield.

Introduction

Microbes have a significant impact on plant physiology, and there has been a wealth of

research on the use of microbial inoculants (i.e., the introduction or addition of beneficial bac-

teria to a host) in agriculture [1–9]. Previous work has shown that addition of growth-promot-

ing bacteria can increase the overall health and production of several agricultural crops

including rice, maize, and cotton [1–3]. In particular, use of these inoculants at an early life

stage in plant hosts can increase crop yield and farm productivity [4–9]. Many studies focus on

the impact that individual microbes have on host health. While useful, this approach is limited
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because it does not sufficiently consider that host microbiomes (i.e., the collection of micro-

biota native to a host) are not a collection of isolated microbes, but rather an interdependent

group with complex functional and metabolic pathways [10]. The use of microbial inoculants

can disturb these pathways, and have unintended effects on plant hosts. Microbial inoculants

can compete with native species, preventing successful colonization of the inoculant or causing

negative impacts on crop performance [11]. Inoculants may also prompt microbial succession,

thereby altering community structure and function [12,13]. Understanding how microbial

networks are naturally structured can increase efficacy of microbial inoculants in large-scale

agricultural applications [6,14]. Therefore, in order to fully harness the beneficial impact of

microbes and establish a strong framework for growth-promoting inoculants, it is critical to

understand microbial networks and community dynamics in the context of crop outcomes.

Microbial community dynamics of host-associated microbiomes may be better understood

by analyzing co-occurrence networks, hub microbes, and community assembly patterns. Co-

occurrence networks represent the likely patterns of spatial co-occurrence (i.e., being present

together in an environment), which can be used to infer potential relationships between indi-

vidual taxa. These networks can be visually represented as a collection of nodes and edges. In

the context of this study, nodes represent unique taxa and edges represent the links or co-

occurrence patterns between them. Co-occurrence patterns can be quantified with measures

of network topology such as the clustering coefficient, modularity, and edge ratios. Clustering

coefficient and modularity describe the division of a network into sub-networks and the den-

sity of connections between nodes, respectively. The ratio of positive to negative edges, which

represent significant patterns of spatial co-occurrence or exclusion, can also indicate the

degree to which the community has potentially synergistic or competitive interactions. By

investigating how microbial co-occurrence networks at the early life stage of crops varies with

crop performance we may use this insight to predict crop yield and develop agricultural inocu-

lants that synergize with network features of high-performing crops [10,12].

Hub microbes are central to the process of microbiome recruitment and have several asso-

ciations across the microbial network [15–17]. They are defined as having a disproportionate

number of links with other taxa in the network. Hub microbes are key drivers of the overall

microbial community because of their intrinsic ability to recruit and support the introduction

of other bacteria that directly benefit the host, particularly at the early life stage of crops [6].

The impact hub microbes have on the diversity of host microbiomes can occur directly (i.e., by

impacting the colonization of other microbes) or indirectly (i.e., through the host) [17]. Hub

microbes of high-performing crops can be inoculated in tandem with growth-promoting bac-

teria to improve crop fitness by increasing native recruitment of beneficial bacteria and sup-

porting synergistic interactions [6]. Furthermore, the use of inoculants that do not compete

with hub taxa can also improve long-term success and facilitate predictable changes in the

overall community [5].

While co-occurrence network and hub microbe analysis, as described above, can be used to

understand representative microbiomes for a group of hosts, community assembly patterns

provide insight into what mechanisms drive variation of microbiomes across hosts. The two

most common forms of community assembly follow a stochastic or niche assembly process

[18]. During stochastic assembly, microbes are randomly incorporated from the environment

into a community. During niche assembly, the likelihood of species being incorporated is

dependent on their ecological role and those of existing community members. Here, we inves-

tigate the relative likelihood of these two assembly processes using the zeta diversity frame-

work, a method for calculating the number of shared species across an arbitrarily large

number of sample sites [18,19]. As the number of sites being compared increases, zeta diversity

typically decays following an exponential or power-law form [20,21]. An exponential decay
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suggests that communities are more likely to be assembled stochastically, while a power-law

decay suggests they are more likely to be assembled via niche-differentiation [19]. In the con-

text of this study, understanding whether microbial communities assemble in a stochastic or

niche-driven manner can help improve inoculant design. If the assembly is niche-driven, for

example, inoculants can be designed to avoid competition with established niches and increase

likelihood of success.

Analyzing microbial community dynamics, using the methods described above, will allow

for more precise development of inoculants that can increase crop yield [12]. Here, we pursue

this work with giant kelp (Macrocystis pyrifera), a high-potential feedstock for biofuels. This

study examines M. pyrifera at two life stages: a juvenile state named the “gametophyte” stage

and a fully mature adult state named the “sporophyte” stage. Our group has previously deter-

mined that there is a significant difference in microbial community composition between

gametophytes that become high- versus low-biomass sporophytes, and that bacteria within the

Mesorhizobium genus are key candidates for creating a growth-promoting inoculant [22]. This

study builds upon that work by investigating both the topology of microbiome co-occurrence

networks, as well as the relative likelihoods of two common community assembly processes

for giant kelp seedbank cultures, and the relationships of these network features with the final

biomass yield of mature sporophytes. We hypothesize that the final yield of M. pyrifera adult

sporophytes is correlated with differences in microbial community dynamics during the game-

tophyte stage. We further hypothesize that given the tight ecological interactions between

microbes and their seaweed hosts [23], that seedbank microbial communities will assemble

through niche-differentiation. Overall, this work provides a valuable knowledge base for devel-

oping, and increasing the efficacy of, microbial inoculants used in seaweed aquaculture (Figs 1

and 2).

Materials and methods

Ethics statement

This study was carried out with non-destructive sampling in accordance with a scientific col-

lecting permit administered by the State of California Department of Fish and Wildlife (Permit

ID: S-183050002-18305-001).

Production of gametophytes and cultivation of sporophytes

Sporophyte collection, spore release, sequencing, and classification followed protocol reported

in Osborne et al. [22] and is briefly described here. Reproductive blades of M. pyrifera were

collected from Southern California regions in December 2018 representing four genetically

distinct natural populations [24]: Arroyo Quemado (AQ), Catalina Island (CI), Camp Pendle-

ton (CP), and Leo Carillo (LC). Blades were shipped overnight to University of Wisconsin-

Milwaukee for spore release in sterile Provasoli enriched seawater medium (PES) [25] at 34

PSU salinity following the Oppliger method [26]. Spores were raised to the gametophyte stage

in a growth chamber under red light (20 μmol photons m-2s-1) with a 12:12h (Light:Dark) pho-

toperiod at 12˚C, then isolated and vegetatively grown under red light (30 μmol photons m-2s-

1) with a 12:12h (Light:Dark) photoperiod at 12˚C to create 559 genetically unique germplasm

cultures. Increased light intensity at this stage was used to induce faster vegetative growth.

From this germplasm, 500 female gametophytes (345 from LC, 54 from AQ, 45 from CI, and

56 from CP) were crossed with a single male from LC (five replicates each) to produce a total

of 2,500 gametophyte crosses. These crosses were seeded on polyvinyl lines and grown to the

sporophyte stage under white light (60 μmol photons m-2s-1) with a 16:8h (Light:Dark) photo-

period at 12˚C for one month before being shipped overnight to a marine laboratory at the
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University of California, Santa Barbara (UCSB). Juvenile sporophytes were adjacently planted

on ten longlines in an offshore farm 1-mile off the coast of Santa Barbara in May 2019. All sur-

viving sporophytes were harvested between September 7–12, 2019 using Santa Barbara Mari-

culture’s vessel Perseverance. Harvested sporophytes were briefly spin-dried by hand before

weighing to record total biomass, which includes stipe and blades. The average biomass of all

surviving genetic replicates was calculated and used in this study. A number of individuals

were lost due to issues during harvest or premature loss. Due to smaller sample size and

restricted availability of phenotype data for the AQ, CI, and CP populations, we only report

network analysis across biomass outcomes for the LC population (see: ‘Grouping gameto-

phytes and taxonomy levels for biomass and population comparisons’).

DNA extraction, microbial shotgun sequence data, and classification

For DNA extraction, aliquots of each gametophyte culture was centrifuged to obtain 50-

100mg of gametophyte tissue biomass, which was pulverized using liquid nitrogen. Kelp

genome and microbial DNA were co-extracted and sequenced from female and male gameto-

phytes using the NucleoSpin 96 Plant Kit (Macherey-Nagel, Duren, Germany). Gametophyte

samples were not treated with an antibiotic prior to DNA extraction; therefore, the microbial

Fig 1. Workflow for data collection and network construction. 1. Wild M. pyrifera sporophylls were collected from four natural populations across Southern

California: Arroyo Quemado (AQ), Catalina Island (CI), Camp Pendleton (CP), and Leo Carillo (LC). 2. Reproductive blades were surface sterilized and

prepared for spore release. 3. Spores were released in sterile Provasoli enriched seawater medium (PES). 4. Spores were raised to gametophyte stage in petri

dishes. Single, genetically unique gametophytes (green) were isolated and used to establish a giant kelp seedbank. No antibiotic treatment was applied, and

resident microbes (purple) persisted. 5. Genetically unique gametophyte germplasm cultures were grown vegetatively in sterile PES. 6. M. pyrifera (green) and

microbial (purple) DNA of each genetically unique gametophyte culture were co-extracted, followed by shotgun sequencing using an Illumina S4 Novaseq

platform. 7. Microbial DNA was filtered and characterized using the ‘metaxa2’ program with the SILVA128 database. 8. Microbial networks were constructed

and analyzed using the ‘SpiecEasi’ and ‘igraph’ programs.

https://doi.org/10.1371/journal.pone.0295740.g001
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DNA of both exogenous and endogenous species was extracted. Sequencing (150bp paired-

end) was done at BGI North American NGS lab using an Illumina S4 Novaseq platform and

generated approximately 11.2GB or 87 million reads per sample. WGS was chosen over 16S

amplicon sequencing to support an umbrella giant kelp breeding project and provide an

opportunity to perform functional analysis in future studies. Raw fastq files were processed

with the ‘fastp’ program (version 0.20.1) [27]. Due to evidence of bacterial contamination in

existing brown macroalgae genomes [28], all reads were included in the bacterial classification

pipeline to ensure that all candidate sequences were analyzed. Reads were classified using the

‘metaxa2’ package (version 2.2.2) which extracts and classifies partial rRNA sequences against

the SSU_SILVA128 database [29,30]. This version of the database was used to facilitate a com-

parison of findings between this and a previous study [22]. The resulting abundance table was

further processed and analyzed with the ‘phyloseq’ package (version 1.34.0) in R [31,32].

Abundance counts were processed by removing singletons and doubletons, normalizing

counts by sequencer, averaging counts for samples that were sequenced over multiple runs,

and again removing any remaining singletons and doubletons. Only taxa classified as bacteria

were kept for analysis; eukaryotic, archaeal, mitochondrial and chloroplast sequences were

removed.

Fig 2. Microbial network features of gametophytes vary with sporophyte biomass. The network features of genetically unique gametophytes (green, labelled

A-C) were analyzed to identify whether any characteristics of early stage gametophyte microbiomes are associated with sporophyte biomass.

https://doi.org/10.1371/journal.pone.0295740.g002
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Grouping gametophytes and taxonomy levels for biomass and population

comparisons

Due to the smaller number of individuals within the AQ, CI, and CP populations, the comparison

of network analysis across biomass outcomes was only performed with individuals from the LC

population. A total of 308 individuals from the LC population were divided into one of four quan-

tile groups based on their wet biomass weight at the time of harvest: Quantile 1 (� 63.92g,

n = 77), Quantile 2 (> 63.92g and� 125g, n = 78), Quantile 3 (> 125g and� 211g, n = 76), and

Quantile 4 (> 211g, n = 77). These biomass values represent that of diploid sporophytes grown on

the farm. Recall that the crossing scheme used in this study crossed a single male gametophyte

from the LC population with 500 female gametophytes across the AQ, CI, CP, and LC populations

(see: ‘Production of gametophytes and cultivation of sporophytes’). Consequently, the microbial

community of the corresponding female gametophyte for each sporophyte was analyzed. After

running the bacterial classification pipeline described above, we conglomerated bacterial reads to

four taxonomic levels (order, family, genus, and species) for all LC individuals. Analysis at several

taxonomic levels was done to address the challenge of taxonomic resolution and classification

uncertainty at higher levels (i.e. genus and species) and consider lower levels (i.e. order, and fam-

ily) as proxies for ecological function [33,34]. For comparison of microbial networks across game-

tophytes from different kelp populations, individuals were grouped according to the geographic

region (natural population) in which their parent sporophyte was collected: AQ (n = 64, 12 males

and 52 females), CI (n = 57, 12 males and 45 females), CP (n = 69, 16 males and 53 females), and

LC (n = 369, 54 males and 315 females). Because this comparison did not require the use of bio-

mass data, we were able to source a larger number of individuals that were not grown on the

farm. However, due to the increased number of taxa classified at the species level and the smaller

number of samples, we were only able to run network analysis at the order and family levels.

Quantification and visualization of co-occurrence network and hub taxa

Starting with network analysis across biomass outcomes, LC gametophytes (n = 308) were

divided into four quantiles as described above. For each quantile, we randomly selected 50

individuals 100 times and constructed networks using the R package ‘SpiecEasi’ (version

1.1.0), which infers ecological associations in microbial communities [35]. The default settings

for SpiecEasi with neighborhood selection (the Meinshausen and Bühlmann or “MB” method)

were used [36]. The resulting representative network models were analyzed and graphed with

the ‘igraph’ package (version 1.2.6) in R [37]. Networks were graphed with the Davidson-

Harel layout algorithm (‘layout_with_dh’ function in igraph), which reduces edge crossing to

produce a clean network [37,38]. For each network, the following network topology features

were recorded: total nodes, total edges, number of positive edges, number of negative edges,

ratio of positive to negative edges, average path length, heterogeneity, modularity, average

degree per node, clustering coefficient, and hub score. Nodes represent unique taxa and edges

are the significant co-occurrences between them. Positive edges indicate that connected taxa

tend to be present together and negative edges indicate the opposite (i.e., if one is present in a

community, the other is absent). Positive and negative edge information was also used to infer

whether taxa of interest had competitive interactions with other taxa. The average path length

considers the shortest edge path connecting each pair of nodes. Heterogeneity, the distribution

of degrees or connections from each node, was calculated as described in Jacob et al. [39].

Modularity, the density of node connections compared to a randomly structured network, was

measured with the Louvain method that maximizes the score for each community [40]. Hub

score was calculated for the whole network without subsampling using Kleinberg’s centrality

score, which ranges from 0 to 1 [41]. This method uses the adjacency matrix of a network,

PLOS ONE Microbial network features related to biomass yield of farmed seaweeds

PLOS ONE | https://doi.org/10.1371/journal.pone.0295740 March 27, 2024 6 / 20

https://doi.org/10.1371/journal.pone.0295740


which represents the degrees connecting each node. Because this is an undirected graph, the

hub score is the same as the authority score, and higher scores represent a greater number of

edges (i.e., higher degrees) connected to each node. This pipeline was repeated with microbial

networks classified at the order, family, genus, and species levels. For network analysis across

gametophyte populations, we used the same pipeline and randomly selected 50 individuals 100

times from each population: AQ (n = 64), CI (n = 57), CP (n = 69), and LC (n = 369). Due to

the higher complexity of these microbial networks and subsampling regime, we were unable to

construct networks for the LC population at the genus and species levels. Therefore, we report

only the network analysis done at the order and family levels across all four populations.

Identifying network topology factors that predict sporophyte biomass

For network comparisons across biomass quantiles, we used gametophytes from the LC popula-

tion (n = 308) and divided them into one of four quantile groups based on their wet biomass

weight at the time of harvest: Quantile 1 (� 63.92g, n = 77), Quantile 2 (> 63.92g and� 125g,

n = 78), Quantile 3 (> 125g and� 211g, n = 76), and Quantile 4 (> 211g, n = 77). We repeated

analysis with bacteria conglomerated to the order, family, genus, and species levels. We con-

structed networks (described above) by randomly selecting 50 individuals 100 times from each

quantile group. An ordered logistic regression model was estimated using the ‘polr’ command

from the ‘MASS’ package (version 7.3.53) in R [42]. The model was first run using all non-mul-

ticollinear factors: total nodes, total edges, positive to negative edge ratio, average path length,

modularity, average degree, heterogeneity, and clustering coefficient. Using the ‘regsubsets’

command from the ‘leaps’ package (version 3.1) in R we determined which network features

are best associated with host biomass using co-occurrence networks generated from micro-

biomes classified at the following taxonomic levels: order, family, genus, and species. As stated

earlier, analysis at several taxonomic levels was done to address the challenge of taxonomic reso-

lution and classification uncertainty at higher levels (i.e. genus and species) and consider lower

levels (i.e. order, and family) as proxies for ecological function [33,34]. Models were additionally

confirmed for best fit factors using the ‘stepAIC’ command from MASS. In the case of a mis-

match, which only occurred at the genus and species level, the simpler model was chosen. Log

likelihoods were converted to odds ratios for ease of interpretation.

Comparing network topology measures between populations

For network comparisons across populations, we analyzed gametophytes from four popula-

tions: AQ (n = 64), CI (n = 57), CP (n = 69), and LC (n = 369). Networks were constructed by

randomly selecting 50 individuals 100 times from each population. Analysis was repeated with

bacteria conglomerated to the order and family levels. We used a Kruskal Wallis test to deter-

mine if there was a significant difference overall across populations for the following topology

measures: total nodes, total edges, ratio of positive to negative edges, average path length, mod-

ularity, average degree, heterogeneity, and clustering coefficient (S4 Table). Pairwise compari-

sons were tested for significant differences using a Wilcoxon test (S7–S10 Figs).

Modeling community assembly patterns using the zeta diversity metric

To determine whether community assembly patterns differed between low- and high-biomass

outcomes, we used zeta diversity to help determine the relative likelihoods of niche differenti-

ated (non-random) and stochastic (random) processes of community assembly for kelp micro-

biomes found using either low- or high-biomass individuals. Due to the reduced number of

individuals in the AQ, CI, and CP populations, this analysis was run on the biomass quantiles

from the LC population alone. In order to model community assembly patterns and determine
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the degree to which microbial communities are randomly structured, we used the zeta diver-

sity metric. This metric quantifies the number of species shared between any number of sites

[18]. Zeta order refers to the number of sites being considered at a time when calculating their

compositional overlap. As zeta order increases in size, the value of zeta diversity becomes

increasingly influenced by more common species and the decline in the number of shared spe-

cies can be modeled as an exponential or power-law regression. It has been found that the rela-

tive likelihoods of an exponential versus power-law model of zeta diversity is associated with

the respective relatively likelihoods of a stochastic (random) versus niche-differentiated (non-

random) model of community assembly [18]. For this study, the microbiome of each unique

gametophyte is considered a “site”. Abundance counts were first converted to presence (1) and

absence (0) scores. Zeta decline was modeled using the ‘zetadiv’ package (version 1.2.0) in R

[43]. Comparison of AIC scores was used to determine best fitting model (exponential versus

power-law regression) and more likely method of community assembly. Common species are

shared between a higher number of sites while rare species are shared between fewer. Conse-

quently, analysis was done for zeta orders 3, 5, 10, 20, and 50 at the species level to investigate

the contribution of rare (lower zeta orders) versus common (higher zeta orders) species to

compositional change. Analysis was also done at the class, order, family, and genus levels for

zeta order 50 to determine if community assembly patterns differ between taxonomic levels.

Results

Network topology is associated with sporophyte biomass

Using gametophytes from the Leo Carillo (LC) population (n = 308), we constructed co-occur-

rence networks of the microbial community with taxa classified at the order, family, genus, and

species level (Figs 3 and S1). LC gametophytes were binned into one of four biomass quantile

groups based on their sporophyte weight at the time of harvest. Network analysis was performed

for each biomass group and topological measures of the co-occurrence networks of their associ-

ated microbiomes were recorded (S1 Table). To identify network topology factors that vary

with biomass, we used a proportional odds logistic regression model. The best fit model for

each taxonomic level included different topology factors (Tables 1 and S2). Clustering coeffi-

cient is associated with biomass across the order, family, genus, and species levels; however, its

association with increased biomass changed across levels. At the order and species level, with a

one unit increase in the clustering coefficient the odds of higher biomass was 3.52x103 and

1.60x1037 more likely, respectively. At the family and genus levels, there was an opposite trend

with higher biomass being 4.30x105 and 4.07x107 times less likely, respectively. Positive to nega-

tive edge ratio was also associated with biomass at the order, family, and genus levels: with each

one unit increase (i.e. a higher proportion of positive associations between taxa) the odds of

higher biomass was 1.04, 1.22, and 1.22 times more likely, respectively. Increased heterogeneity

and lower modularity were associated with higher biomass at the order and family levels. For

each one unit increase in heterogeneity, increased biomass is 1.00x109 and 6.34x109 times more

likely. For each one unit increase in modularity, the odds of increased biomass was 1.97x107

and 4.50x109 times less likely. Finally, for average path length at the order level with each one

unit increase the odds of increased biomass was 1.75 times less likely.

Microbial communities from gametophytes that become low- or high-

biomass sporophytes have unique hub taxa

From the network analysis described above we also calculated hub scores for each taxa and

identified those with the highest scores (Fig 3, Table 2). Here we define hub taxa as those that
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Fig 3. Co-occurrence networks of the microbial community classified at the genus level. Each node represents a

unique genus. Node size represents the hub score and node color represents phylum membership. Edge opacity

represents the strength of the link and edge color represents a positive (green) or negative (magenta) co-occurrence

pattern. Microbial networks sampled from (A) low-biomass gametophytes (<63.92g, n = 77) and (B) high-biomass

gametophytes (>211g, n = 77).

https://doi.org/10.1371/journal.pone.0295740.g003
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had a score of at least 0.5 and we report those from the order, family, genus, and species levels

(Table 2). Microbial communities from gametophytes that became low-biomass sporophytes

(<63.92g) had the following hub taxa (score followed in parentheses): orders Frankiales (1) and

Kineosporiales (0.89); families Veillonellaceae (1), Archangiaceae (0.99), Burkholderiaceae

(0.89), and Clostridiaceae 1 (0.85); genera Marixanthomonas (1), Magnetococcus (0.91), Epibac-
terium (0.84), alpha proteobacterium PWB3(0.57), and Collinsella (0.53); species Kordiimonas
lacus (1), Methylosinus trichosporium (0.87), alpha proteobacterium SAORIC-651 (0.74), Stappia
taiwanensis (0.62), and marine bacterium VA011 (0.55). In general, high-biomass sporophytes

(>211g) had fewer hub taxa in the gametophyte microbial communities. High-biomass hub

taxa were orders Desulfovibrionales (1), Nitrospinales (0.99); families Magnetococcaceae (1),

Beijerinckiaceae (0.95), and Holosporaceae (0.81); genera Wenyingzhuangia (1) and Pedobacter
(0.89); and species mucus bacterium 80 (1) and Marinomonas brasilensis (0.59).

Candidate growth-promoting taxa co-occurs with hub microbes of

gametophytes that become high-biomass sporophytes

In a previous study, we found that bacteria from the genus Mesorhizobium is associated with

increased biomass of M. pyrifera and therefore a prime candidate for a growth-promoting inoc-

ulant [22]. Using the representative networks constructed for this study, we investigated the

positive and negative associations Mesorhizobium has with other taxa in the microbial commu-

nity of M. pyrifera gametophyte germplasm cultures. We found that Mesorhizobium co-occurs

with Wenyingzhuangia and Pedobacter, which had the two highest hub scores for gametophytes

that become high-biomass sporophytes. We also found that Mesorhizobium has negative co-

occurrence values with Aquamarina, Sneathiella, Pseudohaliea, and Saccharospirillum.

Network topology and hub taxa differs between gametophyte populations

Using gametophytes from all four populations (AQ, CI, CP, and LC), we constructed co-occur-

rence networks of the microbial community with taxa classified at the order and family levels

(Figs 4 and S6). We investigated whether there was a significant difference across populations for

the following network topology measures: total nodes, total edges, ratio of positive to negative

edges, average path length, modularity, average degree, heterogeneity, and clustering coefficient

(S4 and S5 Figs). We found that there was a significant difference overall for all topology mea-

sures. Pairwise comparisons were significant for all combinations for total nodes, total edges,

Table 1. Odds ratio values for network topology factors used in POLR models.

Clustering Coefficient Positive to Negative Edge Ratio Heterogeneity Modularity Average Path Length

Order 3.52x103 1.04 1.00x109 5.07x10-8 a 5.73x10-1 a

Family 2.33x10-6 a 1.22 6.34x109 2.22x10-10 a

Genus 2.46x10-8 a 4.65 NS

Species 1.60x1037

Summary of odds ratio values for network topology factors (p < 0.01) used in proportional odds logistic regression (POLR) models. Separate models were built for the

order, family, genus, and species taxonomic levels. Factors to include for each model was determined by best fit and blanks indicate that a factor was not used in the

model. (For example, at the species level: Biomass Quantile ~ Clustering Coefficient.) ‘NS’ signifies that although used in the model, the factor was not significantly

associated with biomass
aThe odds ratio values, which are recorded in this table, can be challenging to interpret. For ease of interpretation, the reciprocal for values with negative exponents is

calculated to represent how “less likely” the odds of increased biomass is with each one unit increase in the corresponding network topology factor and is referenced this

way in the main text. Values with positive exponents are interpreted as that much “more likely” to have increased biomass with each one unit increase in the

corresponding network topology factor.

https://doi.org/10.1371/journal.pone.0295740.t001
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average degree, and clustering coefficient. For the remaining measures, most combinations were

significantly different except for the following: ratio of positive to negative edges and modularity

for the AQ and CI populations, average path length for the CI and CP populations, and heteroge-

neity for the AQ and CP populations. In addition to differences among network topology mea-

sures, we also found that the four populations had distinct hub taxa. In general, the LC population

had the greatest number of hub taxa with a score over 0.5. Of those identified, only two taxa over-

lapped between populations: Chthoniobacterales was shared between the AQ and CP populations

and Cryptosporangiaceae was shared between the AQ and LC populations (S3 Table).

Community assembly of gametophyte microbial community is niche-

driven across biomass outcomes

Zeta diversity, the number of shared species between three or more sites, was used to model

community assembly patterns and determine whether they are driven by stochastic (random)

Table 2. Hub taxa by biomass group.

Taxonomic Level Taxa Hub Score Biomass Group

Order Desulfovibrionales 1 High

Order Nitrospinales 0.99 High

Family Magnetococcaceae 1 High

Family Beijerinckiaceae 0.95 High

Family Holosporaceae 0.81 High

Genus Wenyingzhuangia 1 High

Genus Pedobacter 0.89 High

Species mucus bacterium 80 1 High

Species Marinomonas brasilensis 0.59 High

Order Frankiales 1 Low

Order Kineosporiales 0.89 Low

Family Veillonellaceae 1 Low

Family Archangiaceae 0.99 Low

Family Burkholderiaceae 0.89 Low

Family Clostridiaceae 1 0.85 Low

Genus Marixanthomonas 1 Low

Genus Magnetococcus 0.91 Low

Genus Epibacterium 0.84 Low

Genus alpha proteobacterium PWB3a 0.57 Low

Genus Collinsella 0.53 Low

Species Kordiimonas lacus 1 Low

Species Methylosinus trichosporium 0.87 Low

Species alpha proteobacterium SAORIC-651 0.74 Low

Species Stappia taiwanensis 0.62 Low

Species marine bacterium VA011 0.55 Low

Hub taxa with a Kleinberg’s centrality score of over 0.5. M. pyrifera gametophytes from the Leo Carillo population were binned into biomass groups based on their

sporophyte weight at the time of harvest. Representative networks were generated for the microbial communities of each biomass group. Taxa were then given a score to

quantify their role as a hub taxa. Taxa from the genus and species levels that scored over 0.5 are recorded here. Biomass groups: Low (<63.92g, n = 77) and High

(>211g, n = 77). Taxa names are listed as the direct outputs from the metaxa2 classification pipeline with the SILVA 128 database.
aThe SILVA taxonomy database is manually curated and shown to have guide tree errors [44]. This species appears to have been incorrectly classified as a genus.

https://doi.org/10.1371/journal.pone.0295740.t002
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or niche-driven (non-random) mechanisms. Zeta order refers to the number of sites included

in this measure. Here, sites refer to gametophyte microbiome samples. To understand the con-

tribution of rare and common taxa to compositional change we ran zeta diversity analysis at

zeta orders 3, 5, 10, 20, and 50. We found that for gametophytes that became high-biomass

sporophytes, zeta diversity decline of microbial communities follow a power-law regression of

zeta diversity decline for all zeta orders (S2 Fig). To determine whether community assembly

patterns vary across taxonomic levels, we additionally ran analysis with zeta order 50 at the

class, order, family, and genus levels (S3 Fig). All taxonomic levels demonstrated niche-driven

assembly patterns across biomass outcomes.

Discussion

Analysis of the microbial co-occurrence network topology in gametophytes cultures across

biomass outcomes revealed that several features are significantly associated with sporophyte

yield. Clustering coefficient and the ratio of positive to negative edges were identified as signif-

icant factors associated with sporophyte biomass when looking at gametophyte microbial net-

works classified at the class, order, family, and genus levels. At the species level, larger

clustering coefficient values, which are associated with highly complex communities and

strong microbe-microbe interactions [45], have a profoundly high likelihood of increased bio-

mass. This suggests that densely connected subnetworks are associated with improved growth

Fig 4. Co-occurrence networks of the microbial community classified at the family level. Each node represents a unique family. Node size represents the

hub score and node color represents phylum membership. Edge opacity represents the strength of the link and edge color represents a positive (green) or

negative (magenta) co-occurrence pattern. Microbial networks sampled from four populations: (A) AQ, (B) CI, (C) CP, and (D) LC.

https://doi.org/10.1371/journal.pone.0295740.g004
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in M. pyrifera. Although topological analysis does not offer insight on the mechanisms behind

this impact, higher clustering coefficients may suggest greater cooperation [46] that can benefit

the host. Likewise, a higher ratio of positive to negative edges associated with increased bio-

mass suggests less competition between taxa that could detract from host health and perfor-

mance. At the order and family levels, increased heterogeneity, indicating more variation in

the number of connecting edges per node, suggests that when the edge connections of a net-

work are concentrated on a small number of taxa there is a growth benefit to the host. In other

words, this may indicate that having few hub taxa (with dense connections to other members

of the community) that dominate associations across the network is beneficial.

We confirmed that hub taxa are different for M. pyrifera gametophytes that become low-

and high-biomass sporophytes. It is important to note that hub nodes are not necessarily the

most abundant taxa, and that hub nodes identified in this paper do not overlap with the most

abundant microbes of high-biomass sporophytes identified in our previous study [22].

Although not necessarily the most abundant, hub microbes impact the colonization and abun-

dance of other bacteria [17]. They may also impact host physiology, including host metabo-

lism, which indirectly impacts what microbial species are present [17]. It is possible that hub

microbes from low-biomass hosts may be inefficient at recruiting bacteria that provide the

greatest growth benefit to the host. Consequently, future studies should investigate whether

this relationship may be exploited to recruit beneficial microbes at the early stage of seaweeds

and increase growth. In particular, the addition of taxa from the genera Wenyingzhuangia and

Pedobacter or the addition of species mucus bacterium 80 and Marinomonas brasilensis are

promising directions to test whether inoculation at the early life stage of M. pyrifera will recruit

other beneficial bacteria and induce a growth-promoting benefit. Future work may also focus

on isolating and sequencing these taxa to gain insight on their functional capability and mech-

anisms for regulating microbe-microbe and microbe-host interactions overall [6]. While we

did not analyze the correlation between hub score and abundance in this study, this would be

a useful metric to include for future work. We discovered that Mesorhizobium, which is a

prime candidate for growth-promoting inoculants in M. pyrifera [22], does not have negative

associations with Wenyingzhuangia nor Pedobacter. This suggests that if bacteria from these

three genera were included in a growth-promoting inoculant they would not compete with

each other and perhaps even provide a synergistic effect. This is a promising finding given that

the perturbance and removal of hub taxa can have negative cascading effects throughout a

microbial community and decrease stability overall. The genera that Mesorhizobium does not

co-occur with (Aquamarina, Sneathiella, Pseudohaliea, and Saccharospirillum) are not hub

taxa; further investigation is needed to determine if taxa from these genera would directly

compete with, or disrupt the efficacy of, a Mesorhizobium inoculation.

In line with previous findings that microbial community diversity significantly differs

across populations [22], we found that network dynamics similarly vary by population. This is

likely a consequence of diverse taxa inhabiting M. pyrifera individuals from different popula-

tions, perhaps driven by genetic diversity of kelp gametophytes. Of particular interest, even

though network variations across biomass outcomes were only analyzed in the LC population,

it is possible that gametophytes from other populations will respond positively to inoculation

with hub microbes of high-biomass LC gametophytes given that a previous study demon-

strated that M. pyrifera gametophytes from San Diego had increased length and abundance

when grown in different microbial treatments of seawater from Catalina [47]. While network

topology analysis increases our understanding of the structural traits associated with increased

biomass, it will be more insightful to layer this work with other data types including those

from genomics and metabolomics to infer functional mechanisms impacting host growth [10].
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Zeta diversity analysis revealed that the microbial community assembles in a niche-driven

manner when conglomerated to the class, order, family, genus, and species levels and that this

is consistent across all biomass outcomes. At the species level, rare and common species simi-

larly contribute to this assembly pattern. Together, this suggests that the community is com-

petitively structured and that assembly patterns are not a driving factor in the difference

between biomass yields for M. pyrifera cultivars. This may make the design and introduction

of growth-promoting inoculants more challenging. Inoculants will have to be designed in a

way that does not compete with established niches so that it can persist in the context of the

native microbial community.

It is important to acknowledge that findings from this study are limited by several factors

that should be addressed in future studies. The database used for bacterial classification,

SILVA 128, is not the most recent available. This version was chosen to facilitate comparison

between findings from this and a previous study [22]. Before applying the findings from this

work to seaweed aquaculture, it would be beneficial to re-run analysis with more recent, and

perhaps several, databases to confirm whether the same trends exist. The dataset used in this

study faces a dimensionality problem where the number of taxa is often greater than the num-

ber of samples (S5 Table). This can result in poor network recovery and a high false positive

rate. Although SpieacEasi is able to construct networks with fewer samples than taxa and per-

forms well compared to other tools [48], the findings presented here are likely not representa-

tive of full network recovery. Future iterations of this work should either apply stronger filters

to focus on taxa of interest or incorporate more samples. Furthermore, only one network con-

struction method, SpiecEasi, was used. In order to more fully understand how network fea-

tures are associated with biomass yields it will be important to explore alternate network

construction methods, such as the SpiecEasi ‘glasso’ method or an entirely different tool such

as SparCC [49]. Lastly, the Davidson-Harel layout algorithm used in this study to construct

microbial networks is not appropriate for deriving biological interpretations from node loca-

tion, as the graphs are constructed to reduce edge crossing. Future work should consider alter-

nate network layout algorithms that enable biological interpretation of node placement to gain

deeper insight from network analysis.

In conclusion, we analyzed the network dynamics and community assembly patterns of

microbial communities for cultivated M. pyrifera gametophytes and compared these character-

istics with sporophyte performance to ultimately identify features associated with increased

biomass. We found that the network dynamics and hub taxa of microbial communities at the

gametophyte stage may be a driving force in biomass outcomes at the sporophyte stage. In

addition, we found that microbial communities assemble in a niche-driven manner across all

biomass outcomes. When designing inoculants to increase the biomass yield of M. pyrifera cul-

tivars, avoiding competition with hub taxa identified here may increase long-term efficacy.

Introduction of desired hub taxa at the gametophyte stage can also induce the recruitment of

other beneficial bacteria and shape the overall community in a more precise manner. There

are several exciting opportunities for future research to help us better understand microbe-

microbe interactions and their impact on the host, such as genome sequencing of hub taxa to

elucidate functional pathways and genome-wide association studies to identify genetic factors

of M. pyrifera that impact recruitment of these taxa. Incorporating analysis of the host genome

is particularly exciting for growth-promoting applications discussed here as the impact that

host genotype can have on the overall microbial community are strongest if focused on hub

microbes [17]. Finally, inoculation trials will need to be performed to track long-term efficacy,

change in biomass outcomes, and impact on network structure. Altogether, this is a helpful

study that will support the use of growth-promoting microbial inoculants in M. pyrifera culti-

vars and seaweed aquaculture more broadly.
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S1 Fig. Co-occurrence networks of the microbial community sampled from LC gameto-

phytes. Co-occurrence networks classified at the (A-B) order, (C-D) family, and (E-F) species

levels. Each node represents a unique taxa. Node size represents the hub score and node color

represents phylum membership. Edge opacity represents the strength of the link and edge

color represents a positive (green) or negative (magenta) co-occurrence pattern. (A, C, E)

Microbial network sampled from low-biomass gametophytes (<63.92g, n = 77). (B, D, F)

Microbial network sampled from high-biomass gametophytes (>211g, n = 77).
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S2 Fig. Zeta diversity graphs for zeta order 3, 5, 10, 20, and 50 at the species level. Zeta

diversity decline, decline ratio, exponential and power-law regression graphs. For zeta orders

(A) 3, (B) 5, (C) 10, (D) 20, and (E) 50. Results shown are for gametophytes that became high-

biomass sporophytes. Columns from left to right: Zeta diversity decline representing the num-

ber of shared species (Zeta diversity, y-axis) against zeta order; Ratio of zeta diversity decline,

also called the “retention rate curve” that plots the zeta ratios (Zi+1/ Zi) against Zi; zeta decline

curves fitted against exponential and power-law regressions. AIC scores of the two models

confirmed that power-law regression is a better fit for all variations.
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S3 Fig. Zeta diversity graphs for zeta order 50 at order, family, genus, and species levels. Zeta

diversity decline, decline ratio, exponential and power-law regression graphs. For zeta order 50 at

taxonomic levels (A) order, (B) family, (C) genus, and (D) species. Results shown are for gameto-

phytes that became high-biomass sporophytes. Columns from left to right: Zeta diversity decline

representing the number of shared species (Zeta diversity, y-axis) against zeta order; Ratio of zeta

diversity decline, also called the “retention rate curve” that plots the zeta ratios (Zi+1/ Zi) against

Zi; zeta decline curves fitted against exponential and power-law regressions. AIC scores of the two

models confirmed that power-law regression is a better fit for all variations.
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S4 Fig. Box plots of network topology factors at the order level. Box plots of (A) total nodes,

(B) total edges, (C) positive to negative edge ratio, (D) average path length, (E) modularity, (F)

average degree, (G) heterogeneity, and (H) clustering coefficient for all populations (AQ, CI,

CP, and LC) with bacteria classified at the order level. Pairwise significance was tested with the

Wilcoxon test: ns: not significant, *: p < = 0.05, **: p< = 0.01, ***: p< = 0.001, ****: p< =

0.0001.
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S5 Fig. Box plots of network topology factors at the family level. Box plots of (A) total nodes,

(B) total edges, (C) positive to negative edge ratio, (D) average path length, (E) modularity, (F)

average degree, (G) heterogeneity, and (H) clustering coefficient for all populations (AQ, CI, CP,

and LC) with bacteria classified at the family level. Pairwise significance was tested with the Wil-

coxon test: ns: not significant, *: p< = 0.05, **: p< = 0.01, ***: p< = 0.001, ****: p< = 0.0001.
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S6 Fig. Co-occurrence networks of the microbial community classified at the order level.

Each node represents a unique taxa. Node size represents the hub score and node color repre-

sents phylum membership. Edge opacity represents the strength of the link and edge color rep-

resents a positive (green) or negative (magenta) co-occurrence pattern. Microbial networks

sampled from four populations: (A) AQ, (B) CI, (C) CP, and (D) LC.
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S7 Fig. Box plots of network topology factors by biomass quantile at the order level.

Box plots of (A) total nodes, (B) total edges, (C) positive to negative edge ratio, (D) average

path length, (E) modularity, (F) average degree, (G) heterogeneity, and (H) clustering coeffi-

cient for all biomass quantiles (Q1, Q2, Q3, Q4) with bacteria classified at the order level. Pair-

wise significance was tested with the Wilcoxon test: ns: not significant, *: p< = 0.05, **: p< =

0.01, ***: p< = 0.001, ****: p< = 0.0001.
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S8 Fig. Box plots of network topology factors by biomass quantile at the family level.

Box plots of (A) total nodes, (B) total edges, (C) positive to negative edge ratio, (D) average

path length, (E) modularity, (F) average degree, (G) heterogeneity, and (H) clustering coeffi-

cient for all biomass quantiles (Q1, Q2, Q3, Q4) with bacteria classified at the family level. Pair-

wise significance was tested with the Wilcoxon test: ns: not significant, *: p< = 0.05, **: p< =

0.01, ***: p< = 0.001, ****: p< = 0.0001.
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S9 Fig. Box plots of network topology factors by biomass quantile at the genus level.

Box plots of (A) total nodes, (B) total edges, (C) positive to negative edge ratio, (D) average

path length, (E) modularity, (F) average degree, (G) heterogeneity, and (H) clustering coeffi-

cient for all biomass quantiles (Q1, Q2, Q3, Q4) with bacteria classified at the genus level. Pair-

wise significance was tested with the Wilcoxon test: ns: not significant, *: p< = 0.05, **: p< =

0.01, ***: p< = 0.001, ****: p< = 0.0001.
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S10 Fig. Box plots of network topology factors by biomass quantile at the species level.

Box plots of (A) total nodes, (B) total edges, (C) positive to negative edge ratio, (D) average

path length, (E) modularity, (F) average degree, (G) heterogeneity, and (H) clustering coeffi-

cient for all biomass quantiles (Q1, Q2, Q3, Q4) with bacteria classified at the species level.

Pairwise significance was tested with the Wilcoxon test: ns: not significant, *: p < = 0.05, **: p

< = 0.01, ***: p< = 0.001, ****: p< = 0.0001.

(DOCX)

S1 Table. Summary of network topology factors. Network topology factors recorded for LC

gametophytes (n = 308) with bacteria classified at four taxonomic levels: order, family, genus,

and species. LC gametophytes were divided into four biomass quantiles and a summary of all

data is presented here. For each taxonomic level, we randomly sampled 50 individuals from

each quantile 100 times to create representative networks. Values have been rounded to four

significant figures. (*) Used in regression model.

(DOCX)

S2 Table. Summary of p-value and odds ratio values. P-value and odds ratio values for net-

work topology factors used in proportional odds logistic regression (POLR) model. Models

were as follows: (Order) Biomass Quantile ~ Positive to Negative Edge Ratio + Average Path

Length + Modularity + Heterogeneity + Clustering Coefficient, (Family) Biomass Quantile ~

Positive to Negative Edge Ratio + Modularity + Heterogeneity + Clustering Coefficient,

(Genus) Biomass Quantile ~ Positive to Negative Edge Ratio + Heterogeneity + Clustering

Coefficient, and (Species) Biomass Quantile ~ Clustering Coefficient.

(DOCX)

S3 Table. Hub taxa by population. Hub taxa with a Kleinberg’s centrality score of over 0.5.

M. pyrifera gametophytes from all four populations (AQ, CI, CP, and LC). Representative
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networks were generated for the microbial communities of each population. Taxa were then

given a score to quantify their role as a hub taxa. Taxa from the order and family levels that

scored over 0.5 are recorded here. *,+ denotes hub taxa found in more than one population

with a score over 0.5.

(DOCX)

S4 Table. Significant differences between network features across biomass outcomes.

Resulting p-values for Kruskal-Wallis rank sum test comparing network features across all bio-

mass quantiles. Results recorded for networks built with bacteria classified at the order, family,
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13. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: Microbial Jungle at

the plant–climate interface. Ann Rev Ecol Evol S. 2016; 47(1):1–24.

14. Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson A-C. Perspectives and challenges of microbial

application for crop improvement. Front Plant Sci. 2017;8.

15. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustain-

able agroecosystems. Nat Plants. 2018; 4(5):247–57. https://doi.org/10.1038/s41477-018-0139-4

PMID: 29725101

16. Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of

the bacterial microbiota of plants. Ann Rev Plant Biol. 2013; 64:807–38. https://doi.org/10.1146/

annurev-arplant-050312-120106 PMID: 23373698

17. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic

factors to plant microbiome variation. PLoS Biol. 2016; 14(1):e1002352. https://doi.org/10.1371/journal.

pbio.1002352 PMID: 26788878

18. Hui C, McGeoch MA. Zeta diversity as a concept and metric that unifies incidence-based biodiversity

patterns. Am Nat. 2014; 184(5):684–94. https://doi.org/10.1086/678125 PMID: 25325751

19. McGeoch MA, Latombe G, Andrew NR, Nakagawa S, Nipperess DA, Roigé M, et al. Measuring continu-
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