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Abstract

Normal development of the immune system is essential for overall health and disease resis-

tance. Bony fish, such as the zebrafish (Danio rerio), possess all the major immune cell line-

ages as mammals and can be employed to model human host response to immune

challenge. Zebrafish neutrophils, for example, are present in the transparent larvae as early

as 48 hours post fertilization and have been examined in numerous infection and immuno-

toxicology reports. One significant advantage of the zebrafish model is the ability to afford-

ably generate high numbers of individual larvae that can be arrayed in multi-well plates for

high throughput genetic and chemical exposure screens. However, traditional workflows for

imaging individual larvae have been limited to low-throughput studies using traditional

microscopes and manual analyses. Using a newly developed, parallelized microscope, the

Multi-Camera Array Microscope (MCAM™), we have optimized a rapid, high-resolution

algorithmic method to count fluorescently labeled cells in zebrafish larvae in vivo. Using

transgenic zebrafish larvae, in which neutrophils express EGFP, we captured 18 gigapixels

of images across a full 96-well plate, in 75 seconds, and processed the resulting data-

stream, counting individual fluorescent neutrophils in all individual larvae in 5 minutes. This

automation is facilitated by a machine learning segmentation algorithm that defines the

most in-focus view of each larva in each well after which pixel intensity thresholding and

blob detection are employed to locate and count fluorescent cells. We validated this method

by comparing algorithmic neutrophil counts to manual counts in larvae subjected to changes

in neutrophil numbers, demonstrating the utility of this approach for high-throughput genetic

and chemical screens where a change in neutrophil number is an endpoint metric. Using the

MCAM™ we have been able to, within minutes, acquire both enough data to create an auto-

mated algorithm and execute a biological experiment with statistical significance. Finally, we

present this open-source software package which allows the user to train and evaluate a

custom machine learning segmentation model and use it to localize zebrafish and analyze

cell counts within the segmented region of interest. This software can be modified as
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needed for studies involving other zebrafish cell lineages using different transgenic reporter

lines and can also be adapted for studies using other amenable model species.

Introduction

Neutrophils are a subset of blood-borne polymorphonuclear leukocytes that act as a frontline

defense against a wide range of insults [1]. Upon localized injury [2–4], or infection [5–7], neu-

trophils rapidly migrate to the affected area, where they eliminate pathogens and release factors

that prime tissue repair [8,9]. Neutrophil deficiency (neutropenia), resulting from congenital

conditions [10,11] or chemotherapeutic treatments [12,13], increase susceptibility to infections

[14,15] and worsen the overall clinical picture of the patient. Notably, the exposure to different

classes of environmentally relevant pollutants [16–18] has also been associated with neutrope-

nia, urging the development of high-throughput assays to screen for chemicals that affect neu-

trophil counts. Zebrafish is now recognized as a mainstay vertebrate model to study innate

immunity: the zebrafish hematopoietic program is highly conserved with higher vertebrates

[19] and each spawn can yield hundreds of transparent embryos that, as early as 48 hours post

fertilization (hpf), exhibit mature neutrophils [20]. Exploiting the available fluorescent

reporter lines to label neutrophils in vivo [21,22], large cohorts of zebrafish embryos can easily

be engaged in chemical-screening assays to evaluate neutrophil counts in vivo [23,24].

Previously published algorithms to automatically quantify fluorescent immune cells in zeb-

rafish [25,26] relied on time-consuming positioning and imaging one larva at a time, which

dramatically reduced the throughput and scalability of the assay. Improvements in technology

have recently allowed for the automation of this process using scanning microscopes [27,28]

which can increase the number of fish that can be feasibly examined, however restrictions still

exist with these methods with regard to the time required to capture and process data as well

as requisite orientation and pigmentation level of the fish, again limiting utility. Multi-camera

microscope designs have been proposed previously to overcome the limited field of view of

high resolution optics. Briefly, the use of multiple tightly packed microscopes in parallel can

help parallelize imaging large areas such as contiguous cell culture plates [29,30] or in discrete

areas such as well plates [30,31].

The recently developed Multi-Camera Array Microscope (MCAM™, Ramona Optics, Inc.)

provides a novel imaging mechanism and data processing platform that overcomes multiple

challenges in this workflow. An array of lenses, each coupled to a high-quality camera sensor,

cover a flexibly large viewing area depending on the number of mini-microscopes employed.

The system has been optimized for zebrafish behavioral and screening experiments [29,32]

and functions at multiple spatial scales [30]. The MCAM™ configuration used here has 48 cam-

eras with two distinct imaging modes, one using 24 cameras to peer into 24 wells of a 96-well

plate at once with ~3 μm per pixel resolution and 0.5 mm depth of field, and the second using

24 different cameras zoomed out to a more distant focal plane allowing the entire 96-well plate

to be imaged at once with ~9 μm per pixel resolution and 3 mm depth of field. In the zoomed

in mode, the motorized optical head of the instrument moves in the X and Y dimensions to

acquire four rapid images and yield a complete view of the plate in four seconds. The micro-

scope stage holding the well plate moves along the optical (z) axis and controls focus of the

specimen. Combining the movements of the optical head and stage, volumetric scans can be

rapidly acquired in all 96 wells yielding high temporal resolution in addition to high spatial

resolution throughout the 3-dimensional imaging space.
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With improved imaging capabilities comes the need for efficient strategies to process the

resulting data. Artificial intelligence and specifically machine learning for biomedical research

is a field constantly growing in scope with novel use-cases emerging frequently. In the last

decade the advent and reputable accuracies of ResNet [33] and AlexNet [34] found wide usage

in image classification tasks driving applications of this type of algorithm to be developed

across many computing platforms from traditional computer workstations [35–37] to smart-

phones [38] to gaming systems [39]. Segmentation algorithms in parallel attempt to solve the

problem of grouping semantically similar pixels within an image together, often distinguishing

an object-of-interest from background [40]. In biomedical applications U-Net has been imple-

mented repeatedly for segmentation due to its high accuracy and computational efficiency

[41]. Once pixels within an image are grouped together further analysis can be focused on this

region.

In this paper, we propose and demonstrate that it is possible to use an image processing

pipeline based on U-Net and blob detection to algorithmically count fluorescent immune cells

in zebrafish larvae. Manual counting is the current standard practice for quantification of

these cells [20,42–45] while algorithmic quantification yields highly reproducible, objective

values significantly faster than human analysis. This technology yields a relative measure of

immune cell count and can distinguish phenotypes within a population. To this end, we treat

zebrafish with both genetic and chemical immune attenuation techniques, quantify neutro-

phils, and compare distributions between populations by both manual and algorithmic count-

ing. We present here an imaging methodology and open-source framework for image

processing and analysis which we implement to digitally quantify the number of neutrophils

present in zebrafish under experimental immunomodulatory conditions. Additionally, we val-

idate functionality with mesh well plate inserts to expand utility in experiments requiring

media exchange.

Materials and methods

Zebrafish husbandry

Zebrafish husbandry and all experiments involving live animals were approved by the North

Carolina State University Institutional Animal Care and Use Committee (protocol 22–215). Tg
(lyz:EGFP)nz117tg [21,22] adult zebrafish were maintained in a recirculating aquarium facility

(Aquatic Habitats, Apopka, FL, USA) at 28 ˚C with a 14 hr light/10 hr dark cycle and fed a

commercial grade zebrafish diet. Wild-type zebrafish were originally purchased from LiveA-

quaria (Dayton, OH, USA) and Doctors Foster and Smith (Rhinelander, WI, USA) and main-

tained and bred in-house for>5 years. Zebrafish embryos were obtained by natural spawning

[46]. Embryos were transferred to and maintained in 100 mm Petri dishes in 1x E3 medium

[47] in ultrapure water prior to imaging. Zebrafish larvae were anesthetized using tricaine

methanesulfonate (MS-222; final concentration of 100 mg/L; Millipore-Sigma, St Louis, MO,

USA) for microscopic imaging and euthanized using 1% sodium hypochlorite.

Morpholino injection and dibutyl phthalate exposure

A csf3r morpholino, (50-GAAGCACAAGCGAGACGGATGCCAT-30) (GeneTools LLC, Philo-

math, OR, USA) was injected in the yolk of 1-cell stage Tg(lyz:EGFP) embryos as previously

described [48]. Dibutyl phthalate (DBP, #36736, Millipore-Sigma, St. Louis, MO, USA) was

pre-diluted in DMSO to a 10 mM concentration and stored at 4˚C. Embryos were exposed to

2 μM DBP in E3 medium from 6 to 72 hpf, with daily 99% medium change [16]. Control

embryos were exposed to DMSO alone.
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Image acquisition

Transgenic zebrafish larvae expressing the neutrophil-specific Tg(lyz:EGFP) transgene were

anesthetized at 72 hpf using tricaine (see above), plated into square well 96-well plates (Cytiva,

Marlborough, MA, USA) and imaged using a Multi-Camera Array Microscope (MCAM™,

Ramona Optics Inc., Durham, NC, USA) [29,30,32]. The MCAM™ was configured such that

24 color camera sensors each image a different well of a 96-well plate. Each of the 24 cameras

was set to capture an image with a total pixel count of 9.4 megapixels with an approximate res-

olution of 3 μm/pixel thus capturing an entire well in a single field of view. To capture the

images of the other 72 wells, the MCAM™ imaging head was repositioned three times. Inte-

grated reflection fluorescence illumination uses 450 nm LED lighting (LXML-PR02-A900,

Lumileds, Netherlands) with a 495 nm short-pass excitation filter and 535/50 nm emission fil-

ters (CT495SP and ET535/50m, Chroma, Bellows Falls, VT, USA). The microscope stage,

holding the well plate, was moved in the Z dimension and the optimal focal plane was deter-

mined by eye. From this plane the Z-stage was moved up and down to determine travel range

extrema where all fish would be out of focus, and it was found that 15 Z-slices (100 micrometer

axial step per slice) on either side of the optimal focal plane would guarantee that the MCAM™
captures an in-focus image of the fish. Four axial (z) stack acquisitions were quickly captured,

one at each of four lateral (x, y) locations to image the full well plate at all relevant heights in 75

seconds. Thirty-one Z-slices were obtained for each camera for each of the four axial stacks

imaging 128 x 85 x 3.1 mm overall. Two hundred ms exposure, 50% brightness, 2.4 digital gain

and 1.0 analog gain were used for all acquisitions. The four Z-stacks were automatically com-

bined by the MCAM™ software yielding one large volumetric scan containing the 31 axial slices

of all 96 wells. Data was stored in an HDF5 file containing both the raw image data, as well as

the metadata that describes the imaging settings previously mentioned ensuring accurate off-

line analysis. Each individual well image at each slice has dimensions 3072 x 3072 x 3 pixels

resulting in composite Z-slice images of 36,864 x 24,576 x 3 pixels or 906 megapixels per slice.

Images were acquired using a bayered color camera sensor and debayered prior to analysis, so

the third dimension of these image shapes represents the red, green, and blue color channels

of each image.

Segmentation model training and evaluation

Sixty in-focus images of individual zebrafish larvae in wells were selected at random for label

annotation and randomly sorted into segmentation model training, validation and test subsets

(30, 13, and 17 images respectively). Custom segmentation models were trained to detect and

segment fish from their background at different resolutions and thus locate them within their

well. The overall dataset of sixty frames was divided into training, validation, and test subsets

in order to properly train and evaluate the model. Individual images at 3072 x 3072 x 3 pixels

were labeled by outlining the region of interest (ROI) (the zebrafish) using the VGG Imaging

Annotator [49].

Images were downsampled to 64 x 64, 128 x 128, 256 x 256, 512 x 512, or 1024 x 1024 pixels2

and five different U-Net neural networks [41] were trained, one for each resolution, and each

model learns its parameter weights through an iterative training process. Models were trained

for fifty epochs using Dice loss [50] as the loss function, Adam [51] as the optimizer and learn-

ing rate beginning at 5E-4 and decreasing by a factor of ten both at the fifteenth and fortieth

epochs. Once a model has been trained, new images that it has not seen before can be analyzed

by the network resulting in statistical predictions as to where the boundary of a fish is likely to

be. An image mask is generated from this information, hiding the image background as deter-

mined by the model, and thus highlighting the fish in the frame for further analysis. To
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evaluate a segmentation model the test dataset (N = 17 images) was input into the model, seg-

mented, and the intersection over union (IoU) [52] of segmentation mask and truth labeled

fish was evaluated. Segmentation IoU and inference speed were evaluated and compared for

five models, each trained with data downsampled to the resolutions mentioned.

Image processing and cell counting

For each frame in each well, the first stage of the neutrophil quantification algorithm attempts

to segment a fish from the background at 256 x 256 pixel resolution yielding a ROI, which is

then scored by computing the variance of the Laplacian of the region [53]. The Laplacian oper-

ator computes the divergence of the gradient of a function and is used for detecting edges in

images. One best frame, maximizing variance of Laplacian, is selected from the Z-stack for

each well. Fish are segmented from the best-frames and a pixel intensity threshold and differ-

ence-of-Gaussian blob detection [54] were implemented to locate the centroid of each blob in

the region. For this second step segmentation is computed at 1024 x 1024 resolution for higher

segmentation accuracy. The pixel intensity threshold was determined interactively using Ima-

geJ. The identified blobs were counted for each well.

To manually accomplish these steps, best frames were selected by a human observer for 87

wells of a 96-well plate, which contained one fish each while the remainder of the wells were

empty. Cells were counted for each fish in each of the best frames using the built-in cell

counter ImageJ plugin which allows the user to label each pixel that they click. Orientation of

fish was manually scored as either the lateral or non-lateral orientation with lateral view

defined as having only one eye visible. Cells in each successive well plate dataset were manually

counted using the same strategy. For algorithmic neutrophil counts, each well plate dataset

was passed through the cell counting pipeline which selected the best focus frames and then

identified and counted blobs within each ROI of these frames. Cell counts from empty wells

were discarded.

Neutrophil counts were compared between manual and algorithmic counting methods for

each experimental condition using a Mann-Whitney U test implemented with SciPy’s statistics

library. Differences were considered statistically significant with p-values less than 0.05. The

Mann-Whitney U test was selected because compared distributions do not have normal distri-

butions [55]. Statistics were not computed for manual and algorithmic counts for wild-type

fish because the manual count is zero for all fish. Error was determined by calculating the stan-

dard error of each set of cell counts. Cell counts from all experimental conditions were then

pooled and linear regression, implemented with SciPy’s curve fitting module, was used to visu-

alize the correlation of manual and algorithmic counts overall.

Mesh well inserts

Once the workflow was established, csf3r morpholino injections were repeated for another

group of embryos and at 72 hpf the larvae were plated into mesh insert well plates

(MANM10010, Millipore-Sigma). Segmentation models were trained on the mesh well data

set to recognize zebrafish with the mesh background. The imaging and quantification proce-

dure was repeated using a pixel intensity threshold of 30 instead of 55 because the distribution

of pixel intensities in images had changed.

Results

In order to develop higher throughput strategies for assessing the impact of exposure to xeno-

biotic toxicants and/or immunomodulatory drug candidates on neutrophil number, we part-

nered the high-throughput capabilities of the MCAM™ system to image zebrafish larvae in a
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96-well format [29,30,32] with a transgenic zebrafish line expressing EGFP in neutrophils [22].

Our objective was to expand the tools available for using the zebrafish model in chemical and

genetic screens by establishing an efficient high-throughput protocol for quantifying neutro-

phil numbers in transgenic zebrafish larvae.

The overall workflow includes multiple steps outlined in Fig 1. Transgenic zebrafish larvae

are plated into 96-well plates with low autofluorescence and rapidly imaged using the

MCAM™, the Z-axis is searched for best-focus frames, and then the fish is segmented from its

background, and fluorescent cells are located and counted in the defined ROI. Acquisition and

processing of each 18 gigapixel dataset, representing the volume imaged across a 96-well plate,

takes approximately 6 minutes with an Intel i7 12900K central processing unit (CPU) and

NVidia A4000 graphics processor unit (GPU).

Machine learning based segmentation of zebrafish larvae is critical to the data acquisition

pipeline as this technique is used both to define a ROI to evaluate variance of Laplacian and

search the Z-axis for focus level as well as to create a ROI in which we search for cells to count.

Images for training segmentation models were organized and annotated (Fig 2A and 2B) and

then in order to reduce computation in this intensive step, images were downsampled for

model inference, optimally on a GPU. A visualization of segmentation masks generated at dif-

ferent resolutions is shown in Fig 2C. While this strategy reduces data processing demands,

and thus runtime (Fig 2D), it also reduces segmentation accuracy (Fig 2E). In developing this

pipeline we found that less segmentation accuracy was needed in the first segmentation step to

find best-focus frames but then higher accuracy was desired in the second segmentation step

to ensure that the generated mask encompasses the entire fish and we identify all neutrophils

within the region. Images were resized from 3072 x 3072 x 3 pixels to 256 x 256 x 3 for focus

finding and to 1024 x 1024 x 3 for cell counting.

Finding the optimal Z-plane and thus best focus images across 96 wells took 25 minutes for

a human to manually sort through the images and select the best images from the 31 Z-planes.

Segmenting fish and using the Laplacian variance algorithm within the regions of interest as

described takes 3.5 minutes to choose the best frames. We compared the frames selected by

algorithm versus those manually selected by a human (S1 Fig). 54% of the selections matched

exactly and 92% of algorithm selections either matched or were within one frame of the man-

ual selection.

Next EGFP+ neutrophils were counted both manually and algorithmically in zebrafish that

were in a lateral orientation in the best focus frames. Manual and algorithmic counts were

compared and a similar distribution and mean were found between the two quantification

methods (Fig 3A). The number of fish both out of focus and in a non-lateral view were counted

and it was found that very few fish were in these categories (Fig 3B). While it is not possible to

count fluorescent cells in these two categories of fish we chose to disregard this factor because

they made up such a small portion of the total population.

Finally, zebrafish were subjected to chemical and genetic immune attenuation methods

known to reduce neutrophil numbers and EGFP+ neutrophils were counted for all populations

including wild-type (non-EGFP) fish. The exposure of zebrafish larvae to dibutyl phthalate

(DBP) is known to reduce neutrophil numbers [16] and the genetic knock-down of the colony
stimulating factor 3 receptor (csf3r) gene in zebrafish larvae also has been shown to reduce neu-

trophil numbers [48]. When these methods were applied to Tg(lyz:EGFP) larvae, both methods

reduced the number of EGFP+ neutrophils (S2 Fig). No significant difference was found

between manual and algorithmic cell counting methods for untreated Tg(lyz:EGFP) fish and

those exposed to DBP while a small significance (p = 0.03) was found between cell counts from

fish injected with csf3r MO using aMann-Whitney U test (Fig 4A). Statistics were not com-

puted for wild-type fish because manual counts were zero for all fish. The algorithm counted 1
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Fig 1. Zebrafish imaging and neutrophil quantification workflow. Transgenic zebrafish larvae (Tg(lyz:EGFP)) expressing neutrophil-specific EGFP were

anesthetized at 72 hpf and distributed into 96-well plates with low background autofluorescence and volumetrically scanned using a MCAM™ (see Materials

and Methods). A) Depicts the Multi-Camera Array Microscope (MCAM™) alongside a closeup of the 48 micro camera modules that make up the microscope

array. Each lens is 12 mm in diameter. B) A representative image of a 96-well plate with Tg(lyz:EGFP) transgenic zebrafish larvae is shown. C) A zoomed in

image (natively 3072 x 3072 x 3 pixels2 and ~3 μm/pixel resolution) of a single well with a zebrafish larva in lateral orientation is shown. D) Following image

acquisition, the Z-axis was searched automatically for the most in-focus frame of each well using a pretrained segmentation model to find a region-of-interest

around each zebrafish and compute the best focus of this image region. E) Using the most in-focus frame for each well, each larva was segmented from the

image background and a mask was generated to represent this region-of-interest. F) Neutrophils are shown after applying a pixel intensity threshold applied to

the segmented larva which highlights the cells for counting. G) Individual cells were counted using blob detection techniques and are pinpointed on each image

for visualization.

https://doi.org/10.1371/journal.pone.0295711.g001
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Fig 2. Segmentation network training and evaluation. A) Data is organized for model training by annotating images,

resizing images and corresponding annotations to model input dimensions, separating images randomly into training,

validation and test subsets and then the training and validation subsets are used for model training while the test subset is

used for model evaluation. B) Images are annotated by outlining the fish and many of these image-label pairs are fed to

U-Net to train the neural network. C) Square 3072 x 3072 well images are downsampled to either 64 x 64, 128 x 128, 256 x

256, 512 x 512, or 1024 x 1024 pixels2 to reduce computation for segmentation inference and the resulting ROI mask is

upsampled back to the original image shape which greatly affects segmentation accuracy. Here, segmentation masks

computed at different resolutions are overlaid on the original image at native resolution and cropped to display only the

fish. Labels reflect the resolution downsampled to during inference. D) Inference time per frame is plotted against image

size. Inference time increases when segmenting increasing image sizes, and this computation is completed much more

efficiently on a GPU rather than CPU. The Y-axis is displayed on a log scale. E) Intersection over union is plotted against

image size. Intersection over union improves when images are inferred at higher resolution.

https://doi.org/10.1371/journal.pone.0295711.g002
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Fig 3. Algorithmic versus manual counting of EGFP+ neutrophils. A) Violin plot showing similarity between distribution of manual and algorithmic

neutrophil counts in 72 hpf Tg(lyz:EGFP) zebrafish expressing neutrophil-specific EGFP with highly similar mean values (N = 93 larvae). B) Orientation of

anesthetized 72 hpf zebrafish (N = 192 larvae) plated in square 96-well plates suggesting that the potential discrepancy introduced by counting cells in fish in

the non-lateral orientation is minimal because this sub-population accounts for such a small fraction of the whole.

https://doi.org/10.1371/journal.pone.0295711.g003

Fig 4. Algorithmic versus manual cell counting for experimental conditions. A) Knockdown and chemical modulation of zebrafish neutrophil counts. A

csf3r antisense morpholino (MO) was injected into one-cell stage zebrafish embryos reducing neutrophil counts at 72 hpf (N = 95 larvae). Another subset of

zebrafish were treated with 2 μM dibutyl phthalate (DBP), from 6 to 72 hpf, also reducing neutrophil counts but by a more subtle degree (N = 23 larvae).

Neutrophil counts were obtained manually and by using the algorithmic pipeline and compared for all groups including untreated Tg(lyz:EGFP) (N = 93

larvae) fish and non-EGFP wild-type (WT) fish (N = 96 larvae). Data points show average neutrophil count and error bars represent the standard error of each

experimental group. p-values were computed using a Mann-Whitney U test. * = p� 0.05, ns = no significance. B) Linear regression displaying strong

correlation between manual and algorithmic counts for all conditions.

https://doi.org/10.1371/journal.pone.0295711.g004
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to 3 neutrophils for a few fish which turned out to be auto-fluorescent melanophores. Addi-

tionally manual and algorithmic cell counts were compared, pooling the data from all experi-

mental conditions and a linear regression resulted in an R2 value of 0.8974 suggesting a strong

correlation between manual and algorithmic cell counts (Fig 4B). These results together con-

firm that the proposed algorithmic counting strategy is successfully matching the accuracy of

manual counting.

Once this workflow was established the imaging protocol was repeated using zebrafish in

mesh well inserts to determine if they would be compatible with cell counting. Mesh well

inserts have proven useful for chemical screens as they facilitate medium exchange and wash

procedures [56,57]. In these mesh well liners we found many more fish (31.7% vs. 2.6% in the

square well plates) to be in an orientation unsuitable for cell quantification (S3A Fig) either

because they were non-lateral or did not lie flat and thus had multiple best focal planes, how-

ever once these fish were removed from the dataset a strong correlation was again found

between manual and algorithmic counts (S3B Fig). Note that the pixel intensity threshold was

reduced to 30 from 55 for these studies because the mesh, visible through the fish, altered the

distribution of pixel intensities within the fish ROI. The csf3r morpholino injection was

repeated and again neutrophil reduction was quantified by algorithmic and manual counting

with similar results to the square well plate experiments (S3C Fig) suggesting that mesh well

inserts are amenable to this quantification workflow however there is an additional step

requiring human intervention to exclude fish in non-optimal orientations.

Discussion

Through this work we have demonstrated an automated, high-throughput neutrophil count-

ing protocol in zebrafish larvae that can be readily adapted for use with other cell types and

other model organisms. Using the MCAM™ we employ volumetric scans over an entire

96-well plate to ensure that we capture at least one in-focus image of each zebrafish. Custom

neural network segmentation models yield highly accurate localization of fish and cells are

counted using traditional image processing techniques and a blob detection strategy. It should

not be expected that a human and computer will interpret pixel intensities and blob bound-

aries identically and so it is unlikely that manual and algorithmic counts will ever match up

perfectly, however, using the statistical advantage we have in parallelizing many zebrafish

experiments at once we yield a relative measure of neutrophil count within a population that is

proven here useful in identifying differing immune cell counts between control and immune

attenuated fish. Through this approach we found strong correlations between average algorith-

mic and manual cell counts (Fig 4A) with no statistically significant difference for each condi-

tion except for wild-type (non-EGFP) fish counts because the algorithm counted one to three

cells in a few fish (autofluorescent melanophores) and when comparing to the manual count

of zero, any small difference is found to be significant. Furthermore, we found a strong correla-

tion of absolute cell counts between fish from all experimental conditions resulting in a linear

regression R2 value of 0.8974 (Fig 4B).

Volumetric acquisitions used in conjunction with convolutional neural networks are well

described in image reconstruction, composite, and focal stacking and searching techniques

[37,58–60] and have proven useful for automated disease diagnosis [61,62]. By utilizing the

rapid imaging of the MCAM™ throughout this 3-dimensional imaging space we are able to

ensure that we capture an in-focus image of nearly every fish and minimize the temporal dif-

ference between imaging the first and last fish which is important when considering rapidly

developing larvae. Once images were acquired, we implemented an automated approach for

selecting the best focus frame for each well, from the Z-stack and we chose to measure focus
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level of an image by maximizing the variance of the Laplacian transform of the image [53], or

in our case, of a region of an image. For each well, we use a custom segmentation algorithm to

locate the zebrafish in each frame of its Z-stack and define a ROI in which the variance of the

Laplacian is calculated, selecting the maximum as our best-focus frame. By considering only

the variance of Laplacian of the given ROI, we can hone in on the specific focal plane of inter-

est to ensure the zebrafish is in focus for further detailed analysis. Very few fish in images

(2.6%, N = 192 larvae) were found to be in a non-lateral orientation unsuitable for neutrophil

quantification (Fig 3B) and so we chose to disregard this factor in our analysis. Both the seg-

mentation algorithm (Fig 2C and 2E) and the focus selection functionality (S1 Fig) were

shown to be quite accurate.

In constructing this data processing pipeline three parameters, the pixel intensity threshold,

blob size, and blob intensity, required special consideration. When thresholding pixel intensity

values we chose to set the threshold at 55 because within the fish ROI, only neutrophils have

intensities above this value. We also chose to use a pixel thresholding method which sets pixel

values below the threshold to zero while values above the threshold are unmodified as opposed

to binary methods which set values above the threshold to 255, assuming an 8-bit scale, which

would disrupt the cell boundary that is less saturated than the centroid of each cell. The blob

counting algorithm uses a size parameter “max sigma” to define the maximum standard devia-

tion of a Gaussian kernel which is convolved with each image to find representative blobs as

well as an intensity threshold defining the lower bound of scale space blob intensities to be

detected. Using the size of neutrophils in our images we were able to set the blob size parame-

ter at 5 pixels so that individual cells are located but clusters are not found to be individual

cells. The blob intensity threshold was also fixed at 0.05 as consistent lighting parameters were

used across all acquisitions. Both the image pixel intensity threshold and blob intensity thresh-

old values are dependent on imaging and lighting conditions and thus require constant imag-

ing parameters to compare results between acquisitions. For example, by modifying our

protocol to use plates with mesh well inserts, the pixel intensity threshold needed to be reduced

because the background mesh is visible through the fish (S4 Fig) which alters the pixel inten-

sity distribution. By changing the size parameter, other cell types with different dimensions

could be quantified in the future.

A frequent question in digital cell counting is how a protocol rationalizes occluded cells or

groups of cells with indistinguishable borders. Implementations can be found where research-

ers have used more advanced computational methods and counting strategies such as you-

only-look-once (YOLO) convolutional networks [25,26,63], outlier rejection based on cell size

or fluorescence intensity and watershed segmentation to define cell borders [64–66] which can

yield improvements and high accuracy in terms of resolving individual cells. In our case, mak-

ing use of the high parallelization of our imaging, we only require an estimation of cell count

over a population and not an absolute value on a per fish basis and so further counting meth-

ods have not been found necessary. Size bounds within the blob detection algorithm do help

resolve clusters of cells because blobs found to be too big get split up into multiple smaller

blobs, however, it is possible that some smaller clusters of cells are registered as individual

cells. It has also been noted that by quantifying cells in one slice of each fish, we do not accu-

rately measure cells in the entire larva. While this is true, with fish in the lateral orientation,

the thickness of each fish is less than 1 mm, and thus when acquiring images with a depth of

field of 0.5 mm we do observe the majority of the volume of each fish and when considering

the high parallelization of imaging a consistent estimate across a population is obtained.

A similar experimental protocol for fluorescent cell counting was recently devised using the

WiScan Hermes High Content Imaging System and accompanying software with the goal of

producing high throughput assays [28]. In this example the group reports that it takes 15
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minutes to image one 96-well plate, 20 minutes to process and 10 minutes to analyze the result-

ing data. This method requires brightfield imaging prior to fluorescence exposure for proper

segmentation of the fish and Z-stacks were again employed to acquire 5 focal planes through an

overall imaging height of ~250 micrometers. Prior to imaging, fish are dechorionated, treated

with phenylthiourea to inhibit pigment formation, loaded in an alignment plate to ensure fish

orientation and centrifuged, and before analysis the user inputs maximum and minimum size

thresholds to assist the segmentation algorithm in finding anatomical regions of the fish. In con-

trast, our imaging encompasses 3.1 mm along the Z-axis, imaging in 75 seconds, a 6x increase

in imaging space in 12x less time, resulting in an effective speed-up to imaging of approximately

72x across a 96-well plate. Imaging all fish quickly is critical to ensure the temporal uniformity

of an experimental time point in studies focused on any level of embryonic development. Image

acquisition, and the processing and analysis pipeline, designed here, have a combined runtime

of 6.25 minutes compared to 45 minutes for the previous method. It is worth mentioning that

we imaged twice the height that we needed to to capture an in-focus frame of each well (S1 Fig)

and so for an optimized workflow imaging 1.5 mm instead of 3.1 mm we could reduce the full

acquisition and processing time from just over six minutes, to three. When comparing algorith-

mic cell counts to manual, we report a strong correlation across the whole fish as opposed to

solely the tail region and require no user inputs. The protocol proposed here does not require

any special rearing procedures and only minimal preparation ensuring that fish remain in con-

ditions as close to natural as possible while maintaining a high-throughput workflow. We pres-

ent this work as an open-source platform that researchers can adapt to their methods at no cost.

Building software and scientific technologies such as this automated neutrophil counting

methodology relies on the contributions of numerous other open source softwares such as

Python and the many resulting libraries as well as individuals who contribute online examples

and forum assistance. With these scripts on GitLab, a user can train a custom segmentation

algorithm to find a fish or any object of interest in images. An example is given for automated

evaluation of the trained neural network and images can be loaded from either a pre-extracted

folder or from an N-dimensional array data structure previously loaded into memory. A

method for searching the Z-dimension of a volumetric stack and computation to find the best

focus within a region are implemented. Finally, a few conventional image processing and

quantification techniques are used to identify and count the EGFP+ cells, which more broadly

can be used to isolate and count blobs of any identity in an image. By combining these tech-

niques, and utilizing the MCAM™ for imaging, we demonstrate a rapid, high-throughput, cell

counting process that can be easily adapted for other applications maintaining unbiased, untir-

ing, statistical significance.

Supporting information

S1 Fig. Correlation between manual and algorithmic selection of best-focus frames. Confu-

sion matrix showing the correlation between manual and algorithmic selection of best-focus

frames. The fish in each frame is segmented by a machine learning segmentation model and

the variance of the Laplacian of this region is computed and maximized to select the best focus

frame from each Z-stack. When manual selection matches algorithmic selection, counts lie

along the diagonal from top left to bottom right. 54% of selections match exactly between man-

ual and algorithmic selection while 92% of the algorithmic frame selections are within one

frame of the manually selected. Data represented here is from one 96-well plate and suggests

that many extra z-slices were acquired than were needed because only the center ~1.5 mm

were the in-focus frames of interest.

(TIF)
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S2 Fig. Validation of chemical and genetic methods to reduce neutrophil number. Knock-

down and chemical modulation of zebrafish neutrophil counts. A csf3r antisense morpholino

(MO) was injected into one-cell stage zebrafish embryos reducing neutrophil counts at 72 hpf

(N = 95 larvae). Another subset of zebrafish was treated with 2 μM dibutyl phthalate (DBP),

from 6 to 72 hpf, also reducing neutrophil count but by a more subtle degree (N = 23 larvae).

Average neutrophil counts were compared to wild-type (WT) fish (N = 96 larvae) and the sta-

tistical significance of each method for reducing neutrophil numbers was determined using A)

algorithmic counts and B) manual counts. Data points show average neutrophil count and

error bars represent the standard error of each experimental group. p-values were computed

using a Mann-Whitney U test. ** p< = 0.01; *** p< = 0.001; **** p< = 0.0001. Note: this is

the same dataset shown in Fig 4.

(TIF)

S3 Fig. Algorithmic versus manual neutrophil counts for larvae in well plates with mesh

well inserts. A) Proportion of zebrafish in the lateral or non-lateral orientation in 96-well

plates with mesh inserts at 72-hpf (N = 243 larvae). B) Linear regression displaying strong cor-

relation between manual and algorithmic counts for Tg(lyz:EGFP) fish in mesh-well insert well

plates (N = 163 larvae). C) Average cell count for untreated Tg(lyz:EGFP) fish in mesh wells

(N = 76 larvae) and Tg(lyz:EGFP) fish injected with csf3r morpholino (MO) (N = 87 larvae) as

determined by both manual and algorithmic counting. Error bars represent the standard error

of each experimental group and p-values were computed using a Mann-Whitney U test. * =

p� 0.05, ns = no significance.

(TIF)

S4 Fig. Evaluation of imaging larvae with mesh well inserts. Transgenic Tg(lyz:EGFP) zebra-

fish larvae (72 hpf) in mesh wells inserts in a 96-well plate. Larve were untreated (left) or

injected with a csf3r morpholino (MO) (right). Fish exhibit a lateral orientation defined as hav-

ing only one eye visible.

(TIF)
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60. Sigdel MS, Sigdel M, Dinç S, Dinç I, Pusey ML, Aygün RS. FocusALL: Focal Stacking of Microscopic

Images Using Modified Harris Corner Response Measure. IEEE/ACM Trans Comput Biol Bioinform.

2016; 13: 326–340. https://doi.org/10.1109/TCBB.2015.2459685 PMID: 27045831

61. Gopakumar GP, Swetha M, Sai Siva G, Sai Subrahmanyam GRK. Convolutional neural network-based

malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J

Biophotonics. 2018; 11. https://doi.org/10.1002/jbio.201700003 PMID: 28851134

62. Yanagihara RT, Lee CS, Ting DSW, Lee AY. Methodological Challenges of Deep Learning in Optical

Coherence Tomography for Retinal Diseases: A Review. Transl Vis Sci Technol. 2020; 9: 11. https://

doi.org/10.1167/tvst.9.2.11 PMID: 32704417

63. Alam MM, Islam MT. Machine learning approach of automatic identification and counting of blood cells.

Healthc Technol Lett. 2019; 6: 103–108. https://doi.org/10.1049/htl.2018.5098 PMID: 31531224

64. Ferrari A, Lombardi S, Signoroni A. Bacterial colony counting with Convolutional Neural Networks in

Digital Microbiology Imaging. Pattern Recognit. 2017; 61: 629–640.

65. Tulsani H, Saxena S, Yadav N. Segmentation using morphological watershed transformation for count-

ing blood cells. [cited 14 Jan 2023]. Available: https://www.ijcait.com/IJCAIT/23/236.pdf.

66. Lin Y, Diao Y, Du Y, Zhang J, Li L, Liu P. Automatic cell counting for phase-contrast microscopic images

based on a combination of Otsu and watershed segmentation method. Microsc Res Tech. 2022; 85:

169–180. https://doi.org/10.1002/jemt.23893 PMID: 34369634

PLOS ONE High-throughput quantification of EGFP-expressing cells in zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0295711 December 7, 2023 17 / 17

https://doi.org/10.1109/TCBB.2015.2459685
http://www.ncbi.nlm.nih.gov/pubmed/27045831
https://doi.org/10.1002/jbio.201700003
http://www.ncbi.nlm.nih.gov/pubmed/28851134
https://doi.org/10.1167/tvst.9.2.11
https://doi.org/10.1167/tvst.9.2.11
http://www.ncbi.nlm.nih.gov/pubmed/32704417
https://doi.org/10.1049/htl.2018.5098
http://www.ncbi.nlm.nih.gov/pubmed/31531224
https://www.ijcait.com/IJCAIT/23/236.pdf
https://doi.org/10.1002/jemt.23893
http://www.ncbi.nlm.nih.gov/pubmed/34369634
https://doi.org/10.1371/journal.pone.0295711

