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Abstract

Phytoplankton face numerous pressures resulting from chemical and physical stressors, pri-

marily induced by human activities. This study focuses on investigating the interactive

effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiol-

ogy of marine diatoms from diverse latitudes, within the context of global warming. Our find-

ings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on

the photochemical performance of the three diatoms examined, with Irgarol treatment exhib-

iting more pronounced effects. In the case of the two temperate zone diatoms, we observed

a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased

up to 25˚C. Similarly, for the subarctic species, an increase in temperature resulted in a

reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated

temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on dia-

toms. Furthermore, our data indicate that increased temperature could significantly interact

with UVR or Irgarol for temperate diatoms, while this was not the case for cold water dia-

toms, indicating temperate and subarctic diatoms may respond differentially under global

warming.

Introduction

Phytoplankton, serving as the fundamental basis of marine ecosystems, possess remarkable

adaptability to cope with challenging environmental conditions [1]. However, under the ongo-

ing climate change scenario, the gradual increase in global sea surface temperature, coupled

with the frequent occurrence of heatwaves in recent years, poses additional challenges for

these microorganisms, that might attributed to the global decline of phytoplankton biomass

[2,3]. Temperature has a significant impact on almost all metabolic pathways, with the inten-

sity and duration of temperature exposure playing crucial roles [4], and its interactions with
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other environmental stressors, such as UV radiation, nutrients, and organic pollutants, have

also been well documented [5,6].

Ultraviolet radiation (UVR) is a crucial environmental factor, significantly influencing the

phytoplankton inhabiting in the euphotic zone [7]. UVR can constrain enzyme activity, conse-

quently diminishing photosynthesis and growth rates [8], while also can cause DNA damage,

potentially leading to mutations and ultimately cell death of phytoplankton [9]. However, posi-

tive effects were observed under some conditions [10]. The increasing levels of UVR due to cli-

mate change is becoming a major concern for marine ecosystems [11]. With the receding sea

ice and shoaling of upper mixed layer, phytoplankton are subjected to increasing levels of

UVR, which can negatively affect their growth and productivity [12]. Such impacts could initi-

ate a cascading effect on the marine food web, considering that phytoplankton are an essential

component of marine ecosystems [13].

Anthropogenic activities released significant amounts of hazardous waste containing a

wide range of organic compounds into the ocean, leading to detrimental effects on the photo-

synthesis and metabolic pathways of phytoplankton [14]. With the rapid expansion of interna-

tional trade and the shipping industry, booster biocides have been detected globally, including

in high latitude regions [15]. One of the major pollutant is Irgarol 1051, a common triazine

compound, which poses environmental risks in areas with high shipping traffic even at rela-

tively low concentrations [16]. Its presence has been linked to the potential alteration of com-

munity structure, as it can selectively favor tolerant taxa [17,18]. Additionally, there is

evidence suggesting that this pollutant may interact synergistically with UVR, further impact-

ing the physiology of phytoplankton [19].

Photosystem II (PSII) is a complex of proteins and pigments that plays a crucial role in the

process of photosynthesis [20]. It is responsible for converting the energy from captured pho-

tons by pigments into electron flow, which in turn generates chemical energy needed for car-

bon dioxide fixation [21]. Compared to Photosystem I (PSI), PSII is more vulnerable to

environmental stressors, UVR and high-intensity photosynthetically active radiation (PAR)

can cause damage to PSII, disrupting the electron transport chain and leading to the formation

of reactive oxygen species [22]. UVR targets the subunits of photosystem, and the pollutant

Irgarol can also bind to these subunits, impeding electron transfer and directly promoting

photodegradation of PSII [23]. To maintain efficient photosynthetic performance, damaged

PSII subunits need to be replaced by newly synthesized proteins through a series of enzymatic

reactions [24], while this process is sensitive to temperature changes [6]. Previous studies have

shown that elevated temperatures counteracted the negative effects of UVR on the growth and

photosynthetic efficiency of eukaryotic phytoplankton, as well as cyanobacteria [25,26], as well

as mitigate the acute toxicity of the commonly used herbicide diuron to green algae [27].

Given the complexed environment faced by phytoplankton, we proposed a hypothesis that

temperature might influence the interplay between Irgarol 1051 and UVR, impacting the pho-

tosynthetic performance of marine phytoplankton. To explore this hypothesis, we focused on

three marine diatoms from different latitudes and examined their responses to Irgarol 1051,

UVR, and temperature, which are considered as representative environmental factors in this

study.

Materials and methods

Species, chemicals and culture conditions

In present work, we selected three diatoms that maintained in laboratory for over 2 years,

namely two temperate centric diatoms, Thalassiosira weissflogii (CCMA102) and Skeletonema
costatum (JOUP006) that were isolated from the Daya Bay (N22˚42010@, E114˚39036@) and
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Yellow Sea (N34˚41024@, E119˚30015@), respectively, that were grown at 20˚C, and a subarctic

pennate diatom Entomoneis sp. (JOUP008) that was originally isolated from the Bering Strait

(N64˚30015@, E190˚18020@), and grown at 5˚C. Extensive studies have been conducted on the

response of two temperate diatoms to environmental factors, while few study focused on the

subarctic species [11,28]. The light condition was around 50 μmol photons m-2 s-1 for the cul-

ture stock, to keep a relatively slow growth rate. The diatoms used in the present study were

obtained from the laboratory culture stock rather than a field site, so no permit was required.

The diatoms were inoculated into sterilized natural seawater that was enriched to F/2

medium [29], and subjected to semi-continuous culturing in triplicate 1 L polycarbonate bot-

tles for a duration of 10 days within an outdoor water bath. To mimic natural light condition,

the polycarbonate bottles were exposed to solar radiation, which allowed for UVA transmis-

sion while blocking almost all UVB radiation. All bottles were shaded by a neutral density

mesh, which had approximately 25% transmission. The mean daily light intensity during the

experiment was around 120 μmol photons m-2 s-1. To ensure the availability of nutrients,

approximately 60% of the culture volume was exchanged with fresh medium every two days,

thus the cells to be maintained at the exponential phase, and the cell density was kept at an

optimal level. During the daytime, the bottles were manually shaken 4 to 5 times to mimic nat-

ural turbulence. Following the shaking, the bottles were randomly placed back into the water

bath to allow for further experiments under the specified conditions.

Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-striazine) was prepared

in DMSO (C2H6OS), at a concentration of 0.4 mg L-1 for the stock solution. Preliminary exper-

iments confirmed that the DMSO had no effect on the photochemical performance of the

marine diatoms across a range of temperatures from 5 to 25˚C.

Experimental setup

For the temperate diatoms, the temperature was controlled using a thermostat, with three differ-

ent temperature settings: 10, 15, or 20˚C, which represented the temperature range typically

observed in temperate oceans, and a temperature of 5˚C was maintained for the subarctic species.

In order to simulate the global warming scenario, a 5˚C temperature increase was applied for

three diatoms, the variation for each temperature was controlled to vary by less than 1˚C (Fig 1).

After a minimum acclimation period of 10 days at various temperatures, sub-cultures of the

grown cells were carefully collected and dispensed into quartz tubes with a volume of 100 mL.

These tubes were then subjected to specific conditions for a duration of 120 minutes, the expo-

sure light intensity was set to ~120 μmol photons m−2 s−1 for PAR, and 4.2 W m-2 for UVR.

Previous studies have shown that the photo-physiology of diatoms would reach a stable state

after 60 min under stressful condition [19]. To ensure proper adaptation to the experimental

conditions, each sample was allowed to acclimate for 10 minutes prior to commencing the

experiment. The quartz tubes were then placed into a water bath at 30-second intervals, ensur-

ing that each tube experienced the same illumination conditions throughout the experiment.

These illumination conditions were achieved using a fluorescence lamp, which emitted PAR,

and a Q-Panel lamp (UVA-340, Miami, USA), which emitted both UVA and UVB radiation

to generate UVR. To create specific treatments, cut-off glass filters (ZJB280 or ZJB400) were

placed on top of the quartz tubes, that will block the radiation below wavelengths of 280 nm or

400 nm, and produced PAR+UVR (PAB) and PAR treatments. These filters selectively allowed

the desired wavelengths of light to pass through, ensuring that the appropriate radiation com-

bination was achieved within the tubes. Furthermore, the compounds Irgarol 1051 or DMSO

(as a control) were added into the quartz tubes, thus 4 treatments were created as shown in

Table 1.
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The nominal Irgarol concentration in the sub-cultures was 0.4 μg L-1, which is closed to

reported environmental levels, particularly in coastal waters [16]. To ensure consistent light

exposure conditions, the distance between the lamps and the quartz tubes was adjusted

Fig 1. Graphic scheme of the experimental design, in which cold water species was cultured at 5 and 10˚C,

temperate species were at 10, 15, 20 and 25˚C. After pre-acclimation at the different temperatures for 10 days,

cultures were dispensed into quartz tubes, with addition of 0.1% DMSO as control, and 0.4 μg L-1 Irgarol 1051

(dissolved in DMSO), then placed under customized equipment for the 120 min exposure experiment (see text for

details).

https://doi.org/10.1371/journal.pone.0295686.g001
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accordingly, and the accuracy of the light intensity was validated using a portable radiometer

(PMA2100, Solar Light, USA).

Determination of chlorophyll fluorescence

For chlorophyll fluorescence measurement, quartz tubes with cells were incubated under PAR

or PAB conditions. Then sub-sample (~2 mL) was taken from each tube regularly and mea-

sured within 10 seconds by an Aquapen fluorometer (Photon Systems Instruments, Czech

Republic) with a saturating light pulse of 3000 μmol photons m−2 s−1. This procedure without

dark adaptation allowed us to get the real photochemical performance at respective conditions.

The time interval between measurements was 6 min for the first 30 min and 10–15 min for the

rest of measurements.

Data analysis

Quantum yields were calculated from the fluorescence values measured with the Aquapen

fluorometer.

Effective quantum yield (QY) = (Fm ’- Ft)/Fm’

Where Fm’ represents the maximal fluorescence, and Ft represents the steady-state fluores-

cence under actinic light [30].

The relative inhibition induced by UVR, Irgarol and UVR + Irgarol (U + I) on PSII was cal-

culated as following:

Relative UVR inhibition (%) = (Ycontrol−YPAB)/ Ycontrol × 100%

Relative Irgarol inhibition (%) = (Ycontrol−Y Irgarol)/ Ycontrol × 100%

Relative U + I inhibition (%) = (Ycontrol−YPAB + Irgarol)/ Ycontrol × 100%

Under stressful condition in algae, photosystem II activity decreases until the damage and

repair of PSII reach a balance, thereafter remaining at a quasi-steady state. In the present study

this occurred after 60 min exposure, thus Ycontrol, YPAB, YIrgarol and YPAB + Irgarol represent the

averaged quantum yields from 60 to 120 min exposure under respective treatments.

The individual and interactive effects of temperature, UVR, and Irgarol on diatoms were

analyzed using a permutation 3-way ANOVA. Before conducting the analysis, the assumptions

of homoscedasticity for each data group and normality of residuals were verified. To deter-

mine the significance of differences in relative inhibition among treatments, a one-way

ANOVA with Tukey’s test was performed.

To evaluate the directions of two-level interactions between UVR, Irgarol, or temperature,

we calculated the expected quantum yield (QYe) assuming an additive interaction between

these factors, and compared this with the measured quantum yield (QYm) obtained under the

corresponding treatment.

Table 1. Treatment matrix for exposure experiments.

Factors DMSO DMSO + Irgarol

PAR Treatment 1 (T1) Treatment 3 (T3)

PAR + UVR Treatment 2 (T2) Treatment 4 (T4)

T1: PAR control

T2: PAB control

T3: PAR + Irgarol and

T4: PAB + Irgarol.

https://doi.org/10.1371/journal.pone.0295686.t001

PLOS ONE Temperature interacts with UV radiation and Irgarol 1051 to affect diatoms

PLOS ONE | https://doi.org/10.1371/journal.pone.0295686 February 7, 2024 5 / 15

https://doi.org/10.1371/journal.pone.0295686.t001
https://doi.org/10.1371/journal.pone.0295686


If the ratio QYm/QYe is greater than 1, it indicates an antagonistic interaction, a ratio of 1

suggests an additive interaction, while a ratio less than 1 implies a synergistic interaction [31].

Results

The QY of T. weissflogii under PAR remained stable throughout the exposure experiment,

maintaining values around 0.55–0.59 (Fig 2). However, under UVR and/or Irgarol treatment,

the QY gradually decreased and eventually reached stable levels towards the end of the expo-

sure. At a temperature of 10˚C, the QY was reduced to 0.33 under UVR alone and further

decreased to 0.26 under Irgarol treatment (Fig 2A), the lowest QY was observed when exposed

to both UVR and Irgarol, reaching around 0.19 at the end of the exposure period (Fig 2A). At

a temperature of 15˚C, the QY decreased to 0.51 under UVR alone and dropped to 0.35 under

Irgarol treatment, while the lowest QY value was also recorded under the combined treatment

of UVR and Irgarol, approximately 0.29 (Fig 2B). Similar patterns were observed at tempera-

tures of 20˚C and 25˚C, where the QY exhibited a gradual decrease as seen at 10˚C and 15˚C,

although the magnitude of the decrease was generally smaller (Fig 2C and 2D).

The trend in QY for S. costatum at a temperature of 10˚C showed a similar pattern to that

observed for T. weissflogii (Fig 3A). The lowest QY value, approximately 0.32, was recorded

Fig 2. The quantum yields (QY) of photosystem II of T. weissflogii at four temperatures (A: 10˚C, B: 15˚C, C: 20˚C, D: 25˚C) and exposed

to two radiation treatments (PAR, black and UVR, red) and two Irgarol 1051 treatments (0, hollow symbols and 0.4 μg L-1, solid symbols).

Vertical lines represent standard deviations, n = 3.

https://doi.org/10.1371/journal.pone.0295686.g002
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after a 120-minute exposure under the UVR + Irgarol condition. However, it is worth noting

that the decrease in QY amplitude in S. costatum was considerably smaller compared to T.

weissflogii at temperatures ranging from 15˚C to 25˚C, even when cells were exposed to the

UVR + Irgarol treatment, with the lowest QY value recorded for S. costatum after 120 minutes

of exposure, around 0.45 at 15˚C (Fig 3).

The trend of QY for Entomoneis sp. exhibited similarities to that of S. costatum and T. weiss-
flogii, although the initial value of Entomoneis sp. was lower at approximately 0.40 (Fig 4), and

less decrease in QY observed under warming compared to that observed at 5˚C (Fig 4A and

4B). Statistical analysis shown that the factors applied in this study could independently or

interactively affect the photochemistry of diatoms (Table 2). Generally, all factors had signifi-

cant individual effects on three species, while two-level interactions were observed in temper-

ate species, and a three-level interaction was only found in T. weissflogii (Table 2).

To assess the effects of UVR and Irgarol, the relative inhibition was calculated during the

period when the QY remained stable after 60 min exposure, and both UVR and Irgarol showed

significant inhibition on the tested diatoms. In the case of T. weissflogii, the relative UVR inhi-

bition was notably higher at a temperature of 10˚C, reaching approximately 40%. However, as

the temperature increased to 15–20˚C, the relative UVR inhibition decreased to around 15%,

and further declined to below 10% at a temperature of 25˚C. For S. costatum, the relative UVR

Fig 3. The quantum yields of photosystem II of S. costatum at four temperatures (A: 10˚C, B: 15˚C, C: 20˚C, D: 25˚C) exposed to two

radiation treatments (PAR, black and UVR, red) and two Irgarol 1051 treatments (0, hollow symbols and 0.4 μg L-1, solid symbols).

Vertical lines represent standard deviations, n = 3.

https://doi.org/10.1371/journal.pone.0295686.g003
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inhibition remained below 10% across all temperature levels, with the highest inhibition

observed at 10˚C (Fig 5A). Similarly, the relative UVR inhibition on Entomoneis sp. was

approximately 12% at 5˚C and 8% at 10˚C (Fig 5A). The relative Irgarol inhibition also dis-

played a similar trend, being highest at the lowest temperature, around 48%, 23% and 10% for

T. weissflogii, S. costatum and Entomoneis sp., respectively, and decreasing as the temperature

Fig 4. The quantum yields of photosystem II of Entomoneis sp. at two temperatures (A: 5˚C, B: 10˚C) exposed to two

radiation treatments (PAR, black and UVR, red) and two Irgarol 1051 treatments (0, hollow symbols and 0.4 μg L-1,

solid) symbols. Vertical lines represent standard deviations, n = 3.

https://doi.org/10.1371/journal.pone.0295686.g004
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increased (Fig 5B). When exposed to simultaneous UVR and Irgarol, the relative U + I inhibi-

tion was substantially higher compared to the inhibitions induced by the individual factors,

and decreasing with increased temperature (Fig 5C). Interestingly, all relative inhibitions

exhibited a correlation with temperature, generally with the lower values observed at the

higher temperature.

For treatments that significant interactions were observed, results showed that the ratio of

measured QY (QYm) to expected QY (QYe) under UVR + Irgarol were closed to 1.0, varied

from 0.99 for S. costatum, to 1.08 for T. weissflogii (Fig 6). Under the UVR + warming treat-

ments, the QYm/QYe values were all greater than 1.0, the lowest values, approximately 1.06,

were observed for S. costatum, while the highest values, around 1.40, were obtained for T.

weissflogii (Fig 6). Under Irgarol + warming treatments, the QYm/QYe values for both diatoms

were greater than 1.0, the highest value, around 1.24, was observed for T. weissflogii, while S.

costatum exhibited a value of approximately 1.16.

Discussion

In the context of global changes, understanding how phytoplankton respond and adapt is

essential for accurately estimating the carbon sink capacity of marine ecosystems [32]. Given

the significant variability of seawater temperatures between temperate and polar habitats and

their continual rise due to global climate change [33], our study aimed to delve into the possi-

ble modulation of the interaction between Irgarol 1051 and UVR caused by temperature

increase. The data illustrated that both UVR and Irgarol produced a notable inhibitory impact

on the photochemical processes of the three diatoms under examination. However, it’s crucial

to acknowledge the gap between the current short-term evaluation and the long-term global

effects. The observed temperature increase alleviated the short-term inhibitory effect induced

by UVR and Irgarol, suggesting that global warming might potentially affect marine ecosys-

tems through its interaction with other environmental stressors. [34].

Marine algae’s susceptibility to UV exposure can lead to decreased carbon dioxide assimila-

tion and primary productivity [35]. Our findings are consistent with previous research, which

indicated a significant UVR inhibition of the three examined diatom species [36]. The magni-

tude of UVR inhibition varied among species without a clear correlation to the latitude of their

isolation, suggesting that UV sensitivity may evolve over time during extended laboratory stor-

age, regardless of the diatoms’ original latitude-light history correlation [37]. Furthermore,

when grown at the lowest temperature, T. weissflogii showed a significantly higher relative

UVR inhibition compared to the other two species. This suggested that the extent of a phyto-

plankton’s sensitivity to environmental stress could correlate with the degree of deviation from

its optimal temperature, considering that T. weissflogii was isolated from a region warmer than

Table 2. The statistical results of permutation 3-way ANOVA for the QY of three species during 120 mins exposure experiments under different combinations of

UVR, Irgarol and temperature (T), all significant effects were negative.

Species T. weissflogii S. costatum Entomoneis sp.

Factor df F Sig. df F Sig. df F Sig.

UVR 1 544.331 0.000 1 87.062 0.000 1 142.271 0.000

Irgarol 1 3319.491 0.000 1 425.424 0.000 1 56.816 0.000

T 3 305.193 0.000 3 43.556 0.000 1 7.931 0.012

UVR + Irgarol 1 37.095 0.000 1 7.398 0.010 1 1.544 0.232

UVR + T 3 44.117 0.000 3 5.916 0.002 1 6.175 0.024

Irgarol + T 3 9.620 0.000 3 23.766 0.000 1 4.288 0.055

UVR + Irgarol + T 3 22.524 0.000 3 1.358 0.273 1 0.007 0.935

https://doi.org/10.1371/journal.pone.0295686.t002
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those of the other species, the thermal history could play an important role in response to heat

stress, implied that species acclimated at high temperature would be more tolerant and influ-

ence diatom species competition [4,38].

As an effective antifouling agent, Irgarol 1051 is more toxic than other triazine compounds

[17], that hampers the electron transport on the donor side of PSII by competing for the

Fig 5. Relative UVR inhibition (A), relative Irgarol inhibition (B) and relative U + I inhibition (C) on photosystem II

of three diatoms. data are expressed as means ± SD, n = 3, letters above bars indicate significant differences among

treatments.

https://doi.org/10.1371/journal.pone.0295686.g005

PLOS ONE Temperature interacts with UV radiation and Irgarol 1051 to affect diatoms

PLOS ONE | https://doi.org/10.1371/journal.pone.0295686 February 7, 2024 10 / 15

https://doi.org/10.1371/journal.pone.0295686.g005
https://doi.org/10.1371/journal.pone.0295686


binding of plastoquininone on the QB protein [16]. If proteins are not adequately replaced,

this disruption can lead to a significant inhibition of the D1 protein function and the down-

stream electron flow [23]. The ambient concentration of Irgarol in certain regions can be rela-

tively high [39], for instance, the accumulated concentration of triazine compounds in the

Bohai Sea and the Yellow Sea has been reported to reach up to 1.67 μg L-1 [40]. Our findings

revealed that Irgarol 1051 can induce up to 45% inhibition on the photosynthetic potential of

diatoms, even at relatively low concentrations (0.4 μg L-1), indicating that the current environ-

mental levels of organic pollutants might pose substantial ecological risks [41]. Moreover, the

impacts of Irgarol 1051 on the photochemistry of three diatoms were species-specific. T. weiss-
flogii showed 30–35% inhibition in the typical temperature range (20–25˚C) of the isolated

niche, while S. costatum and Entomoneis sp. showed only 10% inhibition at typical tempera-

tures. These risks could partially account for the observed decrease in phytoplankton produc-

tivity [3], as well as the shift of community structures [26,42].

As one of the most important abiotic environmental factors, temperature influences almost

all metabolic pathways [43], though marine organisms often encounter multiple environmen-

tal stresses [44]. Our data showed that elevated temperature reduced the inhibition of Irgarol

1051 and UVR on the photochemical performance of marine diatoms, while the attenuation of

herbicide effects by temperature rise was summarized by Gomes and Juneau [45]. Previous

studies found that increasing temperature counteracts the negative effect of UV radiation on

Fig 6. The ratio of expected QY (QYe) to measured QY (QYm) under UVR + Irgarol, UVR + T and Irgarol + T for T. weissflogii
and S. costatum, vertical lines represent SD, n = 3.

https://doi.org/10.1371/journal.pone.0295686.g006
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growth and photosynthetic efficiency of cyanobacteria and chlorophytes, possibly by enhanc-

ing repair rates of PSII [46,47]. Phytoplankton usually exhibit peak resilience to adverse condi-

tions at their optimal growth temperature [48], thus departures from optimal temperature can

modulate the stresses caused by other factors, such as ocean acidification, organic pollutants

and ultraviolet radiation, while trade-off between herbicide sensitivity and thermal acclima-

tion/adaptation would also be responsible for the outcome of multiple stressors [49]. The ben-

eficial effect of warming could be linked to its influence on the enzymes involved in the

antioxidant system, which helps eliminate reactive oxygen species (ROS) generated under

stress [50]. In addition, increasing turnover of PSII proteins would also contribute to the

observed beneficial effect of warming [51]. As temperature increases, the enzymatic activity of

these protective mechanisms significantly improves, potentially alleviating the impact of envi-

ronmental stressors on phytoplankton [52].

Phytoplankton are exposed to a multitude of environmental stressors, including organic

pollutants, ultraviolet radiation, and ocean acidification [53,54]. With continual human-

induced changes, these physical and chemical stressors may interact, potentially influencing

marine phytoplankton [55]. Nonetheless, predicting the cumulative impact of these factors on

primary production is complex due to the intricacy of their interactions and the limited data

available [56]. Furthermore, the burgeoning shipping industry coupled with the delayed recov-

ery of ozone holes in the Antarctic and Arctic might intensify the impact on subarctic phyto-

plankton, such species have been identified as more sensitive than their counterparts from

different regions [57]. The current study, while demonstrating short-term positive effects from

elevated temperatures, only investigated a limited spectrum of species and environmental pres-

sures. In addition, it is important to note that the Irgarol concentration applied in this study

was nominal rather than an actual value, which may make the results incomparable with those

of other studies. In light of the grave challenges phytoplankton could encounter under poten-

tial climate change scenarios, it becomes crucial to evaluate the interplay of significant factors,

particularly within susceptible ecosystems [58].
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