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Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychi-

atric diagnostic process is subjective and behavior-based. In contrast, functional magnetic

resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying

brain disorders. However, the ASD diagnostic models employed to date have not reached

satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that uti-

lizes multi-view convolutional neural networks (CNNs) in conjunction with attention mecha-

nisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines

unsupervised and supervised learning. In the initial stage, we employ stacked denoising

autoencoders, an unsupervised learning method for feature extraction, which provides dif-

ferent nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised

learning by employing multi-view CNNs for classification and obtain the final results. Finally,

multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE

dataset is used to evaluate the model we proposed., and the experimental results show that

MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I,

and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly con-

tributes to the clinical diagnosis of ASD.

Introduction

Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental disor-

der that manifests in early childhood with deficits in social communication, limited repetitive

sensorimotor behaviors, and attention problems [1]. ASD typically persists into adulthood and

affects about 1% of the global population, with males being four times more susceptible to the

condition than females [2]. Elsabbagh et al.’s survey indicated that one in 70 children world-

wide has autism. The United States has one of the highest rates of ASD, with an estimated 168

out of every 10,000 children affected in 2018. Currently, clinical interviews and behavioral

observation are primarily used to diagnose ASD. The absence of pathological and physiological

markers hinders the DSM-based diagnosis of ASD, making it difficult and leading to the
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potential misdiagnosis of children with the condition, ultimately hindering optimal interven-

tions [3].

The advent of neuroimaging has given rise to functional magnetic resonance imaging

(fMRI), a technique used to measure brain activity by calculating changes in local blood oxy-

genation that correspond with adjacent brain activity. This method enables computer

researchers lacking experience in psychiatry or psychology to analyze data obtained from

imaging and infer results for individuals with mental disorders [4]. Quantitative analysis of

brain imaging data has provided invaluable biomarkers resulting in more precise diagnoses of

brain diseases. Machine learning, supported by fMRI, has been extensively utilized by

researchers in detecting and identifying ASD, establishing a more objective and scientific

approach toward diagnosis. Thus, urgent action is required to develop a neuroimage-based

diagnostic method for ASD to reduce delays and misdiagnosis caused by conventional diag-

nostic processes.

The Autism Brain Imaging Data Exchange (ABIDE) collects data from various interna-

tional sites. It classifies them into two distinct subsets, ABIDE-I and ABIDE-II, comprising

functional and structural brain imaging datasets, respectively. Researchers are increasingly

interested in using fMRI data to detect ASD, leading to several studies based on ABIDE data-

sets. For instance, Iidaka (2015) [5] employed probabilistic neural networks to classify rs-fMRI

data of individuals below 20 years of age. Another study by Dvornek et al. (2017) [6] involved

training a long short-term memory model on ABIDE data, achieving an accuracy rate of

68.5%. Structural and demographic information has also been incorporated alongside fMRI

data to diagnose ASD. Jiang et al. (2020) [7] proposed a graph convolutional network (GCN)-

based model that incorporated non-imaging information such as gender and site, achieving an

accuracy of 73.1%.

In the field of medical diagnosis, traditional machine learning methods have been applied

in the early stages [8, 9]. Abraham et al. (2017) [10] calculated connectivity measures across all

regions and employed support vector machines (SVM) to categorize 403 ASD patients and

468 healthy controls, having verified various methods extensively. Another study by Reiter

et al. (2021) [11] classified the data of 686 subjects using a random forest algorithm (RF)-based

classifier training model, according to gender and the different degrees of functional connec-

tivity (FC). The average accuracy obtained was 67.5%, with the highest accuracy being 73.75%.

In recent years, machine learning methods, including neural networks and deep learning

methods [12, 13], have been utilized to diagnose ASD [14–18]. Heinsfeld et al. (2018) [19] cate-

gorized 1,035 participants based on their ASD status, where 505 participants had ASD and 530

were healthy controls. The study conducted feature engineering to evaluate the different paired

Pearson correlation coefficients. To extract low-dimensional features, the researchers designed

two stacked denoising autoencoders (SDA). The weights of the autoencoders were then uti-

lized in the multilayer perceptron (MLP) classifier to classify the participants. The study fur-

ther tested their models on 17 sites in the ABIDE database and reported an average accuracy of

52%. The researchers attributed the lower accuracy rates to the limited data samples from a

particular site that led to underfitting. Another study by Rakhimberdina et al. (2020) [20] pro-

posed a multi-model ensemble method to construct population graphs for diagnosing ASD.

The researchers developed multiple population graphs by exploiting different combinations of

imaging and phenotypic features and evaluated their performance on the ABIDE dataset. They

used a neural network architecture to combine multiple graph-based models together, and

achieved an accuracy of 73.13% and an AUC of 0.75. Yao et al. [21], in 2021, improved the

graph convolutional neural network to identify brain diseases with an accuracy of 67.3%.

Alsaade et al. (2022) [22] evaluated the performance of three deep learning models, VGG19,

NASNETMobile, and Xception [23], in classifying ASD on Kaggle’s facial feature dataset. The
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experimental results reported that Xception achieved the highest accuracy of 91%. It is vital to

note that ASD diagnosis lacks reliable biomarkers, and even though certain methods achieve

high accuracy, clinical diagnosis is still a challenging task. In recent years, researchers have

been dedicated to unraveling the mechanisms of ASD and identifying reliable biomarkers

[24]. Wang et al. [25] trained an attention-based graph neural network to automatically diag-

nose ASD by integrating graph data. The study indicates that the model places more emphasis

on brain regions related to the social-brain circuit, default-mode network, and sensory percep-

tion network. Additionally, the research detected several genes associated with ASD, contrib-

uting to the identification of biomarkers for ASD.

Although machine learning have been developed in the diagnosis of ASD for numerous

years, the performance indicators are far from reaching the application requirements of medi-

cal diagnosis. Deep learning based on convolutional neural networks has been applied to ASD

recognition as well, and has shown to be more effective than traditional machine learning.

Currently, there are already some works on multi-atlas [26]. Graa et al. [27] proposed a model

called MV-LEAP to solve the class imbalance problem in multi-atlas data. The dataset is bal-

anced by generating synthetic minority class samples using the SMOTE algorithm, and tensor

canonical correlation analysis is used to align data from different atlases into a shared low-

dimensional subspace. This model enhances the performance of multi-atlas data classification.

Gurbuz et al. [28] proposed a method called MGN-Net to normalize and integrate the biologi-

cal network groups from multi-atlas. This method can retain the unique topological character-

istics of the multi-atlas network and build a connection template network by embedding the

pairing relationships represented. This method is not only suitable for the diagnosis of ASD

but also extends to other brain network diseases. Pan et al. [29] not only used multi-atlas but

also used non-imaging data as a supplement. Use AAL and HO two atlases to construct the

multi-modal graph representation, and use the snowball graph convolution module to learn

multi-atlas information. A channel-sharing convolution module is designed to filter out shared

information from multi-modal data through a shared weight matrix. This method achieved

better results. Wang et al. [30] used multi-source domain adaptation to convert subjects from

different sources into the target domain and then used multi-view sparse representation to

combine the image information of gray matter and white matter regions for ASD classifica-

tion. But, development in ASD identification has been slow in recent years. We find that there

are few to combine traditional neural networks and CNN. As a well-known fact, autoencoders

have strong feature extraction performance, and the rapid development of CNNs in recent

years has made it more and more effective in classification. Based on the above analysis, We

propose a convolutional neural network method combined with autoencoders to diagnose

ASD, aiming at the problems of optimized model structure, and imperfect single scale infor-

mation. We propose a new model of ASD identification, which uses stacked denoising autoen-

coders and the self-designed CNN to train the whole ABIDE datasets. The autoencoder feeds

the extracted features to the CNN for classification. This study uses multi-view attention mech-

anism to fuse multi-scale data, which makes up for the shortcomings of the current research

that only uses single scale, and makes full use of the information complementarity between

scales effectively improving the performance of ASD recognition.

The structure of this paper is given as follows: The Materials and Methods section intro-

duces the basic information of the employed datasets and the preprocessing of the data. The

details of the proposed method and model are presented. In the Results and Analysis section,

the experimental settings and results are described and analyzed in detail. In the Discussion

section, our proposed method and the latest results obtained by researchers are discussed.

Finally, in the Conclusion section, we summarize the study and discuss the direction of future

development.
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Materials and methods

Datasets and data preprocessing

As of now, the most comprehensive open-access dataset available for ASD diagnosis is ABIDE.

ABIDE has two major subsets, namely ABIDE-I and ABIDE-II. These subsets come with rest-

ing-state functional magnetic resonance imaging data, structural MRI data, and phenotypic

data [31]. ABIDE-I is constituted by 1112 datasets obtained from 17 different international

sites. The subset consists of 539 ASD subjects and 573 control individuals, with ages ranging

from 7 to 64 years [32]. In this study, ABIDE-I is the primary dataset. On the other hand, ABI-

DE-II is used as a secondary dataset to gauge the models’ dependability.

Preprocessing allows reducing the impact of artifacts and noise on the model and prepares

the datasets for FC. The preprocessed connectors project presents different strategies for pre-

processing ABIDE-I datasets. The Configurable Pipeline for the Analysis of Connectomes

(CPAC), a widely-used open source software pipeline, automatically preprocesses and analyzes

rs-fMRI data through slice time correction, motion correction, time filtering, normalization,

and registration. The functional images underwent linear transformation to get registered to

the anatomical space [33]. This software pipeline exhibited the highest performance in previ-

ous studies [34] and as such, it was used to preprocess the datasets in this paper. Because the

time series data in the downloaded PCP’s dataset was incomplete, we excluded incomplete

data and settled on 419 ASD patients and 530 healthy controls as the research sample. In pre-

processing the ABIDE-II dataset, we applied the Data Processing Assistant for Resting-State

fMRI (DPARSF) pipeline. In this study, the ABIDE-II dataset was exclusively employed for the

validation of model performance and robustness. When applying the leave-one-out cross-vali-

dation (LOOCV) approach, each sample requires validation, resulting in potentially high

computational costs. Typically, researchers opt for a sample size ranging from 100 to 300 and

utilize random selection. This approach aims to ensure a balanced representation across differ-

ent variables, such as site, gender, and age. Based on the aforementioned criteria, we selected

86 individuals with ASD and 110 healthy controls from 19 sites. It is worth noting that, to

avoid the potential influence of non-imaging data, we ensured that the 196 subjects under

study were evenly distributed in terms of ages, genders, and sites.

The strength of FC between two regions using fMRI is a widely used heuristic for generat-

ing features. FC, which approximates the correlation between different brain regions with sev-

eral measures, is used to differentiate between subjects with ASD and Healthy Controls (HC).

Studies have demonstrated that children with ASD have stronger interregional connectivity

within the theta band, which differs from healthy children. The difference in the level of con-

nection strength between the ORBsup area of ASD and HC, relative to other Regions of Inter-

est (ROIs), can be leveraged as an essential factor in ASD diagnosis. FC measures, based on the

time-series of rs-fMRI brain imaging data, provide an index of the degree of common brain

region activation [35]. The most common measure used to approximate FC is the Pearson cor-

relation coefficient. This measure provides an index that correlates two brain regions, with val-

ues ranging from 1 to -1. A value close to 1 indicates a high degree of correlation while a value

close to -1 indicates inverse correlation between two time-series. It is a reliable indicator of lin-

earity between two-time series, P and Q, given a length T, represented as:

ruv ¼

XT

t¼1

ðut � �uÞðvt � �vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðut � �uÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XT

t¼1

ðvt � �vÞ2
s ð1Þ
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where �v and �u are the average values of time series P and Q, respectively. All pairwise correla-

tions are calculated to obtain the characteristic matrix Mn×n, where n is the number of region

of interest (ROI) of divided atlas. Because of the symmetry of the Pearson correlation, we

remove the values of the upper triangle, which repeat the values of the lower triangle, as well as

the main diagonal of the matrix, which represents the correlation measure with itself. Finally,

only the strict lower triangle part is retained. The final retained matrix is expanded into one-

dimensional vectors to retrieve feature vectors, and the number of features obtained can be cal-

culated by

S ¼
n� ðn � 1Þ

2
ð2Þ

where n represents the number of ROIs.

In this study, AAL, CC200, HO, Dosenbach160, and EZ were used for experiments. The

AAL atlas is divided into n = 116 regions, such that there are 6670 features. The CC200atlas is

divided into n = 200 regions, such that there are 19900 features. The HO atlas is divided into

n = 111 regions, amounting to 6105 features. Similarly, the number of features in the Dosen-

bach160 and EZ atlases can be calculated as 12880 and 6670, respectively.

Improved feature extraction and classification method

ASD classification tasks have conventionally employed either unsupervised or supervised

learning methods. Nevertheless, many studies across other fields have demonstrated that com-

bining both methodologies could leverage their strengths, enhancing the performance of the

classification tasks. Autoencoders (AEs) are particularly useful in this regard because they not

only help with dimensionality reduction, but also can detect cyclic structures that project

images of the same class to edges and corners [36]. An improvement on AE is the Denoising

Autoencoder (DAE), which addresses the overfitting problem mainly encountered in AE. By

adding noise to the input layer, the DAE is enabled to learn how to eliminate the added noise

and isolate clear input data, allowing the encoder to extract the most crucial features and

acquire more robust input representations. Consequently, the generalization ability of the

DAE is substantially increased over that of the general encoder.

In this paper, we utilize the Stacked Denoising Autoencoder (SDA) to extract low-dimen-

sional features, which are further fed to a CNN that we designed for classification. In generating

inputs for the autoencoders, we computed pairwise correlations from the input fMRI using the

Pearson correlation function. The encoded data in low-dimensional space is then used in the

CNN for further feature extraction and classification. Our methodology is outlined as follows.

The architecture of the designed SDA is depicted in Fig 1, consisting of two denoising auto-

encoders. Each DAE is composed of an encoder, a bottleneck, and a decoder. The encoder

receives input data and introduces noise at that layer. The bottleneck layer encodes it into a

lower-dimensional representation. The decoder reconstructs the original input from the bot-

tleneck layer.

In the study of Wang et al [37], the authors applied their model to various datasets and the

results suggested that the number of hidden layer nodes has a significant impact on the perfor-

mance of the autoencoder. The traditional methods use AE with a fixed number of nodes, but

our model designs a more suitable number of nodes according to the characteristics of multi-

scale. We designed the number of nodes in each layer of stacked denoising autoencoder for

different atlases (AAL, CC200, HO, Dosenbach160 and EZ), as shown in Table 1. Data damage

rates for the first and second DAE were 30% and 10%, respectively. The second DAE has the

hidden layer output of 2000 nodes uniformly, which is convenient for the input of the CNN.
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In our proposed CNN, the 1D convolution layer is immediately followed by the ReLU acti-

vation function layer, batch normalization layer, max pooling layer, and dropout layer. After

several convolution operations, the one-dimensional data is passed through a Flatten layer

before it’s fed into a fully connected layer with a ReLU activation function. In our classification

task, we use Softmax as the final activation function for the fully connected layer to obtain the

output. Fig 2 provides a clear framework of our proposed CNN for a single scale. Although the

depth of the network is limited, overfitting can still be an issue due to the small size of the data

samples, particularly with an excessive number of convolutional operations. We address this

potential problem by controlling the convolutional operations, adding an L2 regularization

term to limit model parameters, and reduce the risk of overfitting. Additionally, we add skip

connections between two convolutional layers, in line with the deep residual network, as illus-

trated in Fig 2.

This approach can enhance feature representation, while also addressing the issues of van-

ishing and exploding gradients. Additionally, it aids in alleviating information loss resulting

from convolutional operations. Max pooling reduces the size of feature maps, leading to a dis-

parity between the sizes of input and output. To tackle this issue, we introduce skip connec-

tions, where the input’s feature map is directly added to the output. This is accomplished

through the use of identity mapping. In more detail, when the input feature map has dimen-

sions of H×W×C and the convolutions yield a feature map of size H0×W0×C0, if either H6¼H0

or W6¼W0, skip connections can introduce a 1×1 convolutional operation to adjust the input

feature map’s channel count, aligning it with the output channel count. This ensures that the

output size of skip connections matches the output size of the convolutional operation, facili-

tating the connection between two convolutional layers. The operation of skip connections is

represented by Formula 3.

Output ¼ ConvðxÞ þ GðxÞ ð3Þ

In this formula, x represents the input feature map, Conv(x) represents the feature map

Fig 1. The process of using the stacked denoizing autoencoders for initial feature extraction of raw data.

https://doi.org/10.1371/journal.pone.0295621.g001

Table 1. The stacked denoizing autoencoders structure of AAL, CC200, HO, Dosenbach160, and EZ.

DAE-1 (Data corruption: 30%) DAE-2 (Data corruption: 10%)

Atlas Input layer Hidden layer Output layer Input layer Hidden layer Output layer

AAL 6670 3330 6670 3330 2000 3330

CC200 19900 9950 19900 9950 2000 9950

HO 6105 3050 6105 3050 2000 3050

Dosenbach160 12880 6440 12880 6440 2000 6440

EZ 6770 3380 6770 3380 2000 3380

https://doi.org/10.1371/journal.pone.0295621.t001
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obtained by adjusting the input channels using a 1×1 convolutional operation, and G(x) repre-

sents the resulting output feature map obtained through the convolution operation. This pro-

cess ensures uniform feature map dimensions, facilitating a seamless connection between the

two convolutional layers.

Improved convolutional neural network with multi-view attention

mechanism

Most research studies have used only a single atlas as a research object, regardless of whether

they employ SVM machine learning methods or CNN deep learning methods, despite the

varying information content among different atlases [38]. Our proposed method integrates a

multi-view convolutional neural network with a stacked denoising autoencoder, and further

incorporates an attention mechanism (MAACNN), to fully consider the complementary

nature of multi-scale information. Fig 3 shows that the proposed MAACNN comprises a Fea-

ture Learning block, a Multi-View Attention block, and a Classification block.

Fig 2. The framework of self-designed convolutional neural network (self-designed CNN).

https://doi.org/10.1371/journal.pone.0295621.g002

Fig 3. Overall structural framework of our proposed MAACNN.

https://doi.org/10.1371/journal.pone.0295621.g003
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Within the Feature Learning block, the extracted feature dimensionality may vary depend-

ing on the selected view. M, which represents the original feature dimension value, has no

fixed value. The raw, preprocessed features are input to the Feature Learning block to generate

new representations for all views. The multi-scale raw feature X2RN×M is represented as

X02Rn×N×F via SDA. N and n respectively denote the number of subjects and views. During

Feature Learning, features are standardized and dimensionality is reduced from the non-

unique M dimensions to the unique F dimensions.

In other words, for each individual subject X with n views, the original features are mapped

from an M-dimensional space to n separate F-dimensional spaces, with each F-dimensional

feature containing unique characteristics specific to each view.

The Multi-view Attention block integrates a representation X0 from n F-dimensional spaces

and features two modules—the sameness module and the difference module. The sameness

module directly inputs X0 to Fscale.

The second is the attention mechanism distribution learning module. Firstly, Global Aver-

age Pooling (GAP) aggregates each view into a single representation by capturing the global

features from the feature matrix. This means that the X02Rn×N×F is transformed into ~X 2 Rn�1.

Subsequently, the aggregated ~X is fed into the MLP to learn the view weight vector

C ¼ fc1; c2; . . . ; cng 2 Rn. Lastly, the new representation X̂ 2 RN�F is gathered by Fscale with

view weight vector. X̂ is generated from X0 as shown in Formula 4.

X̂ ¼ FscaleðX
0;CÞ ¼

Xn

i¼1

cix
0
i ð4Þ

where X̂ means the final representation of the multi-view attention block aggregation, and n

represents the number of views.

The input to the self-designed CNN in the Classification block, shown in Fig 3, is the new repre-

sentation embedded into the binary distribution space as X̂ 2 RN�F. The final classification results

are obtained from the Softmax activation function of the CNN’s last layer, as depicted in Fig 2.

Results and analysis

Experiment settings

The experiment was conducted on the Linux platform and executed through the Python lan-

guage. Specifically, the experiment was conducted and debugged on an Ubuntu 18.04 server

equipped with an E5-2680 V4 @2.40GHz CPU and a GeForce GTX 3060 GPU. The training

process of the proposed model is implemented using the PyTorch framework. Formula 4

includes the adjustable variable n, which can be set to 2, 3, or 4, depending on the number of

views in the experiment. Additionally, the F-dimension is fixed at a value of 2000. In this

study, a 10-fold cross-validation approach was employed to train and evaluate the model using

the ABIDE-I dataset. LOOCV approach was used to test the model on the ABIDE-II dataset.

Notably, feature selection was only performed on the training set in each training process and

not the entire dataset to counteract the problem of information leakage. This approach helps

maintain the credibility of the model’s performance evaluation, which is critical since it is an

issue that many researchers might overlook. As a result of this problem, experimental datasets

may have high performance, while new datasets, especially for new patients who require clini-

cal application, may not perform as well. Our methodology guarantees the model’s consistent

performance on both new and experimental clinical data. The study adopts the stochastic gra-

dient descent algorithm, with the autoencoder’s momentum initialized at 0.9 and the learning

rates set at 0.0001. Each training occurs over 200 epochs.
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The proposed model’s performance was evaluated by computing the average value of the

accuracy (ACC), sensitivity (SEN), and specificity (SPEC) using a 10-fold cross-validation

approach. The calculation process involves computing the mean value of the three perfor-

mance metrics: ACC, SEN, and SPEC. The formula to calculate this is depicted below.

ACC ¼
TPþ TN

TPþ TNþ FPþ FN
ð5Þ

SEN ¼
TP

TPþ FN
ð6Þ

SPEC ¼
TN

TNþ FP
ð7Þ

TP, FP, TN and FN represent the number of ASD subjects correctly classified, ASD subjects

incorrectly classified, HC subjects correctly classified, and HC subjects incorrectly classified in

the experiment. In addition, we use the area under the ROC curve (AUC) for evaluation.

Comparison of the impact of different scales on the model

To demonstrate the impact of multi-scale feature representation and attention mechanism, the

MAACNN model was employed to perform experiments on five scales (AAL, CC200, Donse-

bach160, HO, and EZ), and the results of these experiments are outlined in Table 2.

The results of Table 2 indicate that the proposed method showed the best performance on

the CC200, which was the highest among all five scales. Additionally, the performance indica-

tors of the remaining scales were ranked in the following descending order: AAL, HO, EZ, and

Dosenbach160. Except for Dosenbach160, the models achieved an accuracy rate of over 70%,

which is already higher than mainstream models. These findings imply that using only a single

scale, the proposed feature extraction and classification model produces excellent results.

We utilized multiple views as inputs to the model and computed the final output by utiliz-

ing the attention mechanism layer at the end. For our experiments, we performed a 10-fold

cross-validation and generated the average performance score of the 10-fold cross-validation

trials, as illustrated in Fig 4. The atlases utilized for views in the multi-scale data are displayed

in Table 3.

As depicted in Fig 4, there is a positive correlation between the number of views and the

performance metrics of the model, with optimal gains achieved in the combination of three

views. Results from two atlases combined into multi-scale exhibited higher model performance

than when using any single scale, with the combination of CC200 and AAL achieving an aver-

age accuracy of 74.52% and an AUC value of 0.78. When three atlases (CC200, AAL, and HO)

were combined into multi-scale, the model achieved optimal results with an accuracy of

75.12%, sensitivity of 80.25%, specificity of 65.71%, and AUC of 0.79. Compared to the best-

case scenario of a single scale (CC200), the average accuracy improved by about 2.94%. The

Table 2. Performance of single-scale.

Views ACC (%) SEN(%) SPEC(%) AUC

Dosenbach160 68.72 73.64 58.30 0.72

HO 71.06 75.90 61.65 0.75

AAL 71.69 76.57 62.03 0.75

EZ 70.21 75.04 60.38 0.73

CC200 72.18 77.85 62.41 0.76

https://doi.org/10.1371/journal.pone.0295621.t002
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performance of the model, however, started decreasing after four views. Taking into account

various performance metrics, it was observed that when the number of views reached 5, the

model’s performance was even worse than that of a model using a single view. Hence it indi-

cated that simply accumulating views will not result in better outcomes and the views should

be adjusted based on the target task attributes.

We propose the incorporation of a multi-view attention mechanism to diagnose autism

spectrum disorder, mitigating the impact of atlas division and utilizing complementary infor-

mation available between different atlases, thereby improving model performance. The experi-

mental results illustrate a considerable enhancement in overall performance by utilizing the

multi-scale feature representation, which highlights the superior performance of the proposed

multi-view attention mechanism.

Visualization

The t-SNE technique [39] was utilized for 2D feature visualization to observe the proposed

method’s ability in feature fusion and classification. For ease of observation, the distribution of

features before model input and after classification under the same data size are presented, and

the visualization results are displayed in Fig 5.

Fig 4. Performance of the model with different number of views. (a) accuracy of the model with different number of

views; (b) sensitivity of the model with different number of views; (c) specificity of the model with different number of

views; (d) AUC of the model with different number of views.

https://doi.org/10.1371/journal.pone.0295621.g004

Table 3. The views used for each scale.

Number Views

1 CC200

2 CC200 and AAL

3 CC200, AAL and HO

4 CC200, AAL, HO and EZ

5 CC200, AAL, HO, EZ and Dosenbach160

https://doi.org/10.1371/journal.pone.0295621.t003
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The distribution of the raw features can be seen in Fig 5(A), where the nodes of both ASD

and HC types are distributed in a disorderly manner and have no obvious boundaries. This

also indicates that it is difficult and ineffective to classify directly using the raw features. The

node embedding visualization for classification using the proposed method in this paper is

shown in Fig 5(B), where nodes of the same type are clustered together and distributed very

closely, illustrating excellent performance in sensitivity and specificity. The subgraphs corre-

sponding to HC and ASD nodes have overall similarities. The algorithm clearly distinguishes

between ASD patients and typical control group, reflecting the differences between the catego-

ries. This indicates that the fused multi-scale features exhibit better intra-class clustering per-

formance and inter-class discriminability, demonstrating the outstanding performance of the

method.

Discussion

Our proposed diagnostic classification method is based on multi-view convolutional neural

networks with an attention mechanism and incorporates stacked denoising autoencoders for

classifying brain disorders using rs-fMRI data. This study provides the following

contributions:

1. The model utilizes two stacked denoising autoencoders to extract features, and a self-

designed CNN for classification. By combining supervised and unsupervised learning, it

was successful in achieving the desired outcome.

2. The paper introduces a method for diagnosing ASD automatically using multi-scale (multi-

atlas) data from subjects. It was demonstrated that appropriate multi-scale data fusion

Fig 5. 2D feature visualization. (a) t-distributed stochastic neighbor embedding (t-SNE) representation in

2-dimensional space visualized on raw features; (b) feature representation after MAACNN classification. The green

nodes represent autism spectrum disorder (ASD) subjects, and the orange nodes represent healthy controls (HC).

https://doi.org/10.1371/journal.pone.0295621.g005
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produced better results than single-scale data classification. The proposed model achieved

excellent performance.

3. The paper proposes the use of multi-view convolutional neural networks, which utilize the

complementary information between different scales. The attention mechanism is used to

fuse multi-scale data, achieving high overall performance.

Performance evaluation

We evaluated the performance of MAACNN by comparing it with baselines and recent stud-

ies. HOFC [40], DAE [16], and ASD-DiagNet [41] used a single-scale strategy as the baseline,

while recent studies such as GroupINN [42], FC-KNN [43], and MVS-GCN [44] utilized a

multi-scale strategy.

GroupINN combines node grouping regularization and non-negative constraints to effec-

tively capture complex relationships between brain regions and identify the most informative

subnetworks, thereby improving the performance and interpretability of the model.

FC-KNN is based on rs-fMRI data and addresses the challenges of constructing and analyz-

ing functional connectivity networks, as well as individual variability. It learn pairwise associa-

tions between ROIs using a multi-graph fusion method and perform feature fusion and

classification using L1 SVM.

MVS-GCN integrates both graph structure and multi-task graph embedding to enhance

the classification performance and identify potential functional subnetworks. This method

constructs multiple views by generating multiple sparse-level brain network views through

multiple thresholding to capture potential correlations between different views, and uses view

consistency regularization to ensure the consistency of the model across views. At the same

time, prior information of the subnetwork structure is added to the regularization term to

enhance the importance of subnetworks in embedding learning, thereby using brain network

embedding optimization methods to provide effective ASD diagnosis.

Table 4 reports the experimental results, where the best results are highlighted in bold.

Based on the data in Table 4, we emphasize the following observations:

1. The MAACNN model we proposed has significant advantages in accuracy and sensitivity.

In particular, the sensitivity reached 80.25%, the only one among all comparative experi-

ments that exceeded 80%, indicating that the detection results accurately captured the pres-

ence of the disease. Compared with HOFC and FC-KNN, the AUC of MAACNN was

improved by nearly 2% and 3%, respectively. In addition, compared with ASD-DiagNet,

which also aims at ASD diagnosis, MAACNN achieved a 5.56% improvement in accuracy.

More importantly, compared with the graph-based approach MVS-GCN, although the

graph structure learned more phenotype data as a supplement, the complex graph structure

Table 4. Performance comparison of various methods.

Category Method ACC(%) SEN(%) SPEC(%) AUC

single-scale HOFC 71.61 61.58 78.73 0.77

DAE 67.31 77.89 54.10 0.64

ASD-DiagNet 69.56 61.32 67.27 0.67

multi-scale GroupINN 63.60 61.52 57.36 0.63

FC-KNN 71.65 65.12 76.35 0.76

MVS-GCN 69.89 70.18 63.05 0.69

MAACNN 75.12 80.25 65.71 0.79

https://doi.org/10.1371/journal.pone.0295621.t004
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had a negative impact on the feature learning of GCN. Even with the best parameters

selected, our model achieved a 5.23% improvement in accuracy. These results indicate that

our proposed method is effective in ASD diagnosis.

2. Compared to traditional methods, the performance of single-scale strategies is generally

inferior to that of multi-scale strategies. The HOFC method achieved the highest result in

the single-scale strategy, while MAACNN improved the ACC by 3.51%. In comparison

with the baseline method DAE, it can be seen that deep learning methods based on CNNs

are significantly superior to traditional methods based on AEs. In our model, we used both

AE and CNN simultaneously, combining unsupervised and supervised learning. The results

indicate that this combination can enhance the feature representation and classification

capabilities of the model.

3. Compared with the state-of-the-art techniques in recent years, our proposed MAACNN

shows significant improvement in ASD recognition. Whether in graph-based or non-

graph-based methods, our model can better represent and classify features. MAACNN can

fully learn the potential associations between different views, and the multi-view attention

block has better representation effect on feature fusion. In summary, the results further sup-

port our conclusion and demonstrate the effectiveness and robustness of our model.

It is worth noting that this study used all the data of ABIDE-I as the research object,

although there are different levels of noise, our model is more realistic than the method using a

small sample. It is more in line with the value of clinical diagnosis. According to the experi-

mental results, our proposed MAACNN achieves the highest level at present for all the ABIDE

data, which fully demonstrates the superiority of our overall model. In the experiment, we exe-

cuted 10-fold cross-validation on the whole dataset to test the method proposed in this study.

We achieved the highest accuracy compared with the existing methods. The higher AUC

shows that stronger model classification capability. In summary, the proposed method has

higher model performance and better clinical reference value for the diagnosis of ASD.

We compare the proposed method with other methods under the same brain atlas AAL.

Here, we choose HOFC [40], ASD-DiagNet [41], FC-KNN [43] and MVS-GCN [44] methods

to conduct experiments using AAL atlas. The experimental results are shown in Table 5.

As can be seen from Table 5, in the case of using only single view AAL atlas, the compre-

hensive performance of our model (MAACNN-AAL) is much better than ASD-DiagNet and

MVS-GCN, and similar to HOFC and FC-KNN on ACC and AUC, both of which have very

excellent performance. There is still much improvement in the specificity of our model. Nota-

bly, our proposed model is more prominent in sensitivity, especially since our model is diag-

nostic for medical images, and high sensitivity indicates that a large fraction of the samples

that actually have the disease are correctly recognized as patients (high true positive rate).

High sensitivity means that the model is able to capture the actual patients effectively, which is

very important for diagnosing the disease. MAACNN-AAL outperforms other single view

Table 5. Performance of different methods under AAL atlas.

Views Method ACC(%) SEN(%) SPEC(%) AUC

AAL HOFC 71.61 61.58 78.73 0.77

ASD-DiagNet 67.55 63.40 69.21 0.68

FC-KNN 71.65 65.12 76.35 0.76

MVS-GCN 67.14 68.74 62.40 0.67

MAACNN-AAL 71.69 76.57 62.03 0.75

AAL, CC200 and HO MAACNN 75.12 80.25 65.71 0.79

https://doi.org/10.1371/journal.pone.0295621.t005

PLOS ONE Multi-view convolutional neural networks for diagnosing autism spectrum disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0295621 December 8, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0295621.t005
https://doi.org/10.1371/journal.pone.0295621


models with ACC and SEN of 71.69% and 76.57%, respectively. There is a great improvement

in model performance in MAACNN using a multi-view model that includes AAL.

To demonstrate the robustness of the MAACNN model, we conducted a validation on the

ABIDE-II dataset. We selected the latest research results conducted on ABIDE-II in the past

two years as a comparative experiment. Ji and Li [45] proposed a DF-MCMPNA framework to

extract and aggregate long-range multi-channel topological features. A multi-channel message

passing mechanism and a channel-shared neighborhood aggregation mechanism are used to

recursively extract remote multi-channel topological features. The STCAL model by Liu et al.

[46] includes a guiding co-attention module to simulate the cross-modal interactions between

spatial and temporal signal patterns. Fig 6 shows the LOOCV results of the three methods

under the same conditions.

From Fig 6, it can be observed that in terms of accuracy, sensitivity, and AUC, our proposed

MAACNN model achieved the best results on the ABIDE-II dataset. The multi-channel mes-

sage passing and neighborhood aggregation mechanism of the Deep Forest framework can

effectively recursively extract remote multi-channel topological features, achieving a LOOCV

accuracy of 65.51%. A sliding cluster attention module was introduced to address the global

feature dependency of self-attention mechanisms in fMRI time series. Using LOOCV on the

ABIDE-II dataset, an AUC of 0.75 was achieved, indicating high overall performance. Our

proposed MAACNN not only utilizes a multi-view attention mechanism block to learn the

correlations between different views, but also effectively combines unsupervised and super-

vised learning. Using LOOCV on the ABIDE-II dataset, we achieved an accuracy of 72.88%,

sensitivity of 76.02%, specificity of 64.39%, and AUC of 0.76. MAACNN achieved the best per-

formance in both ABIDE-I and ABIDE-II, regardless of whether 10-fold cross-validation or

LOOCV was used, demonstrating the effectiveness and robustness of our proposed model and

contributing to its application in clinical practice.

Ablation study

In order to verify the enhancement brought by the proposed module to the model perfor-

mance, we conducted an ablation study to evaluate the effectiveness of SDA and multi-view

Fig 6. Performance of three methods on ABIDE-II dataset.

https://doi.org/10.1371/journal.pone.0295621.g006
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attention. We use self-designed CNN as the baseline model for the first set of experiments, and

in order to ensure the consistency of the hyperparameters, the traditional recursive feature

elimination (RFE) is used directly after calculating the Pearson correlation coefficient to

reduce the F-dimensional down to 2000. the second set of experiments adds SDA, thus verify-

ing the validity of SDA. The third set of experiments adds multi-view attention mechanism

and does not use SDA. The fourth set of experiments we fuse the proposed modules to evaluate

the performance of our proposed MAACNN model. The results of the ablation experiment are

shown in Table 6.

Table 6 demonstrates the impact of different enhancements on CNN’s classification perfor-

mance through a 10-fold cross-validation approach. In the case of using only CNN, the model

achieves ACC of 70.23% and AUC of 0.73. Considering the intricacy of high-dimensional data

and the limitations of the original feature representation, we employed SDA for feature extrac-

tion and representation. With SDA, the model’s ACC improved to 71.80%, and the AUC

increased to 0.74. This suggests that after undergoing feature extraction via our designed SDA,

the original features possess enhanced expressive capacity, leading to a significant improve-

ment in model performance.

The introduction of the multi-view attention mechanism enables the comprehensive utili-

zation of complementary information across different views. This is evident even when applied

to feature data post RFE, where the model’s accuracy can be elevated from 70.23% to 73.19%.

By further integrating the aforementioned modules, our proposed MAACNN model achieves

an overall ACC of 75.12% and an AUC of 0.79. The ablation experiments affirm that the pro-

posed SDA and multi-view attention mechanisms significantly contribute to the enhancement

of model performance. The amalgamation of these modules yields a substantial improvement

in the overall model’s capabilities.

Conclusion

In this paper, our study proposes a classification method for ASD based on multi-view CNN

with an attention mechanism that includes stacked denoising autoencoders, which has demon-

strated exemplary performance. Our proposed method incorporates SDA and multi-view

CNN for feature extraction and classification, achieving an effective combination of supervised

and unsupervised learning. The model output is generated through multi-scale complemen-

tary information and an attention mechanism, which lays the foundation for automatic ASD

diagnosis. Our study has been confirmed by clinicians. Compared with some current methods,

our proposed method achieves the highest levels of accuracy and AUC in identifying ASD.

The method offers certain advantages and high performance, which indicates that it has prom-

ising applications in the automatic diagnosis of ASD. Additionally, the process can also be

extended to the diagnosis of other brain diseases, such as Alzheimer’s disease, and bipolar dis-

order, etc. In future work, we will try to use graph neural networks combined with information

about the population to replace CNN and strive for improved performance.

Table 6. Results of ablation experiments.

Method ACC(%) AUC

Self-designed CNN 70.23 0.73

Self-designed CNN + SDA 71.80 0.74

Self-designed CNN + multi-view attention 73.19 0.77

Our proposed model 75.12 0.79

https://doi.org/10.1371/journal.pone.0295621.t006
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