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Abstract

Thyroid disease presents a significant health risk, lowering the quality of life and increasing

treatment costs. The diagnosis of thyroid disease can be challenging, especially for inexpe-

rienced practitioners. Machine learning has been established as one of the methods for dis-

ease diagnosis based on previous studies. This research introduces a novel and more

effective technique for predicting thyroid disease by utilizing machine learning methodolo-

gies, surpassing the performance of previous studies in this field. This study utilizes the UCI

thyroid disease dataset, which consists of 9172 samples and 30 features, and exhibits a

highly imbalanced target class distribution. However, machine learning algorithms trained

on imbalanced thyroid disease data face challenges in reliably detecting minority data and

disease. To address this issue, re-sampling is employed, which modifies the ratio between

target classes to balance the data. In this study, the down-sampling approach is utilized to

achieve a balanced distribution of target classes. A novel RF-based self-stacking classifier

is presented in this research for efficient thyroid disease detection. The proposed approach

demonstrates the ability to diagnose primary hypothyroidism, increased binding protein,

compensated hypothyroidism, and concurrent non-thyroidal illness with an accuracy of

99.5%. The recommended model exhibits state-of-the-art performance, achieving 100%

macro precision, 100% macro recall, and 100% macro F1-score. A thorough comparative

assessment is conducted to demonstrate the viability of the proposed approach, including

several machine learning classifiers, deep neural networks, and ensemble voting classifiers.

The results of K-fold cross-validation provide further support for the efficacy of the proposed

self-stacking classifier.

1 Introduction

Thyroid disease diagnosis is a challenging and time-consuming procedure that requires sub-

stantial knowledge and experience [1]. Two common methods for diagnosis are doctors’

examinations and a multitude of blood tests. Early detection of thyroid disease is highly desir-

able due to its wide-ranging symptoms, including difficulties in losing weight, obesity, consti-

pation, muscle pain, hypersensitivity to colds, fatigue, and exhaustion. Moreover, thyroid

disease affects a significant portion of the global population, with 12% of the US population

experiencing the disease at some point in their lives according to the American Thyroid
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Association (ATA) [2]. Therefore, an accurate and prompt disease identification system is

essential to avoid major risks to the patient.

Machine learning has completely transformed thyroid disease detection and identifica-

tion by making optimal use of time and decreasing misdiagnoses brought on by human mis-

takes. With the use of machine learning algorithms, efficient techniques for knowledge

discovery and classification in thyroid disease datasets can be established [3]. For instance,

Raisinghani et al. [4] proposed a machine learning-based prediction model for thyroid dis-

ease detection using Decision Trees (DT). Similarly, Tyagi et al. [5] estimated the probable

risk of thyroid disease using conventional machine learning classifiers. Researchers in [6]

evaluated the potential of machine learning classifiers such as K-Nearest Neighbours

(KNN), Support Vector Machine (SVM), and Random Forest (RF) in the prediction of thy-

roid disease. Several other researchers collaborated to develop an effective machine learn-

ing-based approach for detecting thyroid disease [7–10]. However, the proposed systems

incorporated machine learning algorithms that operated the detection of disease in an indi-

vidual manner. An ensemble model, on the other end, has been established to be a promis-

ing strategy to increase the stability and accuracy of a classifier [11]. Numerous studies have

been conducted utilizing various techniques to create efficient ensembles. Stacking is one of

the most effective approaches for integrating classifiers and enhancing prediction accuracy

[12, 13].

This research suggests a systematic approach for the reliable and efficient diagnosis of thy-

roid disease so that medical professionals can benefit from the advancements in computer sci-

ence research. We focus on developing an efficient stacked ensemble algorithm that can

provide highly accurate and reliable predictions for thyroid disease detection. Traditional

stacking algorithms employ a collection of heterogeneous base learners and a single meta-

learner. Base learners are machine learning algorithms that produce results after being trained

on dataset attributes. The meta-learner is a machine learning classifier that determines the best

approach to integrate those output predictions to generate the final outcome. Since the perfor-

mance of different machine learning algorithms varies, integrating the prediction of different

algorithms optimizes classification performance. In contrast to heterogeneous base learners,

this study uses a self-stacking ensemble in which the output predictions of four distinct RF var-

iants as base learners are combined and delivered to another RF variant functioning as a meta-

learner. RF is useful for high-dimensional problems with highly correlated attributes and has a

high prediction accuracy, especially in the context of medical diagnosis that frequently arises

in bio-informatics [14–16].

Another problem associated with disease diagnosis is the imbalanced distribution of disease

samples in the dataset, which could produce misleading and unreliable results. This is because

machine learning models learn the decision boundary for the majority class more efficiently

than for the minority class. Therefore, one of the most well-known approaches to classifying

an imbalanced dataset is to modify the dataset composition [17]. To achieve this, we down-

sample the dataset to generate an equal number of samples for each target variable. This will

produce ample data for each target variable needed for algorithm training.

Our study’s uniqueness can be summed up as follows:

• The resampling technique was applied to address data discrepancies. Down-sampling was

used in the majority of classes, resulting in a balanced distribution of samples across each

target variable.

• The behavior of machine learning models in the field of thyroid disease data was investi-

gated, which is a significant new area to consider in terms of imbalanced data.
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• A randomized tree-based self-stacking ensemble model was developed for highly accurate

detection of thyroid disease.

• The effectiveness of the proposed approach was demonstrated by comparing its performance

with that of other machine learning, ensemble, and deep learning models.

• While previous studies mainly focused on binary classification for thyroid disease detection

[18–21], our objective was to devise a multi-class classification system for detecting thyroid

disease.

The remainder of the article is structured as follows: After a brief introduction to the under-

lying research, Section 2 discusses the background of thyroid disease and its previously pre-

sented detection methods. The description of the methodology used for this study’s

experimental approach is provided in Section 3. In Section 4, results from extensive experi-

ments are reported and discussed. A comparative analysis of the results is presented in Section

5. Finally, Section 6 draws the research to a conclusion.

2 Background

The primary cause of thyroid disease is an imbalance in the hormones generated by the thyroid

gland. Euthyroidism, hyperthyroidism, and hypothyroidism, which pertain to normal, exces-

sive, or deficient thresholds of thyroid hormones, are the rationale for diagnosing thyroid dis-

ease. Euthyroidism describes the thyroid gland’s normal thyroid hormone production and

cellular thyroid hormone levels [22]. The clinical manifestation of hyperthyroidism is

increased circulatory and intracellular thyroid hormones [23]. Hypothyroidism is caused

mostly by a deficiency of thyroid hormone production and inadequate alternative therapy

[24]. Albeit, thyroid disease detection appears to be a basic recurring activity for medical

experts, there is an unmet need to facilitate the reader in diagnosing thyroid disease with

greater accuracy and consistency [25]. Moreover, the treatment of disease is a continuing

problem for medical professionals, and accurate and timely diagnosis is crucial.

Recently, machine learning and deep learning demonstrated notable advances in the diag-

nosis of thyroid disease. Sidiq et al. [26], for example, used different machine learning models,

including K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Support

Vector Machine (SVM), to diagnose thyroid disease from a clinical dataset collected from a

medical facility in Kashmir. The dataset included 553 data samples from healthy individuals,

218 samples from hypothyroid patients, and 36 samples from hyperthyroid patients. The

authors conducted classification and reported the highest accuracy score of 98.89% yielded by

DT. Another study [27], evaluated the potential of three machine learning models including

KNN, DT, and Logistic Regression (LR) for the diagnosis of thyroid disease. The authors car-

ried out their experiments using the “new thyroid” dataset from the UCI thyroid repository.

Two attributes including total serum triiodothyronine (T3) and total serum thyroxin (T4)

from a total of 5 attributes were used for model training. The experimental results showed that

KNN outperformed other models with the highest accuracy of 96.875%. In [28], Jha et al.

applied data augmentation and reduction techniques to improve the efficacy of diagnosing

thyroid disease. For dimensionality reduction, the authors used Principal Component Analysis

(PCA), Singular Value Decomposition (SVD), and DT; for data augmentation, they used

Gaussian Distribution (GD). The dataset included 3152 samples, of which 286 samples corre-

sponded to people with thyroid disease and 2864 samples to healthy people. The experiments

demonstrated that Deep Neural Network (DNN) trained using augmented data procured a

maximum accuracy of 99.95%. Yadav et al. [7] worked on the UCI repository dataset for pre-

dicting thyroid disease. Using the bagging technique, the authors proposed an ensemble of
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DT, Random Forest (RF), and Extra Tree (ET). The study demonstrated that the ensemble

technique produced reliable results with 100% accuracy. In [8], machine learning models—

SVM, Multiple Linear Regression (MLR), and DT—were used to perform comparative thyroid

disease detection, with DT achieving the highest accuracy of 97.97%.

Abbad Ur Rehman et al. [9] implemented L1 and L2 feature selection techniques to get

effective results. The authors collected 309 patient samples from District Headquarter (DHQ)

Teaching Hospital, Dera Ghazi Khan, Pakistan. The dataset comprised 10 attributes and one

target column with the imbalanced distribution of three classes. Five machine learning models

including KNN, SVM, DT, LR, and Naive Bayes (NB) were implemented for thyroid disease

prediction. Experimental results showed that the L1-based feature selection technique

enhanced the performance of models. Similarly, Salman and Sonuc [29] implemented different

machine learning models to determine their applicability in the detection of thyroid disease.

The study included 1250 data samples from Iraqis that were collected from various hospitals

and labs. The experimental results indicated that when only 13 out of the total 16 features were

used for training, RF reported a maximum accuracy of 98.92%. Likewise, Shivastuti et al. [10]

compared the effectiveness of SVM and RF for diagnosing thyroid disease. The research uti-

lized 7200 data samples from a dataset available in the UCI repository. SVM surpassed RF in

terms of accuracy by 1%, according to the experimental results. The experimental findings in

[30] revealed that bagging ensemble integrated with three feature selection techniques includ-

ing Recursive Feature Elimination (RFE), Select K-Best (SKB), and Select From Model (SFM)

showed robust results in thyroid diagnosis. Similarly, Akhtar et al. [31] selected attributes from

the “thyroid 0387” dataset using RFE, SKB, and SFM. The authors developed an effective uni-

fied ensemble of ensembles for improved thyroid disease diagnosis.

The aforementioned literature review is summarized in Table 1. It is worth highlighting

that the majority of systems for diagnosing thyroid disease relied on attribute selection

Table 1. A summary of recent publications for diagnosing thyroid disease using machine learning and deep learning approaches.

Ref Year Dataset Sample

Size

Target

Distribution

Models Accuracy Score

[26] 2019 Medical

Facility,

Kashmir

807 Imbalanced KNN, DT, SVM, and NB KNN: 91.82%, SVM: 96.52%, NB: 91.57&, and DT: 98.9%

[8] 2019 UCI 50 N/A DT, SVM, and MLR DT: 97.97%

[7] 2020 UCI 3710 Imbalanced DT, RF, ET, and Ensemble DT: 98%, RF: 99%, ET: 93%, and Ensemble: 100%

[27] 2021 UCI 215 Imbalanced KNN, DT, and LR KNN: 96.875%, DT: 87.5%, and LR: 81.25%

[9] 2021 DHQ, DG

Khan, Pakistan

309 Imbalanced SVM, KNN, DT, LR, and NB KNN-L1: 97.84%, KNN-L2: 96.77%, DT-L1: 75.34%, DT-L2:

76.92%, NB-L1: 100%, NB-L2: 100%, SVM-L1: 86.02%, SVM-L2:

86.02%, LR-L1: 100%, and LR-L2: 98.82%

[29] 2021 Labs and

Hospitals in

Iraq

1250 N/A DT, SVM, RF, NB, LR, KNN, LDA

Linear Discriminant Analysis, and MLP

Multi-layer Perceptron

DT: 98.4%, SVM: 92.27%, RF: 98.93%, NB: 81.33%, LR: 91.47%,

LDA:83.2%, KNN:90.93%, and MLP: 97.6%

[10] 2021 UCI 7200 N/A SVM and RF SVM: 93% and RF: 92%

[30] 2021 DHQ, DG

Khan, Pakistan

309 Imbalanced RF, Base Meta Estimator (BME),

AdaBoost, and XGBoost

Accuracy = 100%

[28] 2022 UCI 3152 Imbalanced KNN, DNN KNN-PCA: 94.92%, KNN-SVD: 95.72%, KNN-DT: 97.94%,

DNN-PCA: 96.04%, DNN-SVD: 96.67%, DNN-DT: 98.70%, and

DNN-GD: 99.95%

[31] 2022 UCI Thyroid

0387

7200 N/A RF, BME, AdaBoost, and XGBoost LR-RFE: 99.27%

[35] 2022 UCI 1774 Balanced RF, GBM, LR, AdaBoost, SVM, LSTM,

CNN, CNN-LSTM

RF-MLFS: 99%

https://doi.org/10.1371/journal.pone.0295501.t001
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whereas, model training was carried out using an imbalanced dataset. Numerous research

demonstrated that skewed results are produced by imbalanced data [32, 33]. Nevertheless,

since they lack sufficient prior knowledge, they may even provide overfitted or under-fitted

predictions [34]. In [35], Chaganti et al. randomly selected 400 samples of normal class to bal-

ance the dataset comprised of 233, 346, 359, and 436 samples of primary hypothyroid,

increased binding protein, compensated hypothyroid, and concurrent non-thyroidal illness

classes respectively. The authors also performed attribute selection using backward, forward,

and Bi-Directional elimination techniques (BFE, FFE, and BiDFE, respectively). Machine

learning-based feature selection (MLFS) using ET was also performed. Several machine learn-

ing and deep learning models including RF, Gradient Boosting Machine (GBM), LR, SVM,

AdaBoost, Long Short Term Memory (LSTM), Convolutional Neural Network (CNN), and

CNN-LSTM were used to perform thyroid disease diagnosis. The results reported the highest

accuracy of 99% by RF when integrated with attributes selected by the MLFS feature selection

technique. This study serves as the basis of comparison for all of our subsequent experiments.

Conversely, to balance the dataset and provide more reliable results, we adopt a downsampling

approach.

3 Methodology

This section discusses the dataset and research methodology employed in this study for thyroid

disease prediction. Initially, we acquired a dataset for thyroid disease from the UCI machine

learning repository [36], which contains the data of a number of thyroid disease-related cases.

Multiple target classes and samples related to thyroid disease are included in the dataset. The

used dataset was highly imbalanced as the target distribution was unequal in the dataset. Our

approach begins by balancing the target class distribution to produce reliable outcomes for

thyroid disease detection. We used only five class samples for the experiments in which we

deployed a down-sampling approach on specific data. This down-sampling approach makes

the dataset balanced as discussed in Section 3.1. After data balancing, we split it into train and

test sets with an 80:20 ratio. 80% of the total data was used for training of learning models, and

the remaining 20% for testing purposes of the trained models. The training set was then passed

to the proposed self-stacking classifier (SSC) (discussed in Section 3.2) and all other used mod-

els, which were trained for thyroid disease prediction. After training on learning models, we

passed test data to perform the evaluation. For the evaluation of all models, four evaluation

scores, namely accuracy, precision, recall, and F1 score were measured after receiving the test

set. We also deployed 10-fold cross-validation with both the original dataset and down-sam-

pled dataset approach and reported mean accuracy and standard deviation scores. In the end,

we performed statistical analysis on the results of all approaches. For all experiments, this

study used several machine learning classifiers, ensemble learners, and deep learning classifi-

ers, followed by a comparative analysis. Fig 1 showcases the experimental workflow of this

study.

All experiments were performed using a Corei7, a 12th-generation Dell machine with a

Windows operating system. We used Python language to implement the proposed approach

in Jupyter Notebook. Several libraries such as sci-kit learn, TensorFlow, and Keras were used

for experimental purposes.

3.1 Data description & balancing

The data used in this study comes from the thyroid disease dataset obtained from the UCI

machine learning repository [36]. The original dataset contains 31 features and 9172 sample

records [35]. Table 2 presents the feature description of the underlying dataset. The target
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variable includes classes of thyroid disease-related health issues and diagnoses presented in

Table 3. The distribution of classes is substantially imbalanced. Uneven distribution of a target

variable in a dataset causes machine learning models to perform erroneously [37]. Moreover,

models that have been trained on imbalanced data are ineffective at detecting minority data,

and thus disease samples [38]. To address this challenge, we down-sampled the dataset and uti-

lized the first 230 samples of each of the five diagnostic classes including primary hypothyroid

(F), increased binding protein (I), compensated hypothyroid (G), concurrent non-thyroidal

illness (K), and no condition (-). These target variables were selected based on the minimum

sample size of 200. Table 4 displays the sample distribution of the selected target variables for

the present research.

Fig 1. Graphical abstract of this study.

https://doi.org/10.1371/journal.pone.0295501.g001

Table 2. Feature description of thyroid disease dataset.

Sr. Feature Description Sr. Feature Description

1. age patients’ age 17. TSH_measured either patient’s blood has TSH

2. sec gender of patient 18. TSH TSH level in patients’ blood

3. on_thyroxine either the person is taking thyroxine 19. T3_measured either patient’s blood has T3

4. query on thyroxine either the person is taking thyroxine 20. T3 T3 level in patients’ blood

5. on antithyroid meds either the patient is taking antithyroid meds 21. TT4_measured either patient’s blood has TT4

6. sick either patient is sick or not 22. TT4 TT4 level in patients’ blood

7. pregnant pregnancy status of patient 23. T4U_measured either patient’s blood has T4U

8. thyroid_surgery either the patient has had thyroid surgery 24. T4U T4U level in patients’ blood

9. I131_treatment whether patient is undergoing I131 treatment 25. FTI_measured either patient’s blood has FTI

10. query_hypo-thyroid if the patient believes they have hypothyroidism 26. FTI FTI level in patients’ blood

11. query_hyperthyroid if the patient believes they have hyperthyroidism 27. TGB_measured either patient’s blood has TGB

12. lithium either the patient has lithium 28. TGB TGB level in patients’ blood

13. goitre either the patient has goitre 29. referral_source

14. tumor either the patient has tumor 30. target hyperthyroidism medical diagnosis

15. hypopituitary either the patient has hyperpituitary gland 31. patient_id identification number of patient

16. psych whether patient * psych

https://doi.org/10.1371/journal.pone.0295501.t002
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Figs 2 & 3, the feature importance scores are displayed for both the original dataset and the

down-sampled dataset. These scores were obtained using the Extra Trees Classifier (ETC),

which takes all features and the target into account for both scenarios. The ETC is a tree-based

classifier that determines the importance of each feature by calculating its entropy criterion.

The feature importance scores for both scenarios are highlighted in Figs 2 and 3. It is observed

that there is only a minor difference between the feature importance scores for both scenarios

and the range of feature importance scores has increased after balancing the data which helps

to improve the performance of learning models in this study.

3.2 Proposed Self Stacking Classifier (SSC)

This study proposes a novel stacked ensemble, called a self-stacking classifier (SSC). The tradi-

tional stacking model combines heterogeneous estimators (base learners) to minimize their

errors and then provide them as inputs to the final estimator (meta-learner). The stacked clas-

sifier leverages the power of multiple base learners on a classification problem to create

Table 3. Count for target variables in thyroid disease dataset.

Health Issues Diagnosis Count

hyperthyroid hyperthyroid (A) 147

T3 toxic (B) 21

toxic goiter (C) 6

secondary toxic (D) 8

hypothyroid hypothyroid (E) 1

primary hypothyroid (F) 233

compensated hypothyroid (G) 359

secondary hypothyroid (H) 8

binding protein increased binding protein (I) 346

decreased binding protein (J) 30

general health concurrent non-thyroidal illness (K) 436

replacement therapy under replaced (M) 111

consistent with replacement therapy (L) 115

over replaced (N) 110

antithyroid treatment antithyroid drugs (O) 14

I131 treatment (P) 5

surgery (Q) 14

miscellaneous discordant assay results (R) 196

elevated TBG (S) 85

elevated thyroid hormones (T) 0

no condition sample record of healthy person (-) 6771

https://doi.org/10.1371/journal.pone.0295501.t003

Table 4. Down-sampled data for efficient thyroid disease detection.

Target Variable Original Sample Count Down-sampled Count

primary hypothyroid (F) 233 230

increased binding protein (I) 346 230

compensated hypothyroid (G) 359 230

concurrent non-thyroidal illness (K) 436 230

no condition (-) 6771 230

https://doi.org/10.1371/journal.pone.0295501.t004
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Fig 2. Features importance scores using original dataset.

https://doi.org/10.1371/journal.pone.0295501.g002

Fig 3. Features importance scores using down-sampled dataset.

https://doi.org/10.1371/journal.pone.0295501.g003
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predictions. These output predictions act as features for the training of meta-classifiers. Finally,

the meta-stacking technique is used to find the optimum way to integrate predictions from

several underlying base learners to give the final output. Fig 4 shows the architecture of SSC.

Contrary to heterogeneous base learners and meta-learners, this study adopts a self-stacking

ensemble where the same machine learning model i.e. RF, serves as a base learner. We selected

RF—a combination of various de-correlated decision trees (DTs)—because of its high efficacy

in high-dimensional classification problems [39]. Consider a training set T = {Xi, Yi} where

i = 1, 2, 3, . . ., n is the number of vectors, X 2 S where S is a set of sample data and Y 2 C
where C is a set of target variables. When applied to the underlying problem, the model maps

the input sample data to the target variable S! C. Each DT in RF classifies a new input vector

yielding a certain output prediction. RF builds DTs by incorporating training bootstrapped

samples from T and selecting a subset of S at each node. This method of training is used for

each RFbase learnerm
where m = 1, . . ., 4, functioning as a base learner. Moreover, the stacking

model integrates k-fold cross-validation for the training of each RFbase learnerm
in the proposed

SSC model. The final predictions FPk made by each fold of the k-fold act as features for the

training of meta-classifier (RFmeta_learner). Finally, RFmeta_learner determines the optimal combi-

nation of FPm to finally classify the underlying data sample and detect the underlying thyroid

disease. Algorithm 1 presents the pseudocode of the proposed SSC model.

Algorithm 1 Pseudocode of proposed Self-Stacking Classifier
Input: Training Set, T = {Si, Ci} where, Si=input features and Ci=tar-
get variable, i = 1 to 4 is the number of base learners.
Output: Self-Stacking Classifier XSSC
1: Step 1: Learn about RFbase learnersi

where, i = 1 to 4
2: for t  1 to 4 do
3: Learn RFbase learnerst

based on T
4: end for
5: Step 2: Construct new training dataset Ts from T
6: for i  1 to m do
7: Ts ¼ fS

0
i;Cig where, S0i ¼ fRFbase learners1

ðSiÞ; :::;RFbase learnersn
ðSiÞg

8: end for
9: Step 3: Learn the meta classifier RFmeta_learner
10: Train RFmeta_learner on newly constructed dataset Ts
11: return XSSCðSÞ ¼ RFmeta learnerðRFbase learner1

ðSÞ; :::RFbase learner4
ðSÞÞ

3.3 Algorithms tested

In this study, we tested several machine learning algorithms which have significant applica-

tions in different domains, such as the health care [40], Internet of Things (IoT) [41], machine

Fig 4. Architecture of proposed Self Stacking Classifier comprised of RF as a base and meta learner.

https://doi.org/10.1371/journal.pone.0295501.g004
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vision [42], edge computing [43], education [44, 45], and many others. In order to conduct a

fair comparative evaluation of our proposed SSC model for the detection of thyroid disease,

we chose the following machine learning classifiers: RF due to its effectiveness, interpretability,

non-parametric nature, and high accuracy rate across a range of data types; GBM, which has

various benefits including adaptability, robust tolerance to anomalous inputs, and high accu-

racy; AdaBoost, since it is less susceptible to overfitting; LR, because its training and imple-

mentation processes are simple; and Support Vector Classifier (SVC), that has advantages

including efficiently handling high dimensional data [46]. For these algorithms to perform at

their maximum, we optimized their hyperparameters. We select the best hyperparameter set-

ting by tuning the models on specific value ranges. Table 5 presents the hyperparameter set-

tings for each algorithm.

Likewise, we utilized self voting ensemble classifier (SVEC) to further emphasize the signifi-

cance and usefulness of the proposed classifier. The traditional voting classifier is a meta-classi-

fier for classification based on “hard” or “soft” voting criteria that integrate similar or distinct

machine learning models. Contrary to this, we adopted a self-voting mechanism in which the

output of the same model is combined to produce the final prediction. We employed RF as the

base learner in SVEC and used both hard and soft voting criteria to classify the thyroid disease

dataset. Hard voting adheres to the basic majority voting criteria. Soft voting classifies target

values by aggregating the projected probabilities of the base classifiers and selecting the target

variable with the highest probability. Algorithms 2 and 3 demonstrate the pseudocodes for

hard voting (SVEC-H) and soft voting (SVEC-S) respectively. The mode in SVC-H Algorithm

2, represents that the target class with the highest vote will be the final prediction, and argmax

in SVC-S Algorithms 3, represent that the class with the highest average probability will be the

final prediction.

Algorithm 2 Pseudocode of Hard Self-Voting Ensemble Classifier
Input
T = Training set representing A target variables.
Classifierbase = Base Classifiers i.e. RFbase1, RFbase2, and RFbase3
L = Labels of training data.
D = Number of base classifiers.
Output: Diagnostic Class
1: procedure:
2: do n = 1 to D
3: Call Classifierbase with Tn
4: Receive the classifier Classifierbasen

5: Compare Ln with An generated by Classifierbasen

6: Update vote V
7: Final Prediction mode{RFbase1(V), RFbase2(V), RFbase3(V)}

Algorithm 3 Pseudocode of Soft Self-Voting Ensemble Classifier
Input:

Table 5. Hyperparameter settings for machine learning algorithms.

Algorithm Hyperparameter Tuning Range

RF n_estimators = 200, max_depth = 50 n_estimators={20 to 200}, max_depth={5 to 100}

GBM max_depth = 200, learning_rate = 0.2, n_estimators = 50,

random_state = 52

n_estimators={20 to 200}, max_depth={5 to 100}, random_state={2 to 100 },

learning_rate= {0.1 to 0.9 }

AdaBoost n_estimators = 300, random_state = 5, learning_rate = 0.8 n_estimators={20 to 200}, random_state={2 to 100 }, learning_rate= {0.1 to 0.9 }

LR solver=‘saga’, multi_class=‘multinomial’, C = 3.0 solver= [‘saga’,‘sag’,‘liblinear’], multi_class=‘multinomial’, C={1.0 to 5.0}

SVC kernel=‘linear’, C = 1.0 kernel=[‘linear’, ‘poly’, ‘sigmoid’], C={1.0 to 5.0}

https://doi.org/10.1371/journal.pone.0295501.t005
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T = Training set
D = Testing Set
Classifierbase = Base Classifiers i.e. RFbase1, RFbase2, and RFbase3
Output: Diagnostic Class
1: Step 1: Training base classifiers
2: R1 = RFbase1(T)
3: R2 = RFbase2(T)
4: R3 = RFbase3(T)
5: Step 2: Testing base classifiers
6: P(R1)  D

P(R1) = {a1, a2, . . ., an}
7: P(R2)  D

P(R2) = {b1, b2, . . ., bn}
8: P(R3)  D

P(R3) = {c1, c2, . . ., cn}
9: Final Prediction  argmaxð

Pn
i¼0
fPðR1Þ þ PðR2Þ þ PðR3ÞgÞ

To further substantiate the performance of the SSC classifier, deep neural networks were

also taken into consideration. A deep neural network consists of artificial neurons that have

been connected and exchanged their output with neighboring neurons. They incorporate an

optimization or loss function to maximize the output in conjunction with input, hidden, and

output layers. For the intended result, the weights are increased in every subsequent epoch.

We employed CNN and LSTM, two well-known deep neural networks. The hyperparameter

setting for deep learning models is according to the literature. We study the researchers who

worked on the same kinds of datasets and we used the same kind of state-of-the-art architec-

tures to achieve significant accuracy [35, 44, 47]. Additionally, we integrated these neural net-

works and used a CNN-LSTM hybrid to detect thyroid disease. Table 6 provides the layered

architecture of the deep neural networks used in this study.

3.4 Performance estimation evaluation estimators

The performance of classifiers used in this study is assessed using accuracy and macro estima-

tors (macro precision, macro recall, and macro F1-score). The rationale for using macro esti-

mators is that the micro estimators aggregate the average parameter and produce results that

are biased toward classes with many test instances. Likewise, weighted estimators consider the

sample size for each target variable when computing the average, resulting in skewed results in

the case of imbalanced data.

The very unbalanced nature of the dataset utilized in this work necessitated the adoption of

macro estimators, which allowed us to fairly compare classifier performance on unbalanced

data with that on balanced data. The corresponding formulas to compute accuracy, precision,

Table 6. Layered architecture of deep neural networks.

LSTM CNN CNN-LSTM

Embedding(5000,200) Embedding(5000,200) Embedding(5000,200)

Dropout(0.5) Conv1D(128,5,activation=‘relu’) Conv1D(128,5,activation=‘relu’)

LSTM(128) MaxPooling1D(pool_size = 5) MaxPooling1D(pool_size = 2)

Dropout(0.5) Activation(‘relu’) LSTM(64,return_sequences = True)

LSTM(64) Dropout(rate = 0.5) Conv1D(128,5,activation=‘relu’)

Dropout(0.5) Flatten() MaxPooling1D(pool_size = 2)

Dense(32) Dense(32) Flatten()

Dense(5) Dense(5) Dense(5)

loss =‘categorical_crossentropy’, optimizer =‘adam’, epochs = 100, batch_size = 128, activation=‘softmax’

https://doi.org/10.1371/journal.pone.0295501.t006
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recall, and F1-score are listed below. Albeit the weighted, micro, and macro estimators are all

calculated in a different manner, however, these estimators compute precision, recall, and

F1-score using the same formulas.

Accuracy ¼
TPþ TN

TP þ FPþ TN þ FN
ð1Þ

Precision ¼
TP

TP þ FP
ð2Þ

Recall ¼
TP

TP þ FN
ð3Þ

F1 � score ¼ 2�
precision� recall
precisionþ recall

ð4Þ

where TP (True Positive) and TN (True Negative) are the numbers of correctly predicted posi-

tive and negative instances respectively. FP (False Positive) is the count of negative instances

that were predicted as positive instances. Similarly, FN (False Negative) is the number of posi-

tive instances incorrectly predicted as negative instances. All evaluation metrics are standard-

ized with values ranging from 0 to 1, where 0 represents the lowest score and 1 represents the

highest score.

4 Results

We performed two distinct sets of experiments. We were initially, using the original distribu-

tion of data samples across each target variable, and later on adopted down-sampled data for

model training. The training and test sample distribution for each case is shown in Fig 5.

4.1 Experimental results of machine learning classifiers

First, experiments were carried out on original and down-sampled datasets using individual

machine-learning classifiers. In Table 7, we can observe that the accuracy (the degree to which

the classifier delivered correct predictions) of RF is the highest among all classifiers in both set-

tings for thyroid detection using machine learning classifiers. The model yielded 98% and 97%

accuracy when experimented with original and down-sampled datasets respectively. However,

it is important to draw attention to the significant difference in the classifiers’ accuracy, preci-

sion, recall, and F1 scores when trained and tested using the original distribution.

Fig 5. Distribution of original and down-sampled train and test samples across each target class (a) Training set of

original data, (b) Test set of original data, (c) Training set of down-sampled data, and (d) Test set of down-sampled

data.

https://doi.org/10.1371/journal.pone.0295501.g005
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Nevertheless, with a balanced distribution of data, RF produced more stable results despite

achieving higher accuracy on the original dataset. The remaining classifiers, including GBM,

AdaBoost, and SVC, obtained accuracy above 92% for balanced data. Hence, it is viable to dis-

cern that classifiers perform better overall when the dataset has been balanced. The linear

model LR, on the contrary, presented poor performance.

Table 8 shows the target class-wise results of machine learning classifiers. It is evident that

the classifiers performed poorly for minority classes, such as classes with few training

instances, when the target classes’ original distribution, or imbalanced data, was used. In com-

parison, more consistent results can be seen when the dataset is distributed evenly, or when

Table 7. Experimental results of machine learning classifiers.

Classifier Original Data Down-Sampled Data

Accuracy Precision Recall F1 Accuracy Precision Recall F1

RF 0.98 0.97 0.94 0.95 0.97 0.98 0.97 0.97

GBM 0.97 0.92 0.94 0.93 0.95 0.95 0.95 0.95

AdaBoost 0.88 0.72 0.69 0.66 0.94 0.94 0.94 0.94

LR 0.86 0.52 0.40 0.43 0.89 0.88 0.88 0.88

SVC 0.83 0.17 0.20 0.18 0.93 0.93 0.92 0.92

https://doi.org/10.1371/journal.pone.0295501.t007

Table 8. Target class-wise results of machine learning classifiers.

Classifier Target Class Original Data Down-Sampled Data

Precision Recall F1 Precision Recall F1

RF No Condition 0.98 0.99 0.99 0.91 1.00 0.95

Hypothyroid 0.98 0.95 0.97 0.98 1.00 0.99

Increased binding protein 0.96 0.99 0.97 1.00 1.00 1.00

Compensated hypothyroid 0.96 0.76 0.85 1.00 0.86 0.92

Concurrent non-thyroidal illness 0.98 0.99 0.98 1.00 0.98 0.99

GBM No Condition 0.99 0.98 0.98 0.89 0.96 0.92

Hypothyroid 0.98 0.91 0.94 1.00 1.00 1.00

Increased binding protein 0.92 0.99 0.95 0.98 1.00 0.99

Compensated hypothyroid 0.78 0.82 0.80 0.91 0.83 0.87

Concurrent non-thyroidal illness 0.95 0.99 0.97 0.98 0.94 0.96

AdaBoost No Condition 0.92 0.94 0.93 0.90 0.92 0.91

Hypothyroid 1.00 0.61 0.76 1.00 1.00 1.00

Increased binding protein 0.93 0.99 0.96 0.98 1.00 0.99

Compensated hypothyroid 0.43 0.85 0.57 0.79 0.89 0.84

Concurrent non-thyroidal illness 0.33 0.05 0.08 1.00 0.88 0.93

LR No Condition 0.86 0.99 0.92 0.87 0.92 0.90

Hypothyroid 0.87 0.77 0.82 0.90 0.93 0.92

Increased binding protein 0.00 0.00 0.00 0.94 0.85 0.89

Compensated hypothyroid 0.86 0.25 0.39 0.82 0.80 0.81

Concurrent non-thyroidal illness 0.00 0.00 0.00 0.88 0.92 0.90

SVC No Condition 0.83 0.99 0.91 0.85 1.00 0.92

Hypothyroid 0.00 0.00 0.00 0.91 0.95 0.93

Increased binding protein 0.00 0.00 0.00 0.96 0.87 0.91

Compensated hypothyroid 0.00 0.00 0.00 0.94 0.86 0.90

Concurrent non-thyroidal illness 0.00 0.00 0.00 1.00 0.94 0.97

https://doi.org/10.1371/journal.pone.0295501.t008
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the data are down-sampled. Because classifiers were able to learn and interpret the features of

each class in a balanced manner, the results were more reliable.

4.2 Experimental results of self-voting classifiers

In this study, we also implement and assess the performance of ensemble classification under

self-voting criteria. A voting classifier, as described in Section 3.3, is a collection of various

machine learning classifiers that perform prediction using either soft or hard procedures. We

ran experiments using the developed self-voting SVEC-H and SVEC-S ensembles of three RF

classifiers under hard and soft voting criteria, respectively, to investigate the applicability of

self-voting classifiers on the underlying dataset. The experimental results obtained by self-vot-

ing classifiers are shown in Table 9. Both self-voting classifiers achieved accuracy values greater

than 97%, as shown. The uneven distribution of target classes, however, leads to inconsistent

results. Additionally, similar percentages of performance estimators could be seen for both

hard and soft voting criteria. Albeit the RF classifier individually achieved 97% accuracy with

down-sampled data, it is clear that the self-voting classifier achieves a comparable 97% accu-

racy score on down-sampled data. Moreover, it is apparent from Table 10 that the classifica-

tion results of the majority voting (hard) and weighted probability voting (soft) criterion

remained similar for each target class.

4.3 Experimental results of deep neural networks

We also evaluated the performance of deep neural networks for thyroid disease detection

using the underlying original and balanced distribution of the dataset. Table 11 presents the

classification results of deep neural networks. CNN yielded the highest accuracy score of 95%

when trained and tested using the original distribution of the dataset. A significant drop in the

evaluation estimators can be observed with a balanced dataset distribution. Another pertinent

Table 9. Experimental results of ensemble voting classifiers.

Classifier Original Data Down-Sampled Data

Accuracy Precision Recall F1 Accuracy Precision Recall F1

SVEC-H 0.98 0.96 0.94 0.95 0.97 0.98 0.96 0.96

SVEC-S 0.98 0.96 0.94 0.95 0.97 0.98 0.96 0.96

https://doi.org/10.1371/journal.pone.0295501.t009

Table 10. Target class-wise classification results of self-voting ensemble classifiers.

Classifier Target Class Original Data Down-Sampled Data

Precision Recall F1 Precision Recall F1

SVEC-H No Condition 0.99 0.99 0.99 0.89 1.00 0.94

Hypothyroid 0.98 1.00 0.99 1.00 1.00 1.00

Increased binding protein 0.96 1.00 0.98 0.98 1.00 0.99

Compensated hypothyroid 0.96 0.71 0.82 1.00 0.80 0.89

Concurrent non-thyroidal illness 0.92 0.98 0.95 1.00 1.00 1.00

SVEC-S No Condition 0.99 0.99 0.99 0.89 1.00 0.94

Hypothyroid 0.98 1.00 0.99 1.00 1.00 1.00

Increased binding protein 0.96 1.00 0.98 0.98 1.00 0.99

Compensated hypothyroid 0.96 0.71 0.82 1.00 0.80 0.89

Concurrent non-thyroidal illness 0.92 0.98 0.95 1.00 1.00 1.00

https://doi.org/10.1371/journal.pone.0295501.t010
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point is the inconsistency between the evaluation estimators such as accuracy precision, recall,

and F1-score when the deep neural networks dealt with imbalanced data.

On the contrary, the models yielded lower but consistent and reliable results with bal-

anced data. Fig 6 showcases the performance estimation of deep neural networks with origi-

nal and downs-sampled data across each epoch. A significant decline in the performance of

CNN-LSTM can be observed. Furthermore, CNN demonstrated rather more stability and

comparatively improved performance in the classification of target values with each succes-

sive epoch. The lower performance results of evaluation estimators are because the deep

learning models have the tendency to work better with larger datasets. As the number of data

instances reduced with the down-sampling technique, the performance of deep neural net-

works also degraded. The terms ‘Accuracy’ and ‘Val_Accuracy’ in Figs 6 and 7 correspond to

the accuracy metrics computed on the training and validation datasets, respectively. This

same concept extends to other evaluation metrics, where ‘val_precision’ represents valida-

tion precision, ‘val_recall’ stands for validation recall, and ‘val_F1_Score’ stands for the vali-

dation F1 score.

Fig 7 displays the loss of information across each epoch. When balanced data—that is,

down-sampled data—was given to deep neural networks, the validation loss decreased overall,

Table 11. Deep learning models results for thyroid disease classification.

Classifier Original Data Down-Sampled Data

Accuracy Precision Recall F1 Accuracy Precision Recall F1

LSTM 0.92 0.76 0.73 0.73 0.84 0.83 0.84 0.83

CNN 0.95 0.89 0.81 0.84 0.90 0.91 0.90 0.90

CNN-LSTM 0.93 0.84 0.76 0.79 0.79 0.79 0.79 0.79

https://doi.org/10.1371/journal.pone.0295501.t011

Fig 6. Per epochs evaluation score for deep learning models. In these figures, ‘val’ indicates validation, so

‘val_accuracy’ represents the accuracy on the validation set, and the same principle applies to other metrics (a) CNN

+ Original Data, (b) LSTM + Original Data, (c) CNN-LSTM + Original Data, (d) CNN + down-sampled data, (e)

LSTM + down-sampled data, and (f) CNN-LSTM + down-sampled data.

https://doi.org/10.1371/journal.pone.0295501.g006
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as can be shown. The CNN-LSTM loss graph, however, continued to be the highest, demon-

strating the model’s poor performance in detecting thyroid disease.

4.4 Experimental results of proposed self-stacking classifier

After experimental verification, it was shown that RF was the superlative classifier for the thy-

roid disease classification dataset. However, it was believed that more enhanced and reliable

results were required. Besides that, as described in Section 4.2, the self-voting technique was

found to be comparatively inefficient for identifying thyroid disease. As a result, we explored

further into the performance of stacking, another ensemble technique. To do so, we suggested

and put into practice a self-stacking classifier (SSC) based on RF. Even though it performed

relatively poorly on the original dataset, the proposed SSC model displayed state-of-the-art

Fig 7. Per epochs loss estimation for deep learning models. In these figures, ‘val’ indicates validation, so ‘val_loss’

represents the loss on the validation set, and the same principle applies to other metrics (a) CNN + Original Data, (b)

LSTM + Original Data, (c) CNN-LSTM + Original Data, (d) CNN + down-sampled data, (e) LSTM + down-sampled

data, and (f) CNN-LSTM + down-sampled data.

https://doi.org/10.1371/journal.pone.0295501.g007

Table 12. Classification results of proposed SSC model.

Data Distribution Accuracy Target Precision Recall F1

Original Data 0.98 No Condition 0.99 0.99 0.99

Hypothyroid 0.98 0.93 0.95

Increased binding protein 0.96 0.99 0.97

Compensated hypothyroid 0.90 0.85 0.87

Concurrent non-thyroidal illness 0.96 0.99 0.97

Macro Average 0.95 0.95 0.95

Down-Sampled Data 0.995 No Condition 1.00 0.98 0.99

Hypothyroid 1.00 1.00 1.00

Increased binding protein 1.00 1.00 1.00

Compensated hypothyroid 1.00 1.00 1.00

Concurrent non-thyroidal illness 0.98 1.00 0.99

Macro Average 1.00 1.00 1.00

https://doi.org/10.1371/journal.pone.0295501.t012
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performance when supplied with balanced data, as demonstrated in Table 12. In terms of diag-

nosing thyroid disease, the model scored a state-of-the-art 99.5% accuracy score. Other evalua-

tion estimators including precision, recall, and F1-score all showed a perfect score of 100%

demonstrating the reliability and effectiveness of the proposed model. Additionally, the SSC

model successfully classified each class with the highest degrees of precision, recall, and F1

scores. This also contributes to the robustness of the proposed model.

5 Comparative analysis of experimental results

In this section, we compare and discuss the extensive experimentation results to further dem-

onstrate the robustness of the proposed SSC model. As evaluation criteria for the comparative

study, we used confusion matrices. The main diagonal of the confusion matrix displays the

number of correctly predicted instances in correspondence to each associated class. In the con-

fusion matrix the labels “0,1,2,3, and 4” indicate “no condition”, hypothyroid, increased

Fig 8. Confusion matrix of classifiers when supplied with original data. (a) RF, (b) GBM, (c) AdaBoost, (d) LR, (e) SVC, (f) SVEC-H, (g) SVEC-S,

(h) CNN, (i) LSTM, (j) CNN-LSTM, and (k) SSC.

https://doi.org/10.1371/journal.pone.0295501.g008
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binding protein, compensated hypothyroid, and concurrent non-thyroidal illness classes

respectively. Figs 8 and 9 show the confusion matrix for both machine learning and deep

learning models on the same size of test data. We have done separate data splitting (Training

and Testing sets) for machine learning and deep learning models. When splitting the dataset,

we used the shuffle parameter which changes the number of instances for each target class for

both machine and deep learning models but in both cases, the total number of test samples is

the same which is 230. We did splitting separately for deep learning models because the last

layer of deep learning has 5 neurons. For that, we have to feed target data after converting it

into five variables and we split data again after the conversion. We use shuffle parameters in

the train test split to change the count for each category in the test dataset.

The “no condition” target class makes up over 80% of the original dataset; in contrast, thy-

roid disease classes make up only 20% of the remaining dataset, making them the minority

class. The models have the tendency to over-fit on the majority class consequently, performing

Fig 9. Confusion matrix of classifiers when supplied with down-sampled data. (a) RF, (b) GBM, (c) AdaBoost, (d) LR, (e) SVC, (f) SVEC-H, (g)

SVEC-S, (h) CNN, (i) LSTM, (j) CNN-LSTM, and (k) SSC.

https://doi.org/10.1371/journal.pone.0295501.g009
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poorly on minority classes. The visual representation of the classifier’s performance on imbal-

anced data is shown in Fig 8 through their respective confusion matrix. In contrast to the

minority classes, it is evident that the class with the majority of the training samples was classi-

fied correctly. The model’s RF and SSC produced the lowest percentage of test instances that

were erroneously predicted, with RF maintaining the highest percentage in the case of unbal-

anced data with only 29 inaccurate predictions. However, SSC delivered 33 incorrect predic-

tions. Despite this, each classifier experienced a decline in the number of incorrect predictions

with the balanced dataset, with the proposed SSC coming out on top with only one incorrect

prediction. Moreover, classifiers recognized the minority samples more correctly. This shows

the efficacy of the proposed model. Fig 10 presents a bar chart comparing the classifier’s per-

formance in identifying thyroid disease from an imbalanced and balanced dataset. This also

displays the superior performance of the proposed SSC when provided with balanced data.

We employed various methods such as 10-fold cross-validation, standard deviation (SD),

and time measurement to further compare, validate, and generalize the performance of the

Fig 10. Performance analysis of classifiers in terms of accuracy and error rate.

https://doi.org/10.1371/journal.pone.0295501.g010

Table 13. 10-fold cross-validation results of classifiers.

Classifier Original Data Down-Sampled Data

Accuracy SD Time (sec) Accuracy SD Time (sec)

RF 0.97 +/-0.01 0.945 0.96 +/-0.06 0.369

GBM 0.97 +/-0.01 1.445 0.93 +/-0.11 0.439

AdaBoost 0.58 +/-0.28 1.873 0.92 +/-0.12 0.612

LR 0.85 +/-0.01 0.598 0.88 +/-0.07 0.084

SVC 0.86 +/-0.01 11.423 0.91 +/-0.11 10.922

SVEC-H 0.98 +/-0.01 2.732 0.96 +/-0.08 1.567

SVEC-S 0.98 +/-0.01 3.181 0.96 +/-0.08 0.972

Proposed SSC 0.98 +/-0.01 3.012 0.99 +/-0.01 3.705

https://doi.org/10.1371/journal.pone.0295501.t013
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proposed classifier. The results of all machine learning classifiers with original and down-sam-

pled data are presented in Table 13. The proposed SSC model outperformed other models

with an accuracy of 0.99 and an SD of 0.01. Although SSC took longer to execute than some

classifiers such as RF, GBM, AdaBoost, LR, and SVEC-S, the proposed model’s accuracy has

significantly improved. Therefore, despite the time difference, we can compromise it because

the model generates highly accurate results, which is essential for medical diagnosis.

Figs 11 & 12, illustrates SD values for different classifiers and provides insights into the vari-

ability of accuracy scores when applied to both original and down-sampled data. It also shows

the error rate lower and upper bounds. These values indicate the stability of classifier perfor-

mance across multiple runs or datasets, with lower values suggesting more consistent results.

Finally, by comparing our results with those of other studies, we can see that, for the cited

[35], the optimum results were attained by implementing machine learning-based feature

selection and RF-based classification. However, in our research, balancing the dataset and

employing SSC for classification contributed to the maximum performance. We also deployed

the designed approaches cited in [19, 28, 48, 49] on our dataset to signify the performance of

the proposed approach. Table 14 provides a detailed comparison of the results that illustrates

the significance of the proposed SSC model. Given that we employed all features for the model

training, SSC took longer to execute. Despite this, there is a significant difference in the cross-

validation results of SSC and MLFS + RF proposed by Chaganti et al. [35]. This demonstrates

better generalizability of the proposed re-sampling technique with SSC.

Fig 11. Performance of models in terms of mean accuracy and error deviation.

https://doi.org/10.1371/journal.pone.0295501.g011
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5.1 Statistical analysis

In this research, statistical analysis was performed using the T-test to compare the results of

the proposed approach with other techniques. The T-test is a method to determine the statisti-

cal difference between two populations [50]. The aim was to investigate the statistical signifi-

cance of the proposed approach in comparison to others. The null hypothesis is rejected by the

T-test if the proposed approach is statistically significant. We set a p-value of 0.05 for all sce-

narios. The degree of freedom in each case is 7 and the results showed that the null hypothesis

was rejected in all cases, as the P-value was less than the T scores. Therefore, the proposed

approach was found to be statistically significant compared to others, as presented in Table 15.

To determine the statistical power of our test, we utilized an online power calculator [51].

Our sample size is 16, Cohen’s effect size is 0.8, and the significance level is set at 0.05. The

sample population consists of a normal distribution. The test results provide a statistical power

Fig 12. Performance of models in terms of error rate.

https://doi.org/10.1371/journal.pone.0295501.g012

Table 14. Performance comparison with previous study.

Study Approach Train-Test Method 10-Fold

Accuracy Precision Recall F1 Accuracy SD

[35] MLFS + RF 0.99 0.99 0.99 0.99 0.94 ± 1.68

[19] RF 0.98 N/A N/A 0.98 N/A N/A

[49] CNN + SGLV 0.96 N/A N/A 0.96 N/A N/A

[28] DT 0.98 N/A N/A 0.97 N/A N/A

[48] DT 0.93 N/A N/A 0.93 N/A N/A

Our Down-sampling + SSC 0.995 1.00 1.00 1.00 0.99 ±0.01

https://doi.org/10.1371/journal.pone.0295501.t014
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of 0.169, with critical values of -1.96 and 1.96 based on the standard normal distribution,

where the standard distribution shift is 2.263.

6 Conclusions

Medical expert systems for thyroid disease diagnosis have seen tremendous growth, and the

systems currently available are sophisticated enough to be employed in practice, enhancing

and improving patient care. The thyroid is particularly difficult to diagnose as its symptoms

are often mistaken for those of other conditions. Early diagnosis of thyroid disease can prevent

mishaps.

Machine learning models produce skewed results when provided with imbalanced datasets.

Thyroid disease diagnosis requires an effective, accurate, and reliable system, and current diag-

nostic tools focus on reducing dataset dimensionality, ignoring the distribution of target clas-

ses. This study proposed a system that down-samples the dataset to obtain a balanced

distribution of samples, classified using an RF-based self-stacking classifier (SSC). Experimen-

tal results show the proposed model’s superior performance, achieving 99.5% accuracy, 100%

macro precision, recall, and F1-score. The proposed classifier’s performance was compared to

several other machine learning, deep learning, and self-voting classifiers, demonstrating the

reliability of the proposed approach through 10-fold cross-validation. The performance of SSC

was compared to the existing medical diagnosis system, which corroborated the significance

and superiority of this study. The following conclusions were drawn from the research:

• Balancing the dataset enables the classifiers to perform well with minority classes.

• Down-sampling substantially increases recall, resulting in a decline in the FP to TP ratio,

indicating successful identification of minority data.

• For highly imbalanced datasets, RF can be used for best performance.

• RF-based self-stacking ensemble outperformed RF-based self-voting ensemble classifiers

regarding the balanced dataset.

A limitation of this study is that each target class was down-sampled to 230 data instances,

which we aim to address in ongoing research by experimenting with a more extensive distribu-

tion of data samples across each target variable.
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reño-Jaimes M. Using machine learning methods for predicting inhospital mortality in patients undergo-

ing open repair of abdominal aortic aneurysm. Journal of biomedical informatics. 2016; 62:195–201.

https://doi.org/10.1016/j.jbi.2016.07.007 PMID: 27395372

4. Raisinghani S, Shamdasani R, Motwani M, Bahreja A, Raghavan Nair Lalitha P. Thyroid prediction

using machine learning techniques. In: International Conference on Advances in Computing and Data

Sciences. Springer; 2019. p. 140–150.

5. Tyagi A, Mehra R, Saxena A. Interactive thyroid disease prediction system using machine learning tech-

nique. In: 2018 Fifth international conference on parallel, distributed and grid computing (PDGC). IEEE;

2018. p. 689–693.

6. Shahid AH, Singh MP, Raj RK, Suman R, Jawaid D, Alam M. A Study on Label TSH, T3, T4U, TT4, FTI

in Hyperthyroidism and Hypothyroidism using Machine Learning Techniques. In: 2019 International

Conference on Communication and Electronics Systems (ICCES). IEEE; 2019. p. 930–933.

7. Yadav DC, Pal S. Prediction of thyroid disease using decision tree ensemble method. Human-Intelligent

Systems Integration. 2020; 2(1):89–95. https://doi.org/10.1007/s42454-020-00006-y

8. Raghuraman M, Sailatha E, Gunasekaran S. Efficient thyroid disease prediction and comparative study

using machine learning algorithms. International Journal of Information and Computing Science. 2019;

6(6):617–624.

9. Abbad Ur Rehman H, Lin CY, Mushtaq Z, Su SF. Performance analysis of machine learning algorithms

for thyroid disease. Arabian Journal for Science and Engineering. 2021; 46(10):9437–9449. https://doi.

org/10.1007/s13369-020-05206-x

10. Shivastuti HK, Manhas J, Sharma V. Performance Evaluation of SVM and Random Forest for the Diag-

nosis of Thyroid Disorder. Int J Res Appl Sci Eng Technol. 2021; 9:945–947. https://doi.org/10.22214/

ijraset.2021.34381

11. Iglesias JA, Ledezma A, Sanchis A. An ensemble method based on evolving classifiers: eStacking. In:

2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS). IEEE; 2014. p. 124–

131.

12. Jiang W, Chen Z, Xiang Y, Shao D, Ma L, Zhang J. SSEM: A novel self-adaptive stacking ensemble

model for classification. IEEE Access. 2019; 7:120337–120349. https://doi.org/10.1109/ACCESS.

2019.2933262

13. Chen C, Zhang Q, Yu B, Yu Z, Lawrence PJ, Ma Q, et al. Improving protein-protein interactions predic-

tion accuracy using XGBoost feature selection and stacked ensemble classifier. Computers in Biology

and Medicine. 2020; 123:103899. https://doi.org/10.1016/j.compbiomed.2020.103899 PMID:

32768046

PLOS ONE Thyroid disease prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0295501 January 3, 2024 23 / 25

https://weillcornell.org/news/understanding-thyroid-problems-disease
https://weillcornell.org/news/understanding-thyroid-problems-disease
https://doi.org/10.1016/j.jbi.2016.07.007
http://www.ncbi.nlm.nih.gov/pubmed/27395372
https://doi.org/10.1007/s42454-020-00006-y
https://doi.org/10.1007/s13369-020-05206-x
https://doi.org/10.1007/s13369-020-05206-x
https://doi.org/10.22214/ijraset.2021.34381
https://doi.org/10.22214/ijraset.2021.34381
https://doi.org/10.1109/ACCESS.2019.2933262
https://doi.org/10.1109/ACCESS.2019.2933262
https://doi.org/10.1016/j.compbiomed.2020.103899
http://www.ncbi.nlm.nih.gov/pubmed/32768046
https://doi.org/10.1371/journal.pone.0295501


14. Alam MZ, Rahman MS, Rahman MS. A Random Forest based predictor for medical data classification

using feature ranking. Informatics in Medicine Unlocked. 2019; 15:100180. https://doi.org/10.1016/j.

imu.2019.100180

15. Yang F, Wang Hz, Mi H, Lin Cd, Cai Ww. Using random forest for reliable classification and cost-sensi-

tive learning for medical diagnosis. BMC bioinformatics. 2009; 10(1):1–14. https://doi.org/10.1186/

1471-2105-10-S1-S22 PMID: 19208122

16. Shaik AB, Srinivasan S. A brief survey on random forest ensembles in classification model. In: Interna-

tional Conference on Innovative Computing and Communications. Springer; 2019. p. 253–260.

17. Saad E, Sadiq S, Jamil R, Rustam F, Mehmood A, Choi GS, et al. Novel extreme regression-voting

classifier to predict death risk in vaccinated people using VAERS data. Plos one. 2022; 17(6):

e0270327. https://doi.org/10.1371/journal.pone.0270327 PMID: 35767542

18. Mishra S, Tadesse Y, Dash A, Jena L, Ranjan P. Thyroid disorder analysis using random forest classi-

fier. In: Intelligent and cloud computing. Springer; 2021. p. 385–390.

19. Alyas T, Hamid M, Alissa K, Faiz T, Tabassum N, Ahmad A. Empirical Method for Thyroid Disease

Classification Using a Machine Learning Approach. BioMed Research International. 2022; 2022.

https://doi.org/10.1155/2022/9809932 PMID: 35711517

20. Razia S, Prathyusha PS, Krishna NV, Sumana NS. A Comparative study of machine learning algo-

rithms on thyroid disease prediction. Int J Eng Technol. 2018; 7:315–319. https://doi.org/10.14419/ijet.

v7i2.8.10432

21. Garcia de Lomana M, Weber AG, Birk B, Landsiedel R, Achenbach J, Schleifer KJ, et al. In silico mod-

els to predict the perturbation of molecular initiating events related to thyroid hormone homeostasis.

Chemical research in toxicology. 2020; 34(2):396–411. https://doi.org/10.1021/acs.chemrestox.

0c00304 PMID: 33185102

22. Li Y, Song J. The difference of the quantitative parameters using kinetic compartment model in Salivary

gland scintigraphy in two kinds of people: hyperthyroidism and euthyroidism; 2018.

23. Rayman MP. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune

thyroid disease. Proceedings of the Nutrition Society. 2019; 78(1):34–44. https://doi.org/10.1017/

S0029665118001192 PMID: 30208979

24. Biondi B, Cooper DS. Thyroid hormone therapy for hypothyroidism. Endocrine. 2019; 66(1):18–26.

https://doi.org/10.1007/s12020-019-02023-7 PMID: 31372822

25. Yang P, Pi Y, He T, Sun J, Wei J, Xiang Y, et al. Automatic differentiation of thyroid scintigram by deep

convolutional neural network: a dual center study. BMC Medical Imaging. 2021; 21(1):1–9. https://doi.

org/10.1186/s12880-021-00710-4 PMID: 34823482

26. Umar Sidiq D, Aaqib SM, Khan RA. Diagnosis of various thyroid ailments using data mining classifica-

tion techniques. Int J Sci Res Coput Sci Inf Technol. 2019; 5:131–6.

27. Chaubey G, Bisen D, Arjaria S, Yadav V. Thyroid disease prediction using machine learning

approaches. National Academy Science Letters. 2021; 44(3):233–238. https://doi.org/10.1007/s40009-

020-00979-z

28. Jha R, Bhattacharjee V, Mustafi A. Increasing the Prediction Accuracy for Thyroid Disease: A Step

Towards Better Health for Society. Wireless Personal Communications. 2022; 122(2):1921–1938.

https://doi.org/10.1007/s11277-021-08974-3
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